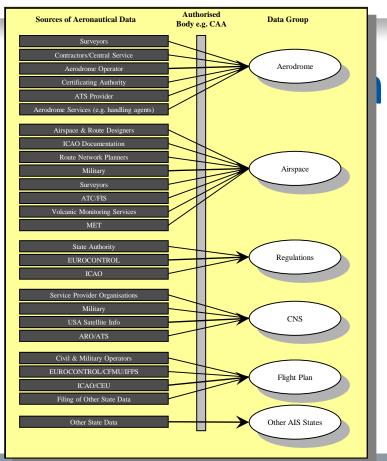
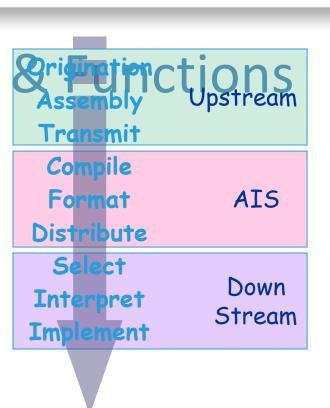

AFI Region AIXM-e AIP Implementation Workshop (Dakar, Senegal, 3-5 October 2016)

1111111111


George BALDEH


RO/AIM

Agenda Items 3b,c and d

Function >	Origination	Transmission	Preparation	Data Application Integration	End Use
Actor			Publication	Integration	
Survey	Х	X			Х
Airport Administration	Х	Х			Х
Technical Department	Х	X			Х
Procedure/Airspace Design	Х	Х			Х
AIS Provider (ANSP)		Х	Х		Х
EAD		Х	Х		Х
Data Provider (Datahouse/Packer)		Х		Х	Х
End Users		Х			Х
Airline Operation		X		Х	X
ATC		X		Х	Х
CFMU		X		Х	Х
Military		Х		(x)	Х
General Aviation, etc		(x)			Х
Applications (NAV)		Х		Х	Х
Military ANSP		Х	Х		Х
Regulator	(x)	(x)	(x)	(x)	Х

Let's recall some Definitions...

DATA QUALITY

A degree or level of confidence that the data provided meets the requirements of the data user in terms of *accuracy, resolution and integrity*

(ICAO Annex 15)

Accuracy: a degree of conformance between the estimated or measured value and the true value

Resolution: a number of units or digits to which a measured or calculated value is expressed and used

Integrity: a degree of assurance that aeronautical data and its value has not been lost or altered since the data origination or authorized amendment.

ICAO DAKAR UNITING AVIATION

- Accuracy
- Resolution places

- How close to reality
- The amount of decimal
- Integrity How
- How good is the data
 - ∽ Routine 10⁻³
 - ☞ Essential 10⁻⁵

∽ Critical 10⁻⁸

Casual Data (Integrity not important for Navigation)

CRITICAL

Runway threshold, runway holding position Require an integrity value of **10**⁻⁸

1 error in 100 mio

ICAO Annex 15 defines required Integrity levels

ESSENTIAL

Coordinates of en-route navaids, aerodrome elevation, significant obstacles in approach / take-off area etc. Require an integrity value of **10**-5 **1 error**

1 error in 100 tsd

ROUTINE

FIR points, Aircraft stands, Airway segments etc. Require an integrity value of **10**-³

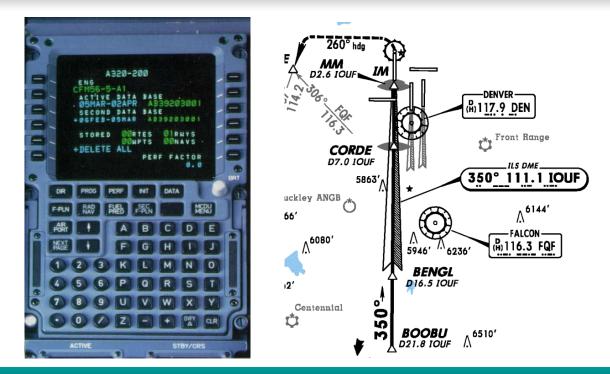
1 error in 1000

Participants

- State AIS
 - Already issuing an eAIP
 - In advanced implementation
 - Who intend to issue an eAIP in the near future
- Industry
 - Technical experts : Avitech; Thales; IDS; Eurocontrol
 - After 1500hrs each day Free time for Informal discussions/meetings between States or States/Industry

- Optimum 'human processes' achieves an error rate, at best 1 in 1000 or 1 x 10⁻³
 - nowhere near that required for flight critical data
- In the best case
 - we achieve criteria for ROUTINE data, if:
 - Quality controlled environment
 e.g. QMS
 - Multiple input/control.

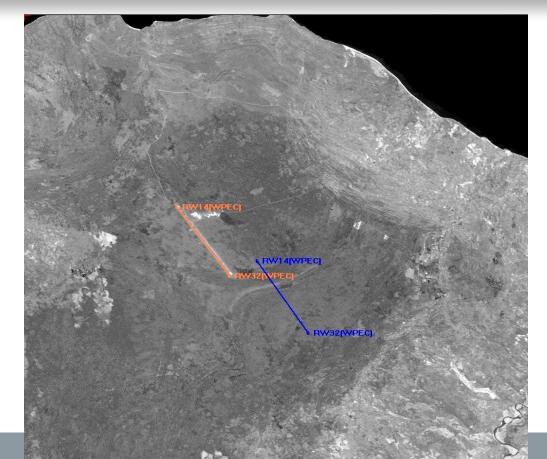
APPENDIX 7. AERONAUTICAL DATA QUALITY REQUIREMENTS


Table A7-1. Latitude and longitude

Latitude and longitude	Publication resolution	Integrity Classification
Flight information region boundary points.	l min	1 × 10 ⁻³ routine
P, R, D area boundary points (outside CTA/CTZ boundaries) $\ldots \ldots \ldots$	1 min	1 × 10 ⁻³ routine
P, R, D area boundary points (inside CTA/CTZ boundaries)	l sec	1 × 10 ⁻⁵ essential
CTA/CTZ boundary points .	l sec	1 × 10 ⁻⁵ essential
En-route NAVAIDS and fixes, holding, STAR/SID points	l sec	1 × 10 ⁻⁵ essential
Obstacles in Area 1 (the entire State territory)	l sec	1 × 10 ⁻³ routine
Aerodrome/heliport reference point	l sec	1 × 10 ⁻³ routine
NAVAIDS located at the aerodrome/heliport	1/10 sec	1 × 10 ⁻⁵ essential
Obstacles in Area 3	1/10 sec	1 × 10 ⁻⁵ essential
Obstacles in Area 2	1/10 sec	1 × 10 ⁻⁵ essential
Final approach fixes/points and other essential fixes/points comprising the instrument approach procedure.	1/10 sec	1×10^{-5} essential
Runway threshold	1/100 sec	1 × 10 ⁻⁸

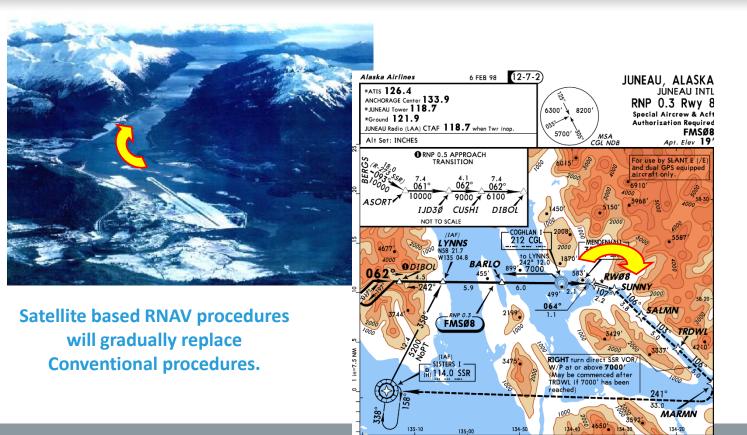
ICAO DAKAR UNITING AVIATION The importance of data

Aviation world changed with the first FMS systems

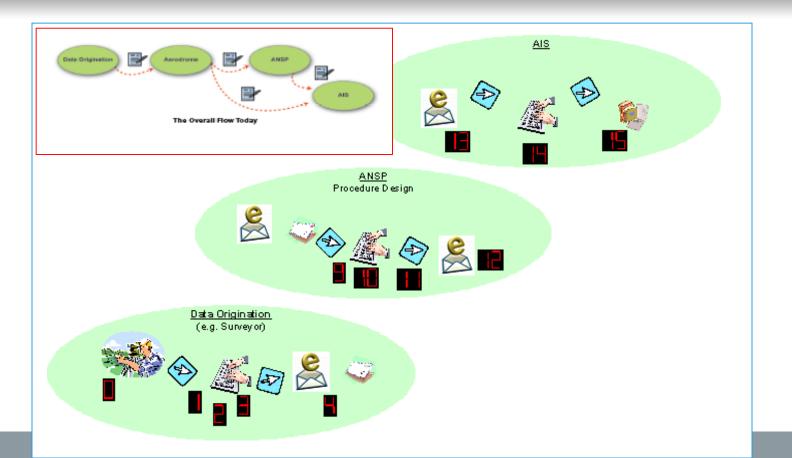

FMS: Navigation Databases became important

But relative Accuracy was still OK without GNSS

<u>Accuracy – An example</u>


Degree of conformance between the estimated / measured value and the true value

Blue: RWY PSN ref AIP.


Red: Actual RWY PSN / satellite image.

ICAO DAKAR UNITING AVIATION



Relative accuracy is no longer sufficient

•Survey uses complex equipment, such as GPS survey equipment

- electronically captures the recorded point
- the original value, for which integrity must be maintained
- information is then either electronically uploaded to a computer at the surveyors' offices or manually extracted [Risk 1]
- Quality processes may check extracted data is correct [Mitigation 1].

•Survey creates a Survey Report for the contracting authority e.g. an AD

- Survey report: typically word proc doc. (or similar), manually created
- Resulting file is often not provided in a computer literate form
- Survey data either being 'cut and paste' [Risk 2] or manually retyped [Risk 3].
- Quality processes may be used to check the values entered [Mitigation 2].

Survey report is transmitted

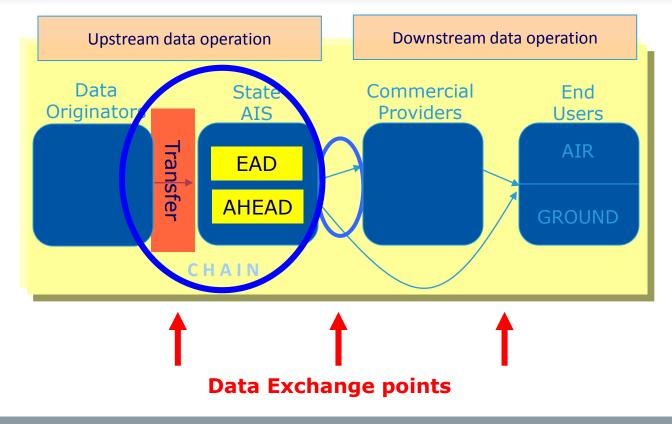
through postal service or as printed report or by electronic mail [Risk 4]

2 and the state of the second state of the state of the second state of the second

What are the main Issues?

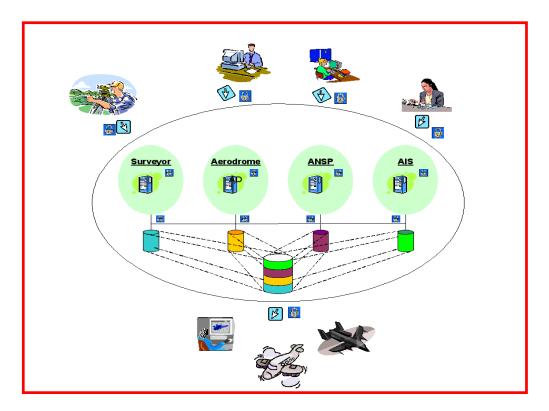
• Repeated input at each function "media break"

- Multiple checking
- Multiple (re-)entry
- Risk of error
- Loss of integrity & audit trails
- Lack of interoperability
 - Data exchange
 - Data formats
 - Harmonised procedures & processes
- Inefficient, fragmented data supply chain


Not just a problem of AIS/AIM => Duty of care for all actors! >

Inefficient Processes !

How does CHAIN relate to the main problem?


Main benefits –

- Enhanced Safety
 - Due to higher quality & reliability
 - Increased operational & economic Efficiency
 - Reduced costs through the reduction/elimination of repeated processing, multiple quality checks
 - Improved data processing chain
 - Improved timeliness of data dissemination
- Security
 - Prevention from unauthorized corruption
- Other
 - Framework for Regulators > enforcement of SARPS
 - Enabling actors to comply with Standards
 - Long term improvement on other data.

A step ahead - The Vision A systems approach

