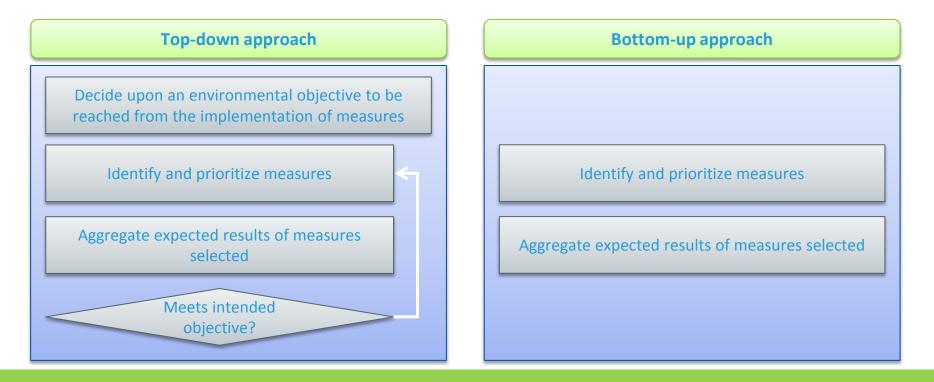


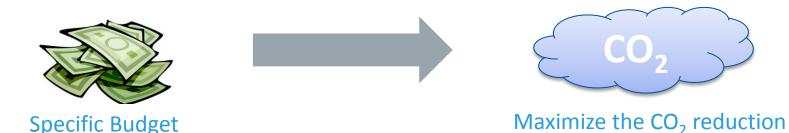
ICAO CAPACITY BUILDING SEMINAR ON LOW EMISSIONS AVIATION MEASURES

Supporting SIDS and their aviation stakeholders in selecting measures for the State Action Plan Neil Dickson, Chief, Environmental Standards Section, ICAO



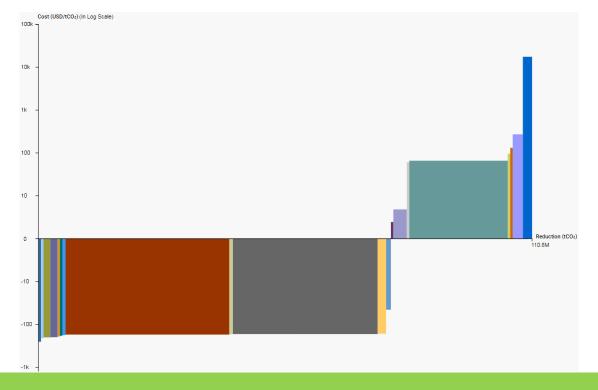
Background

- A State Action Plan comprises 5 elements:
 - 1. Contact information of the Focal Point
 - 2. Baseline
 - **3. Mitigation Measures**
 - 4. Expected Results
 - 5. Assistance needs (if any)
- The selection of Mitigation Measures can be challenging
 - Cost associated?
 - CO₂ abated?
- To facilitate the selection, ICAO has developed a Marginal Abatement Cost (MAC) Curve


Selection of mitigation measures

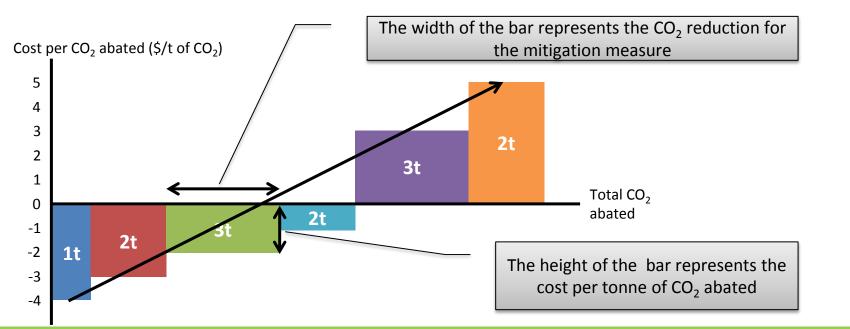
Prioritization of mitigation measures

- The prioritization of mitigation measures consists to rank the selected mitigation measures based on criteria, such as
 - Emissions reductions;
 - Economic feasibility;
- **Example** (for economic feasibility):



Function and Representation of a MAC curve

Function: A MAC curve helps to select and prioritize mitigation measures.


Representation: -----

NO COUNTRY LEFT BEHIND

How to read a MAC curve?

How to use a MAC curve – Example

Scenario Maximize the CO₂ abated by setting the total cost at 0\$ or lower

Cost pe	per CO_2 abated (\$/t of CO_2)	_	Measure F		Cost per	CO ₂ abated	Total
5	Measure A			#	tonne (\$/t)	(tonne)	cost (\$)
4	Measure A			Α	-4	1	-4
3 2	Measure B	2t		В	-3	2	-6
1	3t			С	-2	3	-6
0	2t		Total CO ₂ abated	D	-1	2	-2
-1 -2	2t 3t			Е	3	3	9
-2	1t It			F	5	2	10
-4	Measure C Measure I	D			Total	13	1

How to use a MAC curve – Example

Scenario Maximize the CO₂ abated by setting the total cost at 0\$ or lower

Cost per CO_2 abated (\$/t of CO_2)	Measure F		Cost per	CO ₂ abated	Total
5 Measure A Measure E	· mhun.	#	tonne (\$/t)	(tonne)	cost (\$)
4		Α	-4	1	-4
3 2 Measure B	2t 💋	В	-3	2	-6
1 3t		С	-2	3	-6
0 2t	Total CO ₂ abated	D	-1	2	-2
⁻¹ 2t 3t		Е	3	3	9
-2 1t -3		F	5	2	10
-4 Measure C Meas	ure D		Total	13> 11	1> -9

CASE STUDY

Recommendations for

Small Islands Developing States

and

Developing States

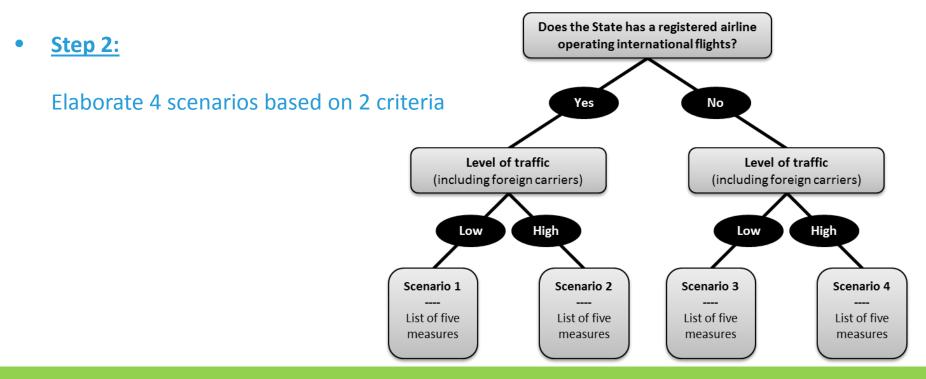
Case Study: Parameters

In order to calibrate the model (based on 34 countries), statistics on <u>Airport</u> and <u>Aircraft</u> need to be provided.

- 34 Countries located in Latin America/Caribbean and Asia-Pacific:
 - **13** SIDS
 - 21 Developing States
- Airports:
 - Small (<25k arrivals): 45.06%
 - Medium (25k-100k arrivals): 49.59%
 - Large (>100k arrivals): 5.35%

- Aircraft:
 - TP/RJ (Turboprop/Regional Jet): 29.87%
 - NB (Narrow-body): **59.83%**
 - WB (Wide-body): 10.30%
- Aircraft age:
 - 0-10 years: 81.09%
 - 10-20 years: 8.20%
 - +20 years: 10.71%

Case Study: Approach used


• <u>Step 1:</u>

Set the objective:

"Get the maximum of CO₂ abated with a maximum cost of 0\$ and with a maximum of 5 mitigation measures"

Case Study: Approach used

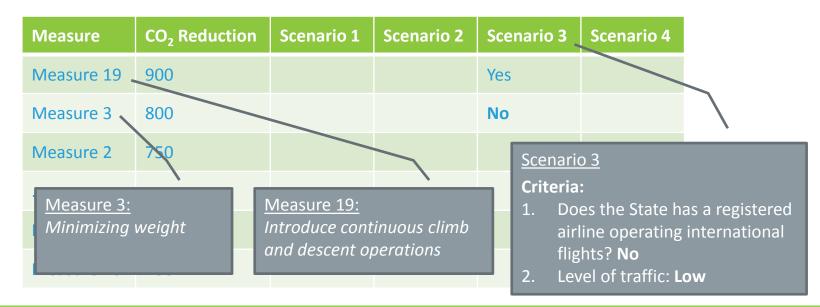
Case Study: Approach used

• <u>Step 3:</u>

Select 5 mitigation measures by taking into consideration the 2 criteria for each scenario

- Process:
- (a) Sort the 20 mitigation measures from the highest to the lowest potential CO₂ abated
- (b) Select the top 5 mitigation measures respecting both criteria
- (c) Sum the cost for the 5 mitigation measures with a limit of 0\$

Case Study: Approach used

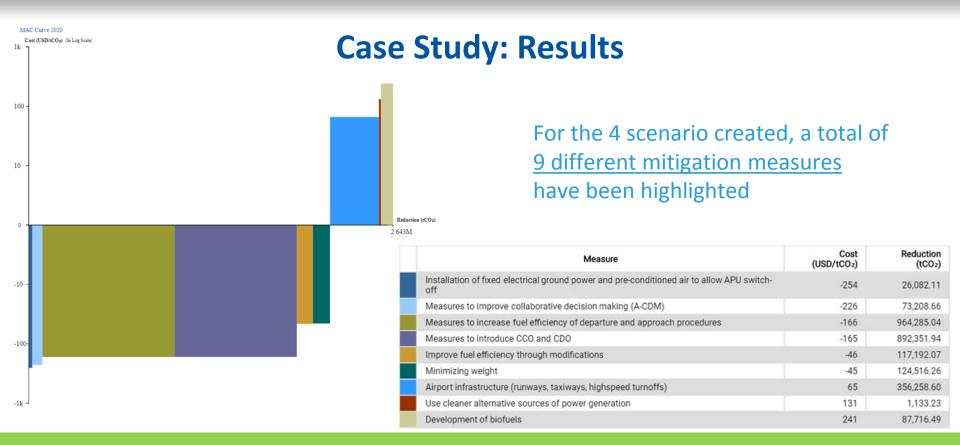

(a) Sort the 20 mitigation measures from the highest to the lowest potential CO_2 abated

Measure	CO ₂ Reduction
Measure 19	900
Measure 3	800
Measure 2	750
Measure 1	500
Measure 20	100

Case Study: Approach used

(b) Select the top 5 mitigation measures respecting both criteria

(c) Sum the cost for the 5 mitigation measures with a limit of 0\$


Measure	CO ₂ Reduction (t)	Cost (\$/t of CO ₂)	Total Cost (\$)	Respect criteria?
А	10,000	-100	-1,000,000	Yes
В	8,000	-200	-1,600,000	Yes
С	7,000	-500	-3,500,000	No
D	6,000	10,000	60,000,000	Yes
E	5,000	-500	-2,500,000	Yes
F	4,000	-500	-2,000,000	Yes
G	1,000	1000	1,000,000	Yes
	TOTAL		52,900,000	

(c) Sum the cost for the 5 mitigation measures with a limit of 0\$

Measure	CO ₂ Reduction (t)	Cost (\$/t of CO ₂)	Total Cost (\$)	Respect criteria?
А	10,000	-100	-1,000,000	Yes
В	8,000	-200	-1,600,000	Yes
С	7,000	-500	-3,500,000	No
Ð	6,000	10,000	60,000,000	Yes
E	5,000	-500	-2,500,000	Yes
F	4,000	-500	-2,000,000	Yes
G	1,000	1000	1,000,000	Yes
	TOTAL		-6,100,000	

Case Study: Results

S1	Does States have a national airline? Level of traffic	Yes Low	S2	Does States h .evel of traffi	ave a national airline? c	Yes High
1.	Measures to increase fuel efficiency of departure and approach procedures		1.		ncrease fuel efficiency of dapproach procedures	
2.	Measures to introduce CCO and CDO		2.	Aeasures to	ntroduce CCO and CDO	
3.	Minimizing weight		3.	Airport infras	tructure (runways, taxiway moffs)	'S,
4.	Improve fuel efficiency through modifica	tions	4.	4. Minimizing weight		
5.	Development of sustainable aviation fue	ls	5.	mprove fuel	efficiency through modific	ations

Case Study: Results

S 3	Does States have a national airline? Level of traffic	No Low	S4	Does States have a national airline? Level of traffic	No High
1.	Measures to increase fuel efficiency of departure and approach procedures		1.	Measures to increase fuel efficiency of departure and approach procedures	
2.	Measures to introduce CCO and CDO		2.	Measures to introduce CCO and CDO	
3.	Development of sustainable aviation fuels		3.	Airport infrastructure (runways, taxiways highspeed turnoffs)	S,
4.	Installation of fixed electrical ground power and pre-conditioned air to allow APU switch-off		4.	Development of sustainable aviation fue	els
5.	Use cleaner alternative sources of powe generation	r	5.	Measures to improve collaborative decise making (A-CDM)	sion

Case Study: Conclusion

• The two mitigation measures with the highest potential in term of CO₂ abated are present in the four scenario.

S1	Does States have a national airline? Level of traffic	Yes Low	S2	Does States have a national airline? Level of traffic	Yes High	
1.	Measures to increase fuel efficiency of de approach procedures	parture and	1.	Measures to increase fuel efficiency of departure approach procedures		
2.	Measures to introduce CCO and CDO		2.	Measures to introduce CCO and CDO		
	Does States have a national airline?	No		Does States have a national airline?	No	
S 3	Level of traffic	Low	S4	Level of traffic	High	
S3 1.			1.	Level of traffic Measures to increase fuel efficiency of de approach procedures		

Case Study: Conclusion

 In the case where the State has no national airlines and with a low level of traffic (scenario 3), the installation of fixed electrical ground power and preconditioned air units augmented by photovoltaic panels represents an excellent opportunity to consider in the case of developing States and SIDS

S3	Does States have a national airline? Level of traffic	No Low			
1.	Measures to increase fuel efficiency of departure and approach procedures				
2.	Measures to introduce CCO and CDO				
3.	Development of biofuels				
4.	Installation of fixed electrical ground power and pre-conditioned air to allow APU switch-off				
5.	Use cleaner alternative sources of power generation				

For more information on this project, please visit ICAO's website:

NO COUNTRY LEFT BEHIND

https://www.icao.int/environmentalprotection/Pages/ICAO_UNDP.aspx

