

"SAF Development Programme in Indonesia"

Directorate General of Civil Aviation – Republic of Indonesia

Wendy Aritenang PhD

Aviation Environment Senior Advisor - DGCA Indonesia

Sustainable Aviation Fuel (SAF) - ICAO

1.Sustainability Criteria

- 2. LCA values and Treshold (Core LCA + ILUC)
- (max 80 gram CO2/MJ)

3.Technology Pathways

DEFAULT LCA EMISSIONS VALUES FOR SAF (01/02)

	No	Fuel Conversion Process	Fuel Feedstock	Default Core LCA Value (in gCO2e/MJ)	ILUC LCA Value
DIRECT	12	Synthesized isoparaffins (SIP)	Sugarcane	32.8	14.0
HEFA	13		Camelina	42.0	0.0
	14		Corn oil	17.2	0.0
	15		Palm Fatty Acid Distillate (PFAD)	20.7	0.0
	16		Palm oil - closed pond	37.4	35-55
	17		Palm oil - open pond	60.0	35-55
	18	Hydroprocessed esters	Rapeseed	47.4	21-45
	19	_	Soybean	40.4	23-100 (Brazil)
	20		Soybean	40.4	20-51 (US)
	21		Tallow	22.5	0.0
09/04/22	22		Used cooking oil	13.9	0.0

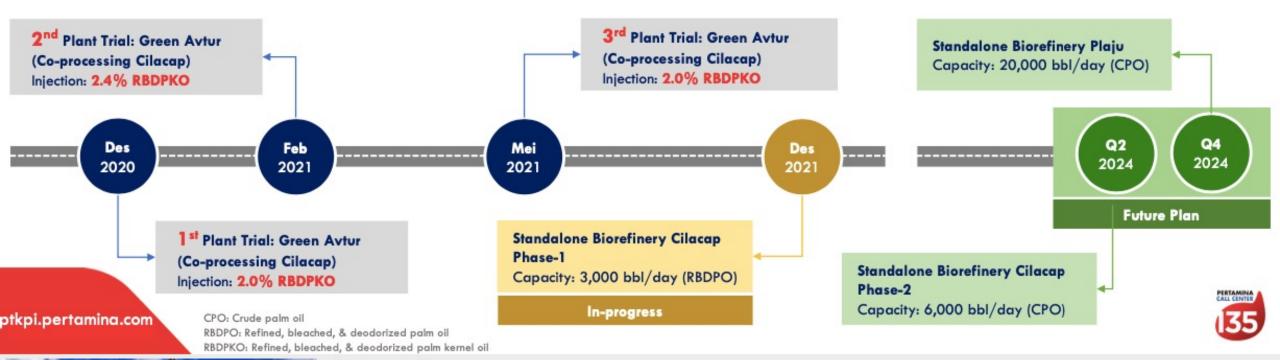
GHG Saving according to ICAO CORSIA

Jenis Feedstock	Open Effluent or With Methane Capture	LCA (g CO2e/MJ)			GHG SAVING (% to Fossil Fuel 89 g CO2e/MJ)	
		Core LCA	ILUC (Malaysia & Indonesia)	Total LCA		
Palm Oil Hydrotreated (HEFA)	Open Effluent	60.0	39.1	99.1	- minus 10 - (minus 11%)	
	With Methane Capture	37.4	39.1	76.5	12.5 (14%)	
Palm Fatty Acid Distillate (PFAD)	-	20.7	0.0	20.7	68.3 (76%)	

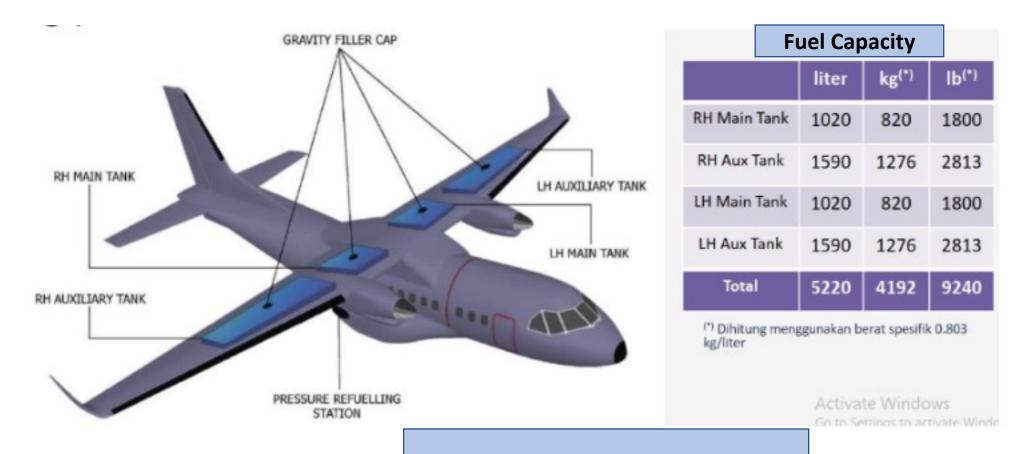
GHG Saving according to Annex V, EU Renewable Directive II

Jenis Feedstock	Open Effluent or With Methane Capture	GHG SAVING (terhadap Fossil Fuel 94 g CO2e/MJ)	
		Typical Value	Default Value
Palm Oil Bio-diesel	Open Effluent	32%	19%
	With Methane Capture	51%	45%
Palm Oil Hydrotreated	Open Effluent	34%	22%
	With Methane Capture	53%	49%
Palm Pure Vegetable Oil	Open Effluent	40%	30%
	With Methane Capture	59%	57%

Methane Capture (Covered Anaerobic Pond / Closed Pond)



Methane Capture (Covered Anaerobic Pond / Closed Pond)



Road-map Bio-Avtur Production Source: PERTAMINA

Test Flight CN-235 Using Bio-avtur J 2.4, produced by Co-processing (Source: Bioavtur Test Team Bandung Institute of Technology – ITB)

Left Tank filled by Jet A1,

Right Tank filled by Bio-Avtur J 2.4

In-flight re-starting engine using Bioavtur J2.4 was done at altitude 10,000 ft, to see how the engine responding when started in thin air condition

Source: Bioavtur Test Team - ITB

ir D7

Summary:

- 1. Test flight aircraft CN -235 has been carried out successfully using Mix Fuel of Jet A1 and Bioavtur J2.4
 - 2. Bioavtur J2.4 comply with ASTM 1655
 - 3. No respons found between Right Engine using J2.4 and Left Engine using Jet A1

Source: Bioavtur Test Team - ITB

Challenges:

- 1. Sustainability Criteria
- 2. LCA Treshold
- 3. Feedstock Price
- 4.Technology
- 5. Investment Cost
- 6.Off-taker uncertainty, no SAF mandatory
- 7.Competing with Fossil fuel

ICAO CORSIA offset mechanism

Offset emission by purchasing "Carbon Unit"

Reduce emission by using biofuel

Buy "Carbon Unit"

Buy /Use "Sustainable Biofuel"

26 Feb 2020

14

U3/U4/ZZ

as "Opportunity" as "Burden / Cost" Indonesia International (as Producer) Biofuel Biofuel (Sugar cane, (Palm Oil) Corn, Export! Import! Camelina) Indonesia International (as Buyer) Carbon Unit Carbon Unit (REDD+) (CDM) 26 Feb 2020

Terimakasih

Thank you