

Block 0 to Block 1

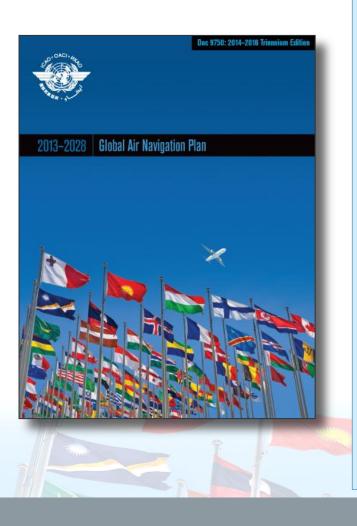
Vaughn Maiolla

Dakar, Senegal, September 2017

Objective

To show Block 1 threads as an operational evolution from Block 0 threads.

- Vision
- ASBUs
- Evolution.



To achieve an interoperable global air traffic management system for all users during all phases of flight, that

meets agreed levels of safety;
provides for optimum economic operations;
is environmentally sustainable; and
meets national security requirements.

Establish Principles and Priorities

GANP Policy Principles

Aviation Safety is the Highest Priority

Cost Benefit and Financial issues

Aviation System Block Upgrades (ASBUs), Threads, Elements and Roadmaps

AIRPORT OPERATIONS

- APTA Optimized Airport Accessibility
- WAKE Wake Vortex Separation
- **RSEQ** Runway Sequencing

- SURF Surface Operations
- ACDM Airport Collaborative Decision Making
- RATS Remotely Operated Aerodrome Control

• ACAS Airborne Collision Avoidance Systems

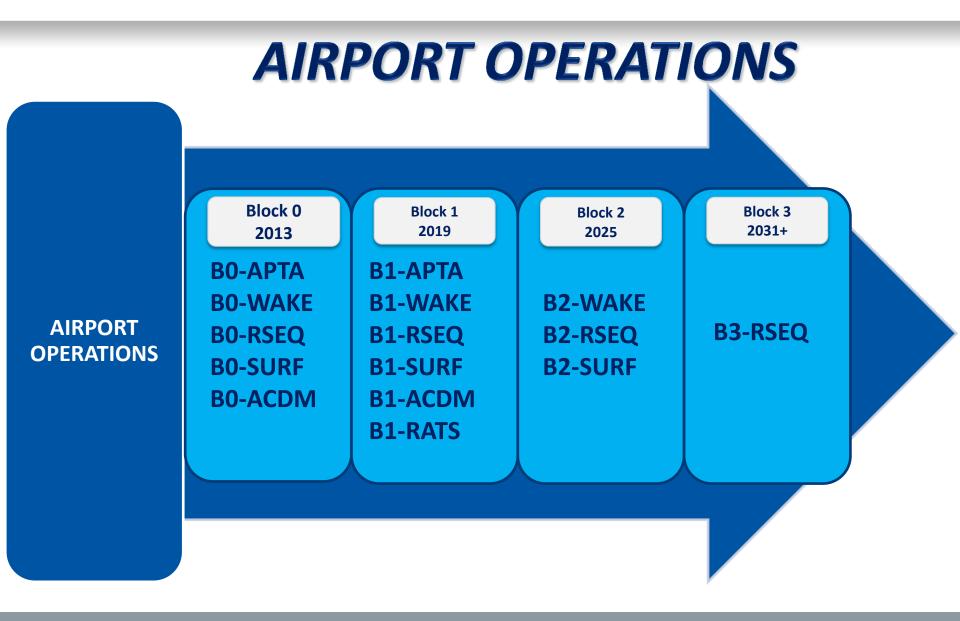
GLOBALLY INTEROPERABLE SYSTEMS AND DATA (SWIM)

- FICE Flight and Flow Information for a Collaborative Environment
- DATM Integration of Digital ATM Information
- AMET Integration of Meteorological information
- SWIM System Wide Information Management

OPTIMUM CAPACITY AND FLEXIBLE FLIGHTS (GLOBAL COLLABORATIVE ATM)

- FRTO Free Routing
- NOPS Network Operational Planning
- **SNET** Safety Nets • ASUR Initial Capability for Ground Surveillance
- ASEP Airborne Separation
- **OPFL** Optimum Flight Levels

EFFICIENT FLIGHT PATHS (TROUGH TRAJECTORY-BASED OPERATIONS)


- CDO Continuous Descent Operations
- **TBO** Trajectory-based Operations
- CCO Continuous Climb Operations
- RPAS Integration of Remotely Piloted Aircraft

ICAO UNITING AVIATION ASBUS FRAMEWORK

	Block 0 2013	Block 1 2019	Block 2 2025	Block 3 2031+	
AIRPORT OPERATIONS	BO-APTA BO-WAKE BO-RSEQ BO-SURF BO-ACDM	B1-APTA B1-WAKE B1-RSEQ B1-SURF B1-ACDM B1-RATS	B2-WAKE B2-RSEQ B2-SURF	B3-RSEQ	
GLOBALLY INTEROPERABLE SYSTEMS AND DATA (SWIM)	BO-FICE BO-DATM BO-AMET	B1-FICE B1-DATM B1-AMET B1-SWIM	B2-FICE B2-SWIM	B3-FICE B3-AMET	
OPTIMUM CAPACITY AND FLEXIBLE FLIGHTS (GLOBAL COLLABORATIVE ATM)	B0-FRTO B0-NOPS B0-ASUR B0-ASEP B0-OPFL B0-ACAS B0-SNET	B1-FRTO B1-NOPS B1-ASEP B1-SNET	B2-NOPS B2-ASEP B2-ACAS B2-ACAS B2-SNET	B3-NOPS	
EFFICIENT FLIGHT PATHS (TROUGH TRAJECTORY- BASED OPERATIONS)	B0-CDO B0-TBO B0-CCO	B1-CDO B1-TBO B1-RPAS	B2-CDO B2-RPAS	B3-TBO B3-RPAS	

APTA

B0-APTA

Optimization of Approach Procedures including vertical guidance

First step toward universal implementation of GNSS-based approaches.

- GNSS-based PBN approach procedures
 - GNSS + Baro VNAV
 - GNSS + SBAS
 - GNSS + GBAS

B1-APTA

Optimized Airport Accessibility

Next step in the universal implementation of GNSS-based approaches.

- Extension of GNSS-based approaches
 - GNSS + GBAS: CAT I capability to category CAT II/III
 - Potential integration of the PBN STAR directly
- Limited factor: emergence of multifrequency/constellation GNSS

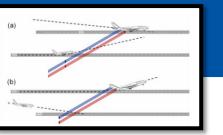
WAKE

BO-WAKE

Increased Runway Throughput through Optimized Wake Turbulence Separation

Revision of current ICAO wake vortex separation minima and procedures.

- RECAT
- Parallel operations
- WIDAO/WTMD


B1-WAKE

Increased Runway Throughput through

Dynamic Wake Turbulence Separation

Dynamic management of wake turbulence separation minima based on the real-time identification of wake turbulence hazards.

- Leader/follower pair-wise static matrix of aircraft type wake separation pairings
- Use of airport wind information (predicted and monitored)
- Wind prediction/monitoring

RSEQ

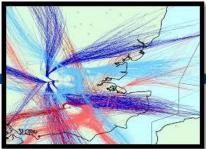
BO-RSEQ

Improved Traffic Flow through Runway Sequencing (AMAN/DMAN)

Time-based metering to sequence departing and arriving flights.

B1-RSEQ

Improved Airport Operations through


Departure, Surface and Arrival

Management

Extension of arrival metering and,

integration of surface management with departure sequencing.

- AMAN and time-based metering
- DMAN
- Point Merge

- Surface Management
- Departure and surface integration
- Extended arrival metering
- Utilization of RNAV/RNP routes

SURF

BO-SURF

Safety and Efficiency of Surface Operations (A-SMGCS Level 1-2) and Enhanced Vision System (EVS) Airport surface surveillance for ANSP.

- Element 1 A-SMGCS Level 1-2 (Surveillance & alerting)
- Element 2- Enhanced vision systems for taxi operations (e.g. infrared cameras, millimeter wave radar,...)

Movement area of an aimort = manoeusting are

B1-SURF

Enhanced Safety and Efficiency of Surface Operations- SURF

Airport surface surveillance for ANSP and flight crews, cockpit moving map displays and visual systems for taxi operations.

- Element 1: Basic surface situational awareness (SURF)
 - ADS-B In or TIS-B
- Cockpit electronic maps

A-CDM

BO-ACDM Improved Airport Operations through Airport-CDM Airport operational improvements airports work together.

ircraft Operators Ground Handling ATFM Unit/CFMU Airport Operator

B1-ACDM Optimized Airport Operations through A-CDM Total Airport

through the way operational partners at

Management

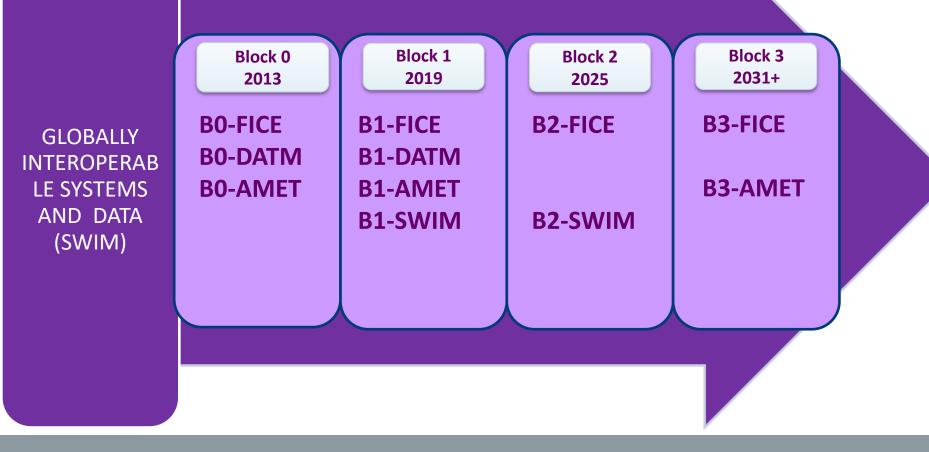
Airport and ATM operational improvements through the way operational partners at airports work together.

- Airport Operations Planning (AOP)
- Airport Operations Centre (APOC)

Block 1

RATS

B1-RATS


Remotely Operated Aerodrome Control

Remote provision of ATS to aerodromes or remotely operated aerodrome control tower contingency and through visualization systems and tools.

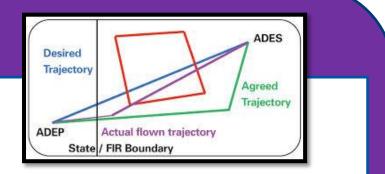
- Element 1: Remote provision of ATS for single aerodromes
- Element 2: Remote provision of ATS for multiple aerodromes
- Element 3: Remote provision of ATS for contingency situations

GLOBALLY INTEROPERABLE SYSTEMS AND DATA (SWIM)

FICE

BO-FICE

Increased Interoperability, Efficiency and Capacity through Ground-Ground Integration


Supports the coordination of groundground data communication between

B1-FICE

Increased Interoperability, Efficiency and Capacity though FF-ICE, Step 1 application before Departure Introduction of FF-ICE step 1, to implement ground-ground exchanges before departure using common flight

information reference model, FIXM, XML and the flight object used.

New Flight Information Mechanism

ATSUs, based on ATS Inter-facility Data Communication (AIDC).

DATM

B0-DATM

Service Improvement through Digital

Aeronautical Information Management in Initial introduction of digital processing of and management of information, by the

implementation of AIS/AIM making use of AIXM, moving to electronic AIP and better quality and availability of data.

B1-DATM

Service Improvement through

Integration of all Digital ATM

Information

Increase in information integration and
support on a new concept of ATMmodels such as AIXM, FIXM, WXXM and
others relate their concepts to the AIRMinformation exchange fostering access viafostering convergence, re-use, and
internet-protocol-based tools Exchangecollaborative alignment.

AMET

BO-AMET

Meteorological information supporting enhanced operational efficiency and safety

Meteorological information provided in support of flexible airspace management.

- Element 1: WAFS
- Element 2: IAVW
- Element 3: Tropical cyclone watch
- Element 4: Aerodrome warnings
- Element 5: Wind shear warnings and alerts

Element 6: SIGMET and other operational meteorological (OPMET) information

B1-AMET

Enhanced Operational Decisions through Integrated Meteorological Information (Planning and Near-term Service) Meteorological information supporting automated decision process or aids, involving.

- Element 1: Meteorological information
- Element 2: Meteorological information translation
- Element 3: ATM impact conversion
- Element 4: Meteorological information integrated decision support

Block 1

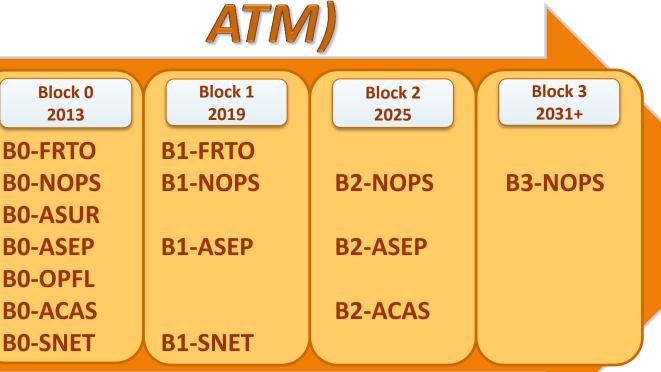
SWIM

B1-SWIM

Performance Improvement through the application of System-Wide Information Management (SWIM)

Implementation of SWIM services

(applications and infrastructure) creating .


the aviation intranet based on standard • data models, and internet-based protocols to maximize interoperability.

- Applications of SWIM on the ground
- Air ground data exchanges will remain based on point-to-point communication

OPTIMUM CAPACITY AND FLEXIBLE FLIGHTS (GLOBAL COLLABORATIVE

OPTIMUM CAPACITY AND FLEXIBLE FLIGHTS (GLOBAL COLLABORATI VE ATM)

OPFL, ACAS, ASUR

BO-OPFL Improved access to Optimum Flight Levels through Climb/Descent Procedures using ADS-B This module enables an aircraft to reach a more satisfactory flight level for flight efficiency or to avoid turbulence for safety.

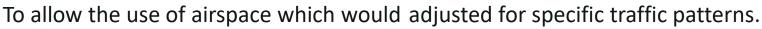
• In-trail procedure (ITP)

BO-ASUR Initial Capability for Ground Surveillance

Ground surveillance supported by ADS-B OUT and/or wide area multilateration systems. This capability will be expressed in various ATM services, e.g., traffic information, search and rescue and separation provision.

- Element 1: ADS-B
- Element 2: Multilateration (MLAT)

BO-ACAS ACAS Improvements


To provide short term improvements to existing airborne collision avoidance systems (ACAS) to reduce nuisance alerts while maintaining existing levels of safety.

FRTO

B0-FRTO

Improved Operations through Enhanced En-Route Trajectories

otherwise be segregated (i.e., special use •

airspace) along with flexible routing

- Element 1: Airspace planning
- Element 2: Flexible use of airspace (FUA)
- Element 3: Flexible routing

B1-FRTO

Improved Operations through Optimized

ATS Routing

Introduction of free routing in defined a airspace, where the flight plan is not defined as segments of a published route network or track system to facilitate

adherence to the user-preferred profile.

- Element 1: Free routing
- Element 2: Reduced route spacing
- Element 3: Dynamic sectorization

NOPS

BO-NOPS

Improved Flow Performance through Planning based on a Network-Wide view

Collaborative ATFM measure to regulate peak flows involving departure slots, managed rate of entry into a given piece of miles-in-trail to smooth flows along a of airspace for traffic along a certain axis, certain traffic axis and re-routing of requested time at a way-point or and

ircraft Operators Ground Handling ATFM Unit/CFML **Airport Operator**

FIR/sector boundary along the flight, use traffic to avoid saturated areas.

B1-NOPS

Enhanced Flow Performance through Network Operational Planning

ATFM techniques that integrate the management of airspace, traffic flows including initial user driven prioritization processes for collaboratively defining

ATEM solutions based on commercial/operational priorities.

- Element 1: Improved ATFM and ATFM-AOM integration
- **Element 2: Synchronization**
- Element 3: Initial user driven prioritization process (UDPP or fleet prioritization)
- Element 4: Full flexible use of airspace (FUA)
- Element 5: Complexity management

ASEP

BO-ASEP

Air Traffic Situational Awareness (ATSA)

Two ATSA applications which will enhance safety and efficiency by providing pilots with the means to enhance traffic situational awareness and

achieve quicker visual acquisition of targets.

Element 1: ATSA-AIRB

Element 2: ATSA-VSA

B1-ASEP

Increased Capacity and Efficiency

through Interval Management

Interval Management (IM) improves the merging trajectories maximizes airspace management of traffic flows and aircraft throughput while reducing ATC workload spacing. Precise management of intervals along with more efficient aircraft fuel between aircraft with common or burn.

SNET

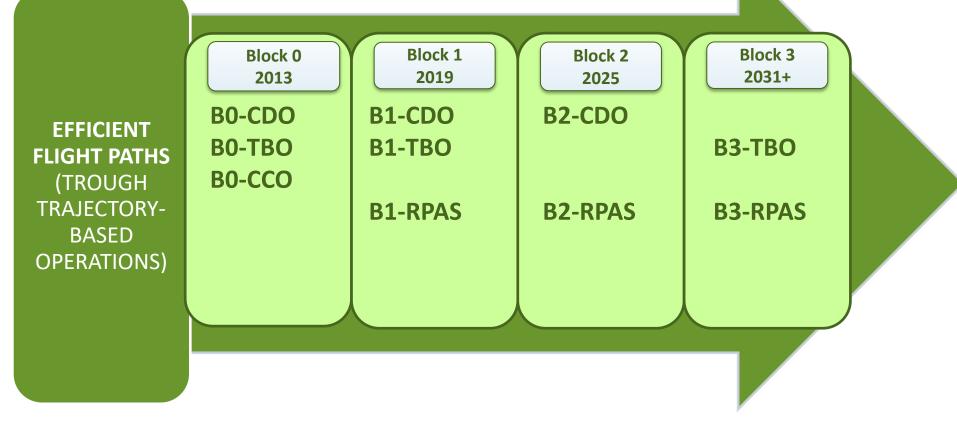
BO-SNET

Increased Effectiveness of Ground-based Safety Nets

This module monitors flights while airborne to provide timely alerts to air traffic controllers of potential risks to flight safety.

	Global Navigation Satellite System	
ADS-B Out Transmitter		ADS-B In Receiver
## 	1	Ť
Ground Air Traffic Control	ADS-B Receiver	Remote Beceivers

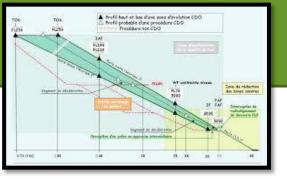
- Element 1: Short-term conflict alert (STCA)
- Element 2: Area proximity warning (APW)
- Element 3: Minimum safe altitude warning (MSAW)


B1-SNET

Ground-based Safety Nets on Approach

To enhance safety by reducing the risk of warns the controller of increased risk of controlled flight into terrain accidents on controlled flight into terrain during final final approach through the use of approach. approach path Monitor (APM). APM

EFFICIENT FLIGHT PATHS (TRAJECTORY-BASED OPERATIONS)



CDO

BO-CDO

Improved Flexibility and Efficiency in **Descent Profiles (CDO)**

Deployment of performance-based airspace and arrival procedures that allow an aircraft to fly its optimum aircraft profile taking account of airspace

and traffic complexity with continuous descent operations (CDOs)

- Element 1: Continuous descent operations
- Element 2: Performance-based navigation

B1-CDO

Improved Flexibility and Efficiency in Descent Profiles (CDOs) using VNAV

during descent, arrival, and enables

aircraft to fly an arrival procedure not

To enhance vertical flight path precision reliant on ground based equipment for vertical guidance.

TBO

B0-TBO

Improved Safety and Efficiency through the initial application of data link and SATVOICE En-Route

Implementation of an initial set of data link applications for supporting surveillance and communications in air

B1-TBO

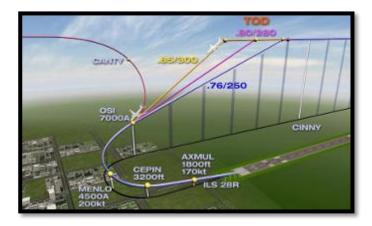
Improved Traffic Synchronization and Initial Trajectory-Based Operation.

Improve traffic flows synchronization at en-route merging points and optimize approach sequence through the use of traffic services.

- Element 1: ADS-C over Oceanic and remote areas
- Element 2: CPDLC

4DTRAD capability and airport applications (RTA).

- Element 1: Initial 4D operations (4D TRAD)
- Element 2: Data link operational terminal information service (D-OTIS)
- Element 3: Departure clearance (DCL)
- Element 4: Data link TAXI (DTAXI)



CCO

B0-CCO

Improved Flexibility and Efficiency in Departure Profiles - Continuous Climb Operations (CCO)

Deployment of departure procedures that allow an aircraft to fly its optimum aircraft profile taking account of airspace and traffic complexity with continuous climb operations (CCOs).

RPAS

B1-RPAS

Initial Integration of Remotely Piloted Aircraft (RPA) into non-segregated airspace

Implementation of basic procedures for operating RPA in non-segregated airspace.

- Streamline process to access non-segregated airspace
- Defining airworthiness certification for RPA
- Define operator certification
- Define remote pilot licensing requirements
- Define detect and avoid technology performance requirements

- Vision
- ASBUs
- Evolution.

Objective

To show Block 1 threads as an operational evolution from Block 0 threads.

