

INTERNATIONAL CIVIL AVIATION ORGANIZATION

AFI PLANNING AND IMPLEMENTATION REGIONAL GROUP SEVENTEENTH MEETING (APIRG/17) (Burkina Faso, 2 to 6 August 2010)

ISA (Inter-regional SBAS for Africa) CBA update - Final Presentation -

APIRG 17 IP/5

L.E.K.

ISA (Inter-regional SBAS for Africa) CBA update - Final Presentation -

31st May 2009

Beijing Boston Chicago London Los Angeles Melbourne Milan Mumbai Munich New Delhi New York Paris San Francisco Shanghai Singapore Sydney Tokyo Wroclaw

Auckland Bangkok

L.E.K. Consulting srl, Via Agnello 2, 20121 Milano, Italy t: 39.02.8646.2761 f: 39.02.8646.2791 www.lek.com

Disclaimer

- This report has been produced by L.E.K. Consulting S.r.I. ("L.E.K.") for the European Commission (the "User") in connection with the specific contract on additional insight in strategy related matters. This report is confidential to and for the sole benefit of the User. This assignment has been carried out in a time frame of 9 weeks.
- While the information provided herein is believed to be accurate, L.E.K. makes no representation or warranty, express or implied, as to the accuracy or completeness of such information. The information contained herein was prepared expressly for use herein and is based on certain assumptions and information available at the time this report was prepared. There is no representation, warranty or other assurance that any of the projections or estimates will be realised, and nothing contained within this report is or should be relied upon as a promise or representation as to the future. In furnishing this report, L.E.K. reserves the right to amend or replace the report at any time and undertakes no obligation to provide the User with access to any additional information.
- L.E.K.'s principal task has been to collect, analyze and present data. L.E.K. has not been asked to verify the accuracy of the information it has received from the User or their advisors, the Company or any third party in this transaction. Although L.E.K. has been asked to express its opinion on the market and business prospects, it has never been the User's intention that L.E.K. should be held legally liable for its judgments in this regard. The structure of L.E.K.'s professional fees in conducting this work was based on the assumption that L.E.K. is not legally liable for the accuracy of the information it has received or the judgements it has made and on the assumption that the User will form their own views as to these matters. L.E.K. shall not be liable for any loss or damage arising out of our work on the Project except to the extent caused by our wilful misconduct or gross negligence

In this notice the terms "L.E.K." and "L.E.K. Consulting S.r.I." include its directors, employees and agents

Agenda

I Project objectives

- Executive summary
- I Outputs
- Model design methodology
- RNP 0.1 scenario
- Appendix

Scope of this document

- This work is based on the analysis of the attached sources and on interviews performed by L.E.K. in order to update the previous Inter-regional SBAS for Africa (ISA) CBA
- This report includes:
 - summary of the outcomes of Inter-regional SBAS for AFI CBA update*
 - comparison with previous results
 - explanation of the methodology used and of the value added by ISA and sources used
- In order to prepare this report L.E.K. has:
 - improved the methodology of the previous CBA via secondary sources as well as interviews to key industry players
 - updated inputs of previous CBA esp. on most critical data (e.g., African fleet, overall movements)
 - validated the model and gathered industry players feedback

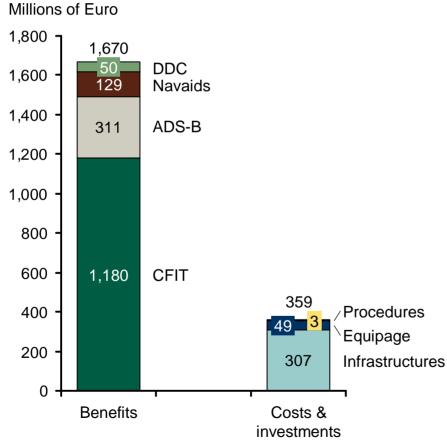
Note: * The CBA considers the delta from the base line scenario which is Baro-VNAV without SBAS and Countries included represent 84% of nominal GDP Source: L.E.K. analysis

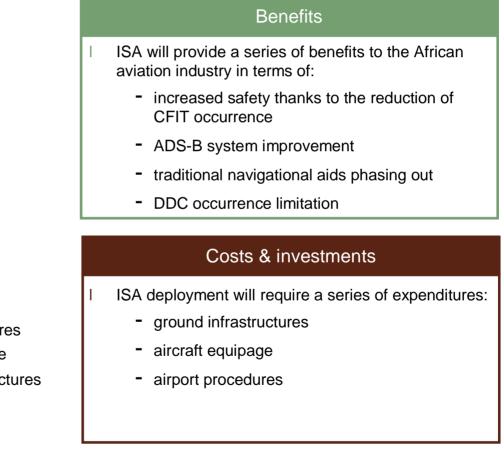
We have delivered an update of the existing ISA CBA, mainly by improving the methodology, updating the data and providing a more solid and usable model

Improved methodology	Updated data and statistics	More solid and usable tool
 By leveraging our experience in modelling, we identified the weaknesses of previous methodology, suggesting improvement actions We proposed new approaches for both costs and benefits assessment 	 Through both primary and secondary research we have updated old data with new figures Support from relevant institutions is key Model timeline have been updated with latest developments (to include 30 years, 2011-2041, timeframe) 	 Increase reliability of the tool via strong proof-making exercises Increase flexibility and maintainability Increase ease of use of the CBA
Int	er-regional SBAS for AFI CBA upda	ate

Agenda

I Project objectives


Executive summary


Outputs

- Model design methodology
- RNP 0.1 scenario
- Appendix

For the African aviation ISA benefits will amount to c. €1.7b, with respect to required investments of c. €359m

Cumulated undiscounted benefits and costs & investments (2011-41)

The methodology is logical and largely shared within the industry

- In the base case 100% penetration of LPV procedures on IFR landings is reached by 2020
- Landings is the main driver for CFIT, ADS-B and DDC benefits
 - only IFR landings are considered and within these only the specific share related to EGNOS influences the calculations
 - also LPV penetration influence the number of landings considered
 - in addition only for ADS-B en-route radar coverage percentage is a key variable
- The benefit for traditional navigational aids phasing out is applied only to VOR and NDB and it takes ten years to complete the process according to Eurocontrol stated strategy
- Ground infrastructures cost is influenced by the number of REMs and RIMSs and the related capex and opex
- The cost for aircraft equipage is mainly driven by the actual fleet
 - only IFR aircraft are considered and within these only the specific share related to EGNOS influences the calculations
 - forward-fit costs are preferred and retrofitting is only applied to the marginal aircraft needed to reach the foreseen EGNOS penetration
- The cost for airport procedures is calculated applying the cost of publishing one procedure to the IFR runways discounted by EGNOS penetration
- Eurocontrol is in favour of EGNOS and believes the main benefit is in added, not quantifiable, safety

With a "top down" approach benefits and investments can be allocated to the relevant stakeholders

	Airlines	General Aviation operators	Airports	ANSPs	Other Public*
Benefits					
DDC probability reduction	79%	19%	2%		
CFIT probability reduction					100%
ADS-B improvement	81%	19%			
Navaids phasing out			72%	28%	
Investments					
Aircraft equipage	81%	19%			
Airport procedures			50%	50%	

Stakeholders in Aviation

Note: * Other Public refers to the public entity which is the only one assuming primary responsibility of people life and of hull loss both reimbursed by insurance companies

Agenda

- Project objectives
- Executive summary

Outputs

I

- Model design methodology
- RNP 0.1 scenario
- Appendix

Main benefits will be CFIT reduction and ADS-B implementation, while ground infrastructure represents the highest investment required

Benefit/ Cost	Description	ISA Relevance
CFIT probability reduction	ISA will increase flight safety through the reduction in the number of Controlled Flight Into Terrain (CFIT) occurrences by offering Approaches with Vertical Guidance	
ADS-B improvement	I Supporting Automatic Dependent Surveillance Broadcast (ADS-B), ISA will allow flight routes optimization, with consequent fuel savings over ADS-B using GPS only	
Traditional navigational aids replacement	I ISA will determine significant cost savings related to both installation and maintenance of traditional ground based navigational aids (navaids)	
DDC probability reduction	I Enabling Approaches with Vertical Guidance with consequent lower decision heights, ISA will significantly reduce the probability of occurrence of Delays, Diversions and Cancellations	
Ground infrastructure	I ISA will rely upon a series of infrastructure to be deployed and maintained across the African territory (Regional Extension Modules and Reference and Integrity Monitoring Stations)	
Aircraft equipage	African fleet needs to be equipped with SBAS receivers, either through a retrofit or forward-fit process	
Airport procedures	I In order to support SBAS-based approached, specific airport procedures must be defined	
procedures		U

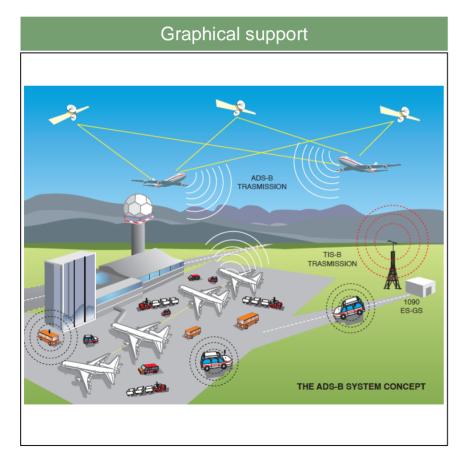
Investments/ Costs

Allowing Continuous Descent Approaches in place of the higher-risk traditional step-down approach, ISA have a positive impact on CFIT reduction

Controlled Flight Into Terrain (CFIT) and Non-Precision Approaches (NPA)

Context description

- CFIT occurs when an airworthy aircraft under the control of the flight crew is flown unintentionally into terrain, obstacles or water, usually with no prior awareness by the crew
- I This type of accident can occur during most phases of flight, but CFIT is more common during the approach-and-landing phase
- Non-Precision Approaches are at the basis of CFIT occurrence


ISA benefits

- Offering Approaches with Vertical Guidance procedures and enabling Continuous Descent Approaches, ISA can lead to a decrease in the number of CFIT occurrences
 - "...ISA will have an extremely positive impact on flight safety, determining a 100% CFIT avoidance ..." South African Airways, PBN Specialist

Automatic Dependent Surveillance-Broadcast (ADS-B) allows an aircraft to constantly broadcast its precise location and other flight data to nearby aircrafts and air traffic controllers

The ADS-B system concept

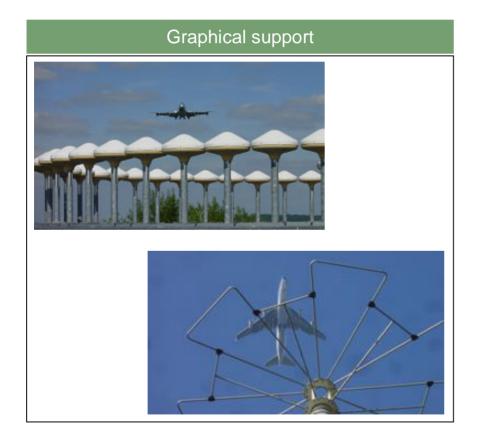
L.E.K.

Context description

- C.55% of total flights in Africa are not supported by surveillance services provided enroute radars
- In such situation aircrafts are obliged to flight respecting a so called procedural separation of c.50NM, far above the optimized one of c.5NM
- African routes are consequently un-optimized

ISA benefits

- I SBAS is expected to improve ADS-B based on GPS only
- I Enabling a more accurate aircraft positioning, ISAbased ADS-B allows a better route optimisation with respect to GPS only
 - "...ISA is expected to improve ADS-B performance providing a further optimisation over GPS only-based ADS-B ..."


ASECNA, Conseiller technique du Directeur de l'Exploitation

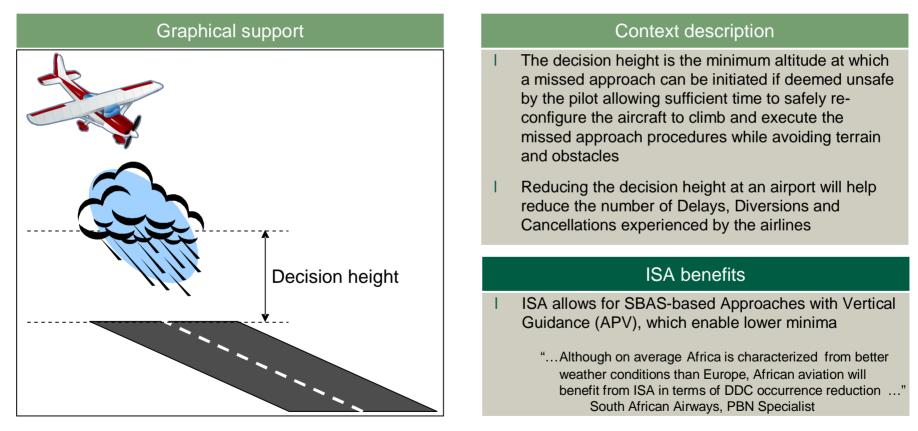
Source: L.E.K. interviews and analysis

ISA is expected to promise less reliance on ground based navaids, determining relevant savings

Ground aids (ILS, DME, VOR and NDB) replacement

Context description

- Traditionally navigation in Africa is guided by a series of ground based navaids: ILS, DME, VOR and NDB
- The operation and maintenance of ground-based navigation aids represent a major cost element of air navigation service provision


ISA benefits

- The introduction of ISA would allow the phasing out of some of these conventional navaids (only VOR and NDB), bringing significant benefits in terms of both capex and opex savings
 - "...The deployment of ISA will determine the replacement of ground aids, reducing both operational and capital expenditures ..."

ASECNA, Conseiller technique du Directeur de l'Exploitation

Supporting Approaches with Vertical Guidance (APV), ISA allows lower decision heights in the approaching phase, reducing the probability of occurrence of Delays, Diversions and Cancellations

The importance of the decision height in the approaching phase

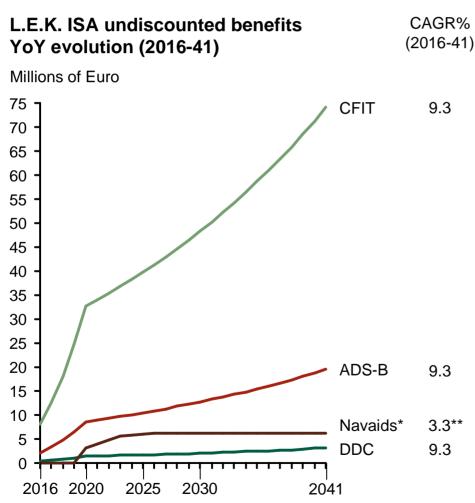
ADS-B 9.3 3.3**

The avoidance of CFIT constitutes the greatest benefit of ISA

"... Safety related benefits represent the most relevant advantage of ISA adoption ..." ICAO, Regional Officer CNS

Traditional navaids replacement benefit shows a growing trend over the first years of ISA adoption, followed by a stable phase; such trend is determined by traditional navaids backlog phasing out and maintenance costs reduction

Note: * VOR and NDB; ** CAGR% 2020-41

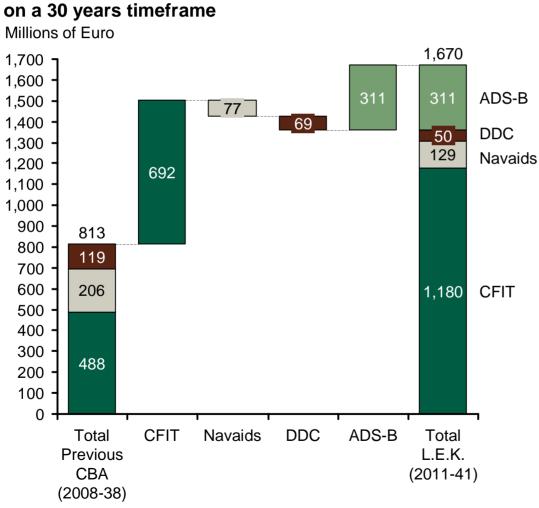

Outputs (Total benefits)

2041

15

In L.E.K. model benefits are expected to start in 2016, CFIT, DDC and ADS-B

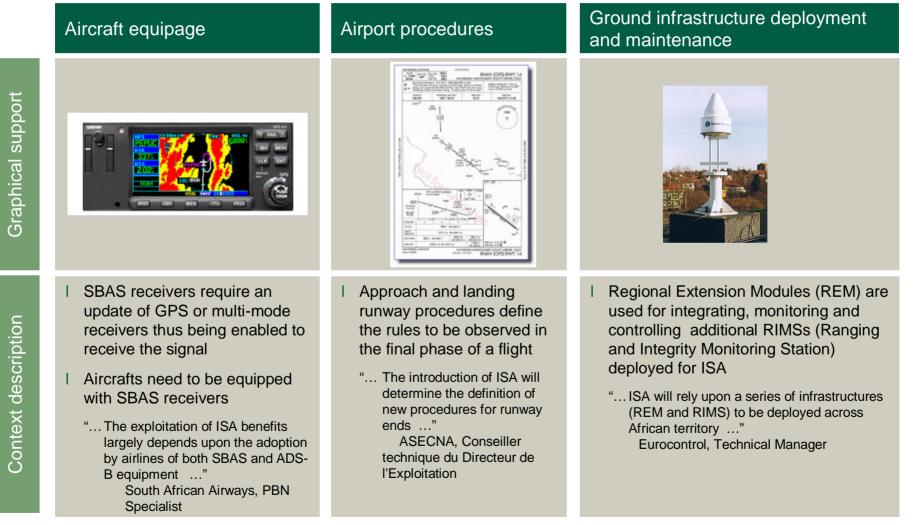
benefits will increase at a 9.3% CAGR going forward, while navaids ones will



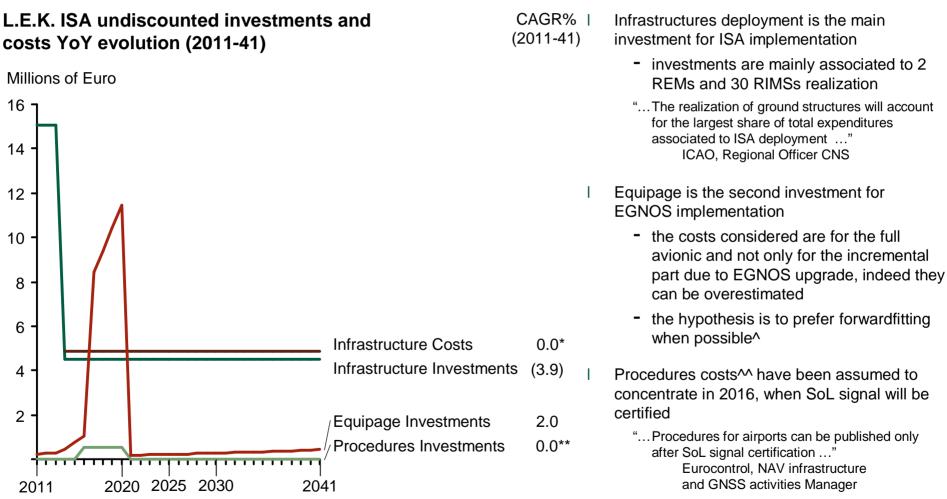
L.E.K.

increase at a 3.3% CAGR

Comparison of undiscounted benefits

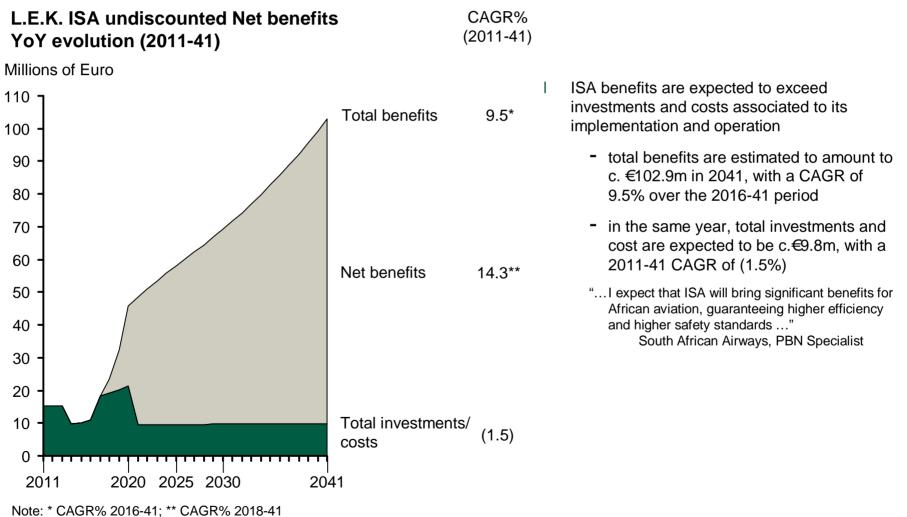

In the base scenario, L.E.K. undiscounted benefits estimate is c. €0.9b higher than the previous CBA, due to CFIT benefit increase and inclusion of the ADS-B benefit

- L.E.K. undiscounted benefits are equal to c.€1.7b, increased by c.€0.9b as compared to the previous CBA
 - CFIT benefits have been increased of c.€692m
 - Navaids and DDC benefits have decreased by c.€77m and c.€69m respectively
 - in addition to the previous CBA L.E.K. has also considered the marginal benefits brought by ISA to ADS-B system

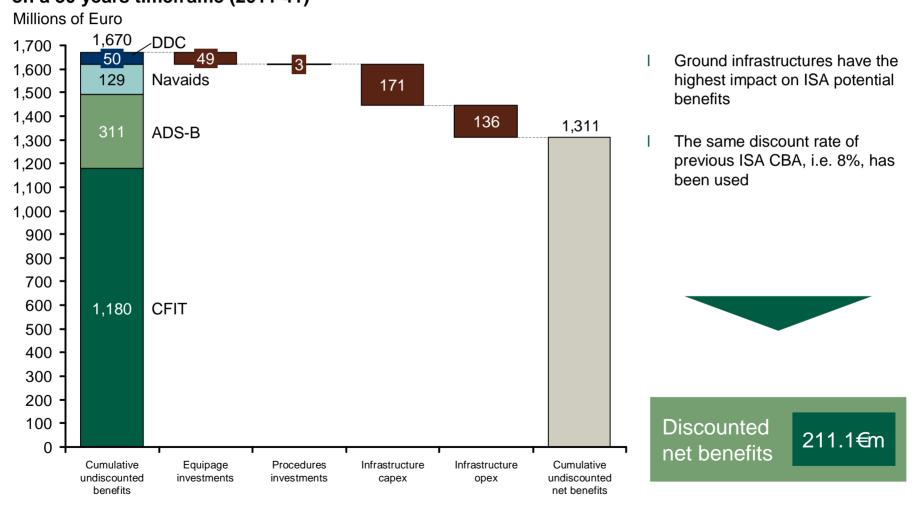

Source: L.E.K. interviews and analysis

ISA will require to equip aircrafts with SBAS receivers, update airports' procedures and install and operate REMs and RIMSs

Source: L.E.K. interviews and analysis


ISA related investments are expected to be important until 2016, whilst after that date mainly operating expenses are foreseen

Note: * CAGR% 2014-41; ** CAGR% 2016-20; ^ opportunity costs such as time lost because the aircraft is in maintenance are not considered; ^^ c.115 runways representing 46% of total IFR approaches in Africa Source: L.E.K. analysis

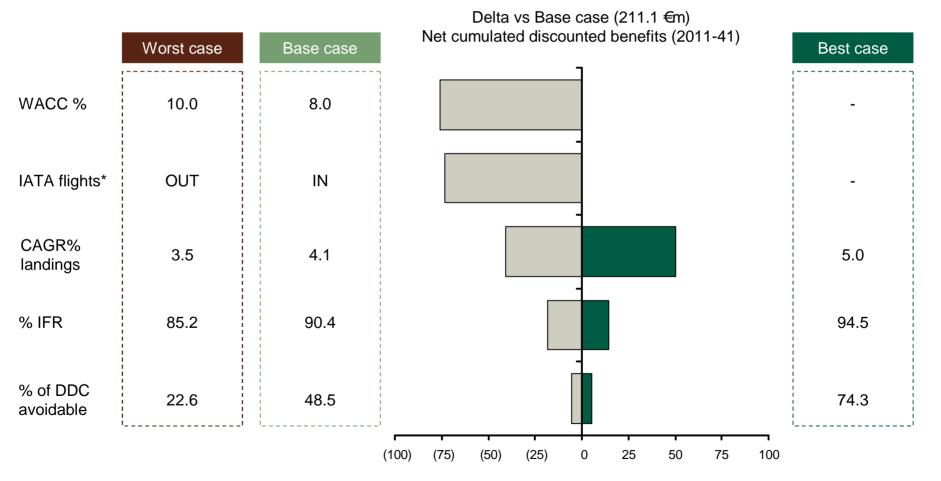

CONFIDENTIAL

The economic value of ISA benefits will be higher than investments necessary for its deployment and running costs

Source: L.E.K. interviews and analysis

REMs and RIMSs constitute the most relevant ISA-related investments

L.E.K. ISA cumulative undiscounted net benefits on a 30 years timeframe (2011-41)


Source: L.E.K. interviews and analysis

CONFIDENTIAL

Increasing Wacc and excluding IATA flights have the highest negative impact on benefits

L.E.K. model sensitivity analysis

Millions of Euro

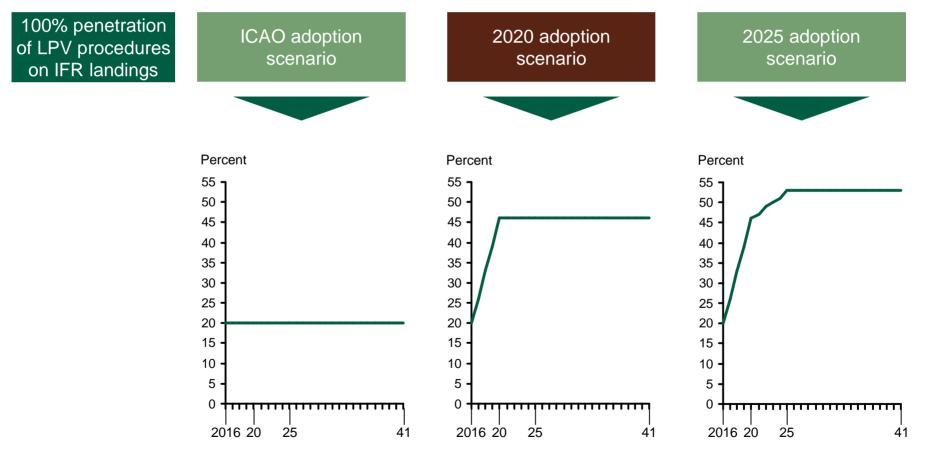
Note: * c. 293,873 landings in 2007 out of 1,283,797 landing in all the region

Three scenarios have been identified considering different dates for full penetration of LPV procedures ...

As part of the Strategy for the implementation of GNSS, ICAO has stated the introduction of the use of GNSS with appropriate augmentation systems

ICAO rule

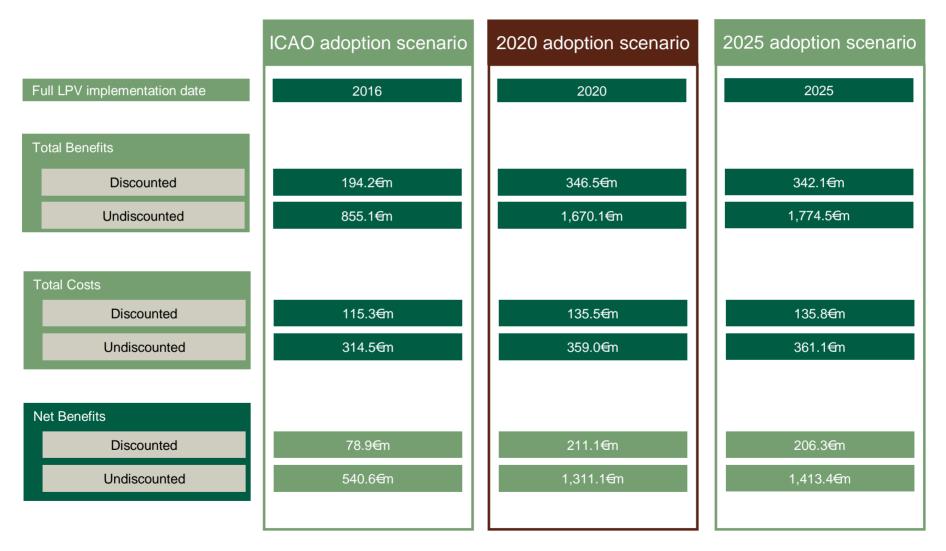
"... States and planning and implementation regional groups (PIRGs) complete a PBN implementation plan by 2009 to achieve: implementation of RNAV (Area Navigation) and RNP (Required Navigation Performance) operations (where required) for en-route and terminal areas according to established timelines and intermediate milestones; and implementation of approach procedures with vertical guidance (APV) (Baro-VNAV and/or augmented GNSS) for all instrument runway ends, either as the primary approach or as a back-up for precision approaches by 2016 with intermediate milestones as follows: 30 per cent by 2010, 70 percent by 2014 ..." Report of the 36th ICAO General Assembly resolution A36-23


Adoption by air fleets and airports' procedures [%]

	ICAO adoption scenario	2020 adoption scenario	1 1 1 1 1 1 1 1	2025 adoption scenario
100% penetration of LPV procedures on IFR landings*	2016, with a 30% by 2010 and 70% by 2014	2020, with a PPT% constant increase from 2009 to 2020	1 1 1 1 1 1 1 1 1 1 1 1	2025, with a PPT% constant increase from 2009 to 2025
		Base case	-	

Note: * c. 90% of total landings Source: L.E.K. analysis

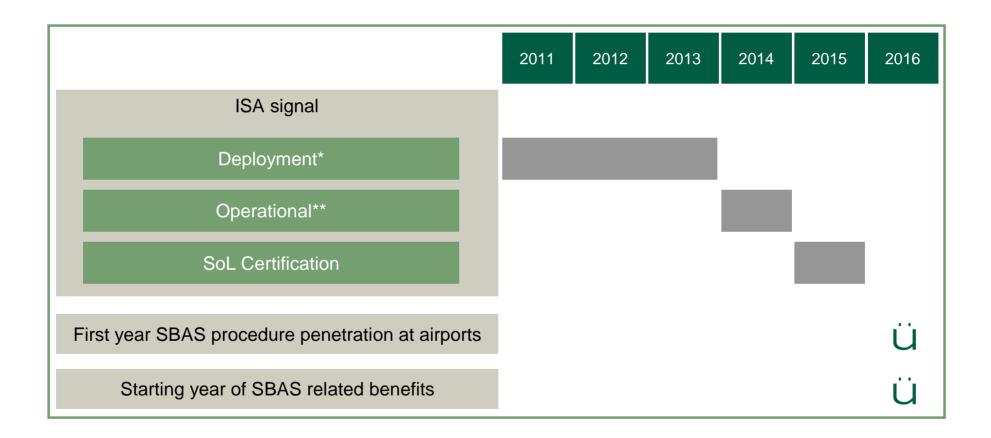
... assuming different ISA market shares as compared to alternative technologies...


ISA market share according to different scenarios

Source: L.E.K. analysis

CONFIDENTIAL

... and leading to different net benefits results

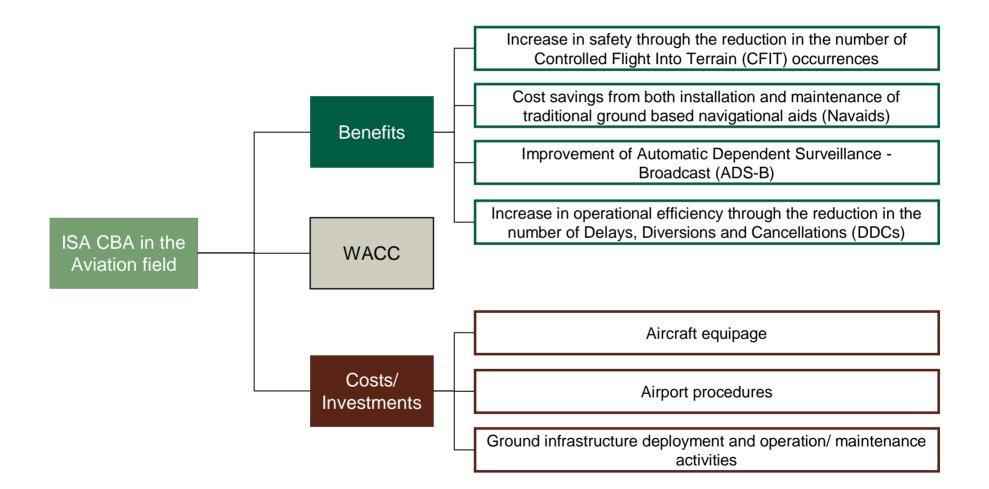

CONFIDENTIAL

Agenda

- Project objectives
- Executive summary
- Outputs

- Model design methodology
- RNP 0.1 scenario
- l Appendix

In our model we have considered all the important milestone and the following timeframe has been assumed

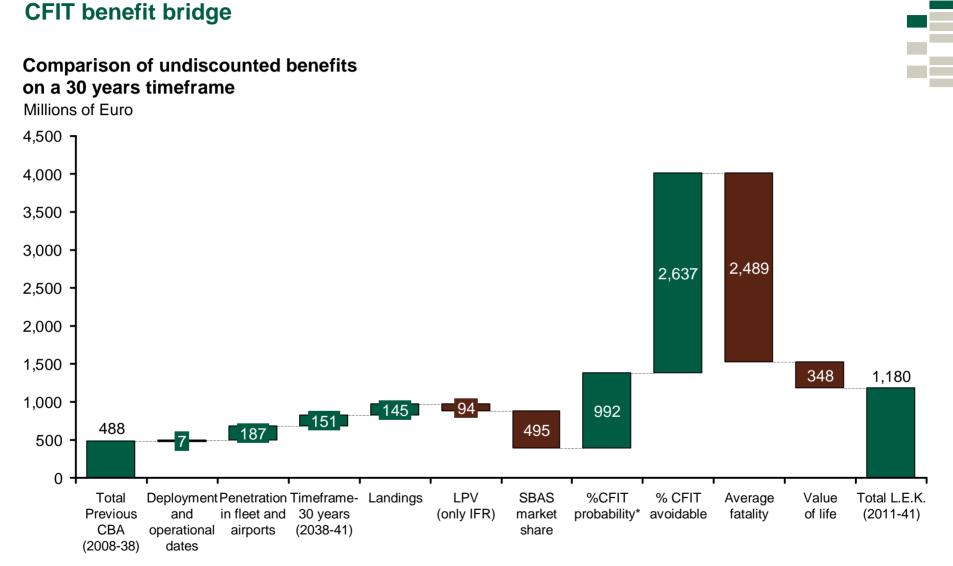

Note: * Start of infrastructure realization; ** Availability of SBAS Open Service Source: L.E.K. interviews and analysis

Baro-VNAV competition has been considered in order to estimate ISA penetration in the AFI region

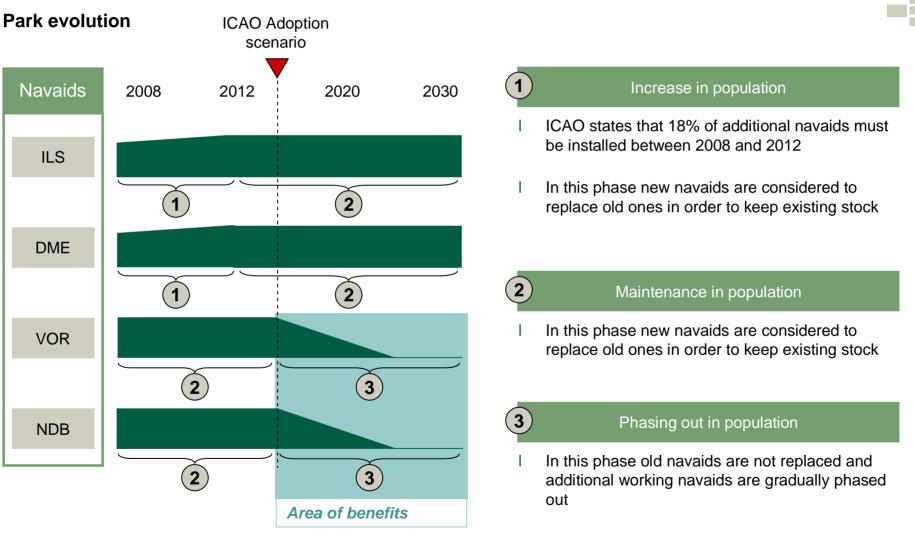
ISA vs Baro-VNAV market share evol (2008-41) Percent		• PPT (2016-41)	
100 90 - 80 -	Baro-VNAV	(56.0)	I GPS + Baro-VNAV is used to provide continuous vertical guidance and can be used to perform APV landings as an alternative to SBAS
70 -			I ISA compared to Baro-VNAV has two advantages:
60 - 50 -			 some aircraft do not have certified and integrated systems to meet Baro-VNAV; for these aircraft, APV SBAS will be a
40 -	SBAS	56.0	good option
30 -			 slightly lower minima
20 -			
10			
2008 2016 2025 204	41		

Source: L.E.K. interviews and analysis

ISA is expected to guarantee higher safety and operational efficiency to the AFI region


ISA is expected to increase flight safety, lowering the probability of occurrence of Controlled Flight Into Terrain (CFIT)

Yearly estimation of ISA safety related benefits


- Controlled flight into terrain (CFIT) describes a collision whereby an airworthy aircraft, under pilot control, inadvertently flies into terrain, an obstacle, or water
 - CFIT often occurs during aircraft descent to landing, near an airport and it is often caused by terrain being obscured by clouds
- CFIT total cost comprehends both human life costs and cost of hull loss

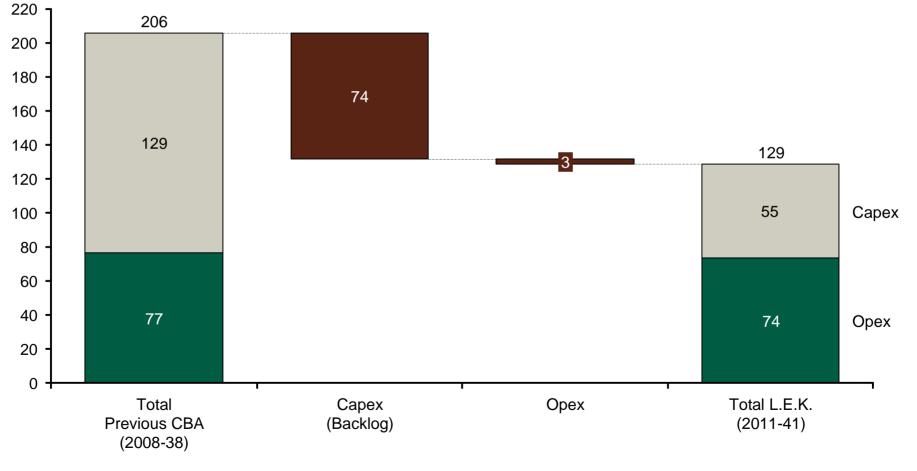
Source: L.E.K. interviews and analysis

Note: * Updated according to the average number of CFIT occurrences in Africa (2005-08) from NTSB and correction of a calculation error made by the previous CBA Source: L.E.K. interviews and analysis

From full LPV implementation date it is expected the phasing out of NDB and VOR navaids representing a ISA related benefit

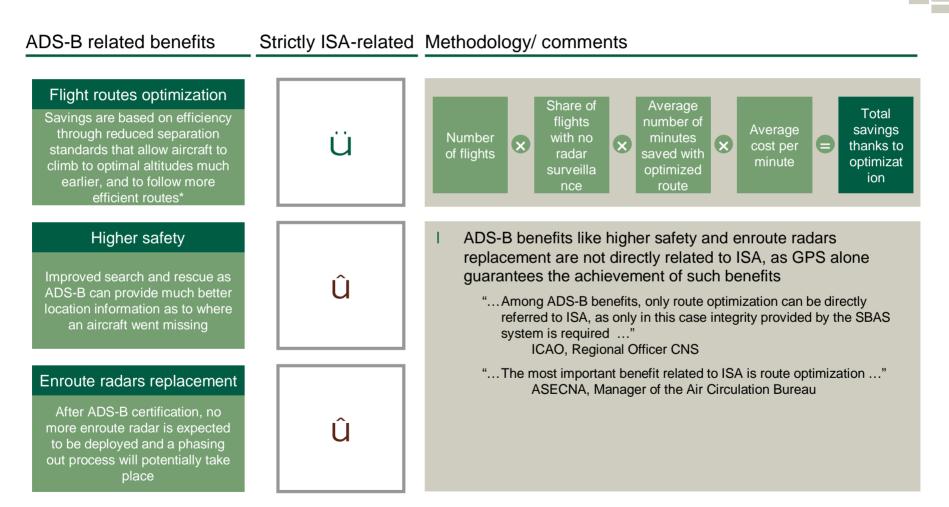
Source: L.E.K. interviews and analysis

Model design methodology (Navaids)


L.E.K.

Navaids benefit bridge

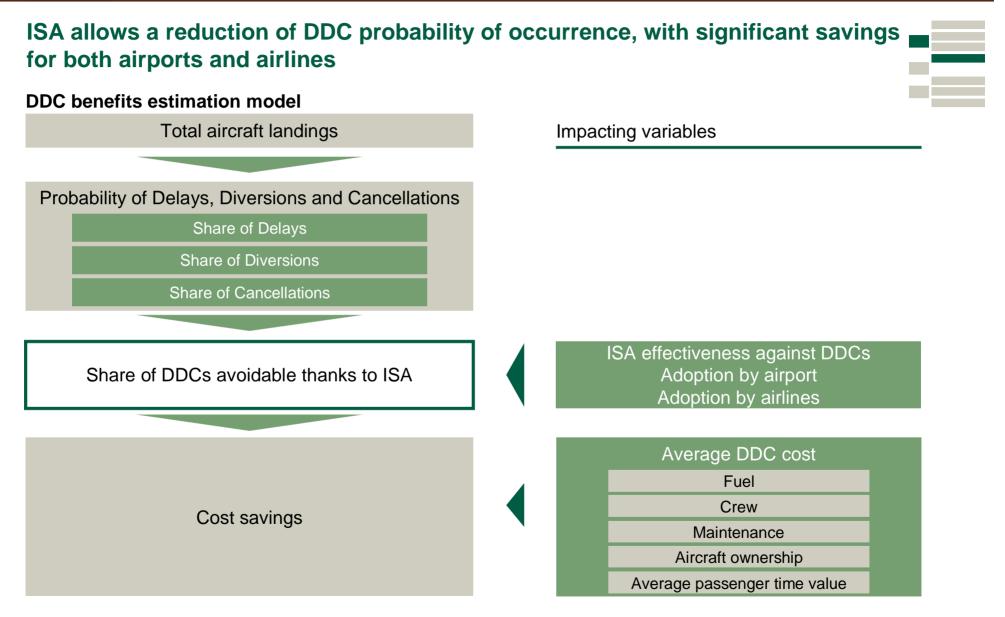
Comparison of undiscounted benefits on a 30 years timeframe



Millions of Euro

Source: L.E.K. interviews and analysis

ADS-B system adoption is expected to determine significant benefits in terms of routes optimization, higher safety and enroute radars replacement



Note: * Only marginal improvement of SBAS over GPS has been considered Source: L.E.K. interviews and analysis

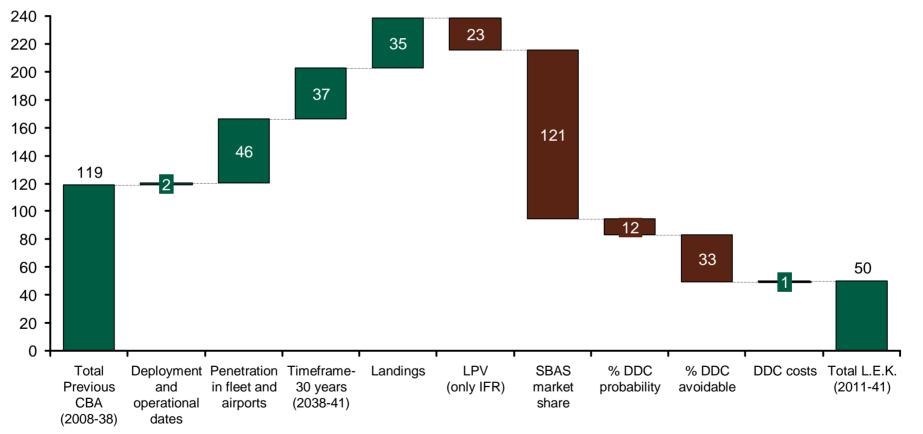
L.E.K. model does not incorporate ADS-B investments and costs, as they are not directly associated to ISA

 ADS-B systems is planned to be implemented in Africa, exploiting GPS signal " The process of ADS-b adoption has already started and it is based on GPS signal" 	The L.E.K. CBA incorporates only the marginal benefits of ISA-based ADS-B
ASECNA, Manager of the Air Circulation Bureau I Ground infrastructures of ADS-B will be deployed independently from SBAS adoption " Ground based station supporting ADS-B will be realized in Africa also without SBAS systems" ASECNA, Manager of the Air Circulation Bureau " The deployment of ADS-B infrastructure and the installation of specific avionics do not depend on SBAS adoption" ASECNA, Conseiller technique du Directeur de I'Exploitation	 "… In my opinion the introduction of a SBAS system in the ADS-B, could provide an increase of benefits amounting to c. 35% …" ASECNA, Manager of the Air Circulation Bureau "… The development of a SBAS-based ADS-B could determine an increase in benefits of c.20% with respect to a traditional GPS-based ADS-B …" ASECNA, Conseiller technique du Directeur de l'Exploitation

Being not directly related to ISA implementation, ADS-B investments and costs were not included in the L.E.K. model

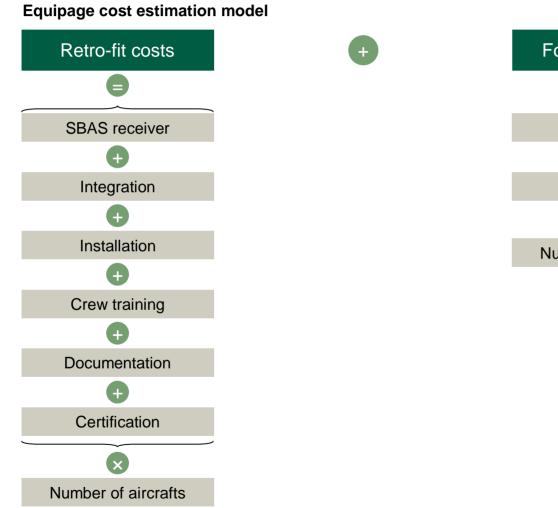
Source: L.E.K. analysis

Model design methodology (DDC)


L.E.K.

DDC benefit bridge

Comparison of undiscounted benefits on a 30 years timeframe



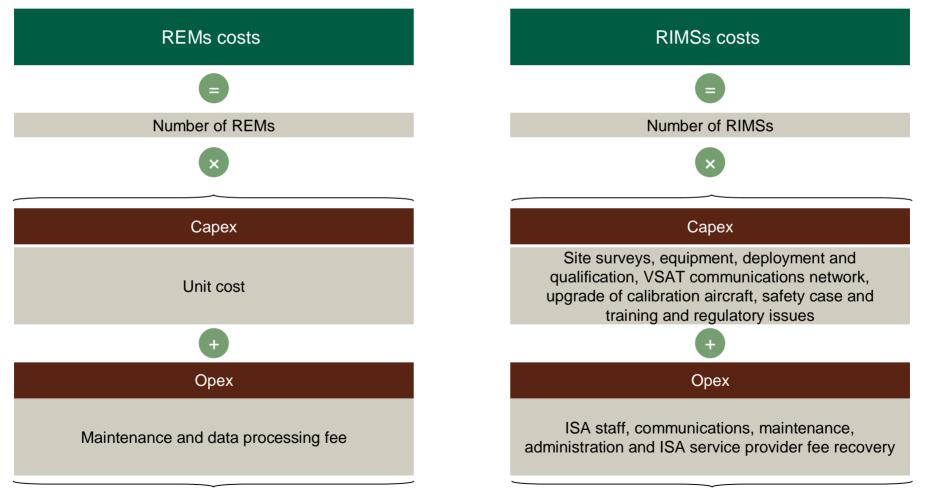
Millions of Euro

Source: L.E.K. interviews and analysis

Aircraft equipage costs comprehend both retro-fit costs and forward-fit ones

L.E.K.

Airport procedures costs, related to new landing instructions to be defined by ANSP are estimated to be c.€24K per runway


Airport procedures costs estimation model

- Single procedure publishing costs are estimated to be c.€24K per runway
 - procedure publishing is performed by national ANSP, who is in charge of defining instructions to be observed during landing process
 - "... Procedures costs don't vary significantly in Africa if compared to what is in Europe or in USA because the labour force is coming from this two continents and the instruments are the same ..." Pildo Labs, Manager
- In order to define a SBAS based landing procedure, ANSP performs a series of analyses
 - obstacle clearance surface
 - obstacle evaluation area
 - obstacle identification surface
 - glide-path qualification surface

Infrastructure costs are related to both REMs and RIMSs and comprehend deployment and operational expenditures

REMs and RIMSs costs estimation model

Source: L.E.K. analysis

Agenda

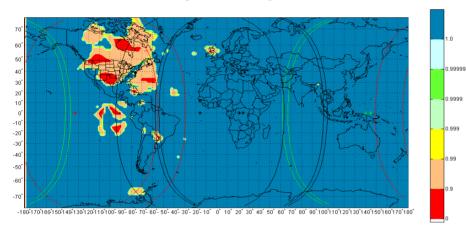
- I Project objectives
- Executive summary
- Outputs
- Model design methodology

RNP 0.1 scenario

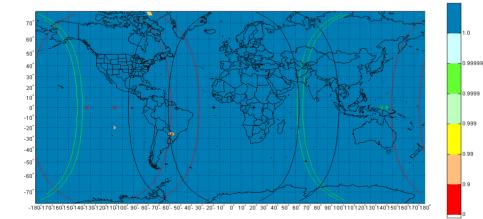
Appendix

Т

RNP stands for Required Navigation Performance and is part of ICAO's new Performance Based Navigation (PBN)

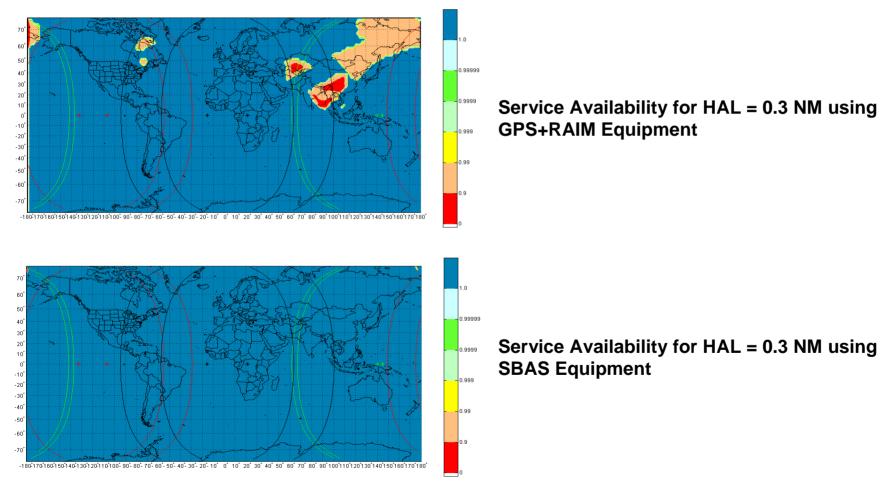

- The figure added after 'RNP' refers to the 95 % accuracy requirements in Nautical Miles, e.g. RNP 2 has a 95% navigation accuracy specification of 2 NM
- RNP and the older RNAV (area navigation) specifications overlap (RNAV 5 is equivalent to RNP 5)
- For an aircraft to be RNP capable it requires onboard alerting and monitoring equipment in addition to GPS avionics
 - new large jet aircrafts are forward fitted with RNP systems
 - RNP systems have a significant cost for retrofitting
 - regional airlines that operate older, smaller jets are not yet interested in upgrading to RNP (they continue to operate using RNAV procedures)

The ICAO PBN requirements (Resolution A36-23) implies that RNP is sufficient for APV landings

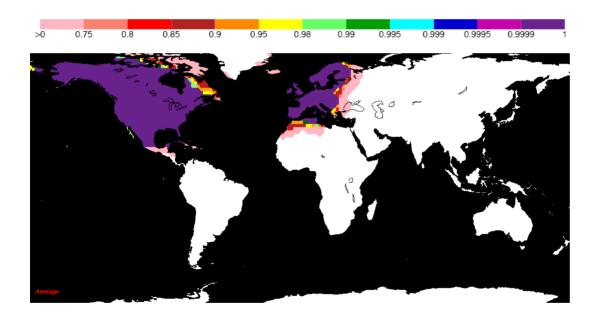

- Only RNP includes approach operations, RNAV mostly concerns en-route phases of flight
- An RNP AR (authorisation required) APCH requires a accuracy of 0.3-0.1 NM
 - i.e. an 95% horizontal accuracy of ~556 m down to ~185 m
 - and Baro-VNAV for vertical guidance
- Airbus and SAA still consider these as NPA (and that only SBAS will allow APV)
- We suspect confusion has arisen since it depends on the equipage of the aircraft
 - a simple GPS receiver onboard plus Baro-VNAV will not allow APV
 - a sophisticated RNP-capable FMS + Baro-VNAV will allow APV (to be verified)

An experiment on RNP 0.15 availability was conducted on 29 April 2008

RNP 0.15 Availability on 29 April 2008 from 1014 to 1214 Zulu

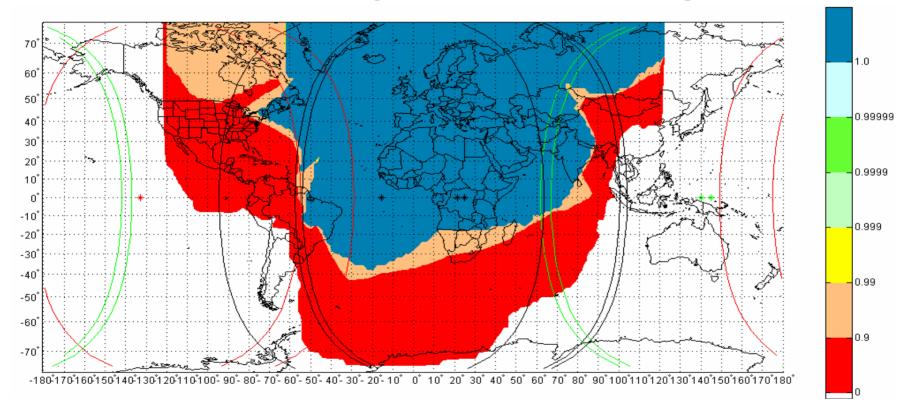

Service Availability for HAL = 0.15 NM using GPS+RAIM Equipment

Service Availability for HAL = 0.15 NM using SBAS Equipment


An experiment on NPA availability was conducted on 7 June 2008

NPA Availability on 7 June 2008 from 1751 to 2005 Zulu

An experiment on APV availability was conducted on 29 April 2008


APV-I Availability on 29 April 2008 from 1014 to 1214 Zulu

- With GPS alone, service availability for Horizontal Alarm Limit can be as low as 90% over large geographic regions (depending on the GPS satellite that has failed)
- By using SBAS, the service availability (horizontal accuracy) can be improved back to 100% even if a GPS satellite fails (except for some very small areas)
 - EGNOS capability is already available over most of Africa

EGNOS RNP 0.1 service availability over AFI was measured on 29 April 2008 (10:14-12:14 Zulu)*

Enhanced NPA service achieved through SBAS over Africa down to 20 deg. South Lat

EGNOS RNP in AFI could guarantee a series of advantages

- Will improve GPS service availability within RNP from 90% to 100%
- I It is estimated that an additional 5 RIMS in Southern Africa will be sufficient to extend coverage over the whole continent (with modification of EGNOS Message 27)*
- Will allow enhanced NPA (but NOT APV)

- Will this allow landing procedures based on RNP to be designed with smaller separation minima?
 - since the confidence in the service availability is greater?
 - thereby leading to customised curved approaches which can gain airlines significant savings in approach distances (time and fuel)
- This can be explored during further interviews with ANSPs and airlines

Agenda

- Project objectives
- Executive summary
- Outputs
- Model design methodology
- RNP 0.1 scenario

I Appendix

- interviews undertaken and documents utilized
- scenarios details
- inputs

During its assignment, L.E.K. has conducted a total of 44 interviews with main ISA stakeholders

ISA Stakeholders (44)			
ACI World, Manager	I Honeywell Aerospace, Senior Strategic Marketing		
ADS-B Technologies, LLC, Director	Manager		
Air Traffic and Navigation Services (ATNS), Director	I ICAO, Implementation & Resource Development		
Airservices Australia, Director for ADS-B program	Coordinator		
Alitalia, Flight Safety Manager	I ICAO, Regional Manager		
Ascend, Director	I ICAO, Regional Officer/CNS (WACAF)		
ASECNA, Chef de Bureau AIS/MAP	I ICAO, RO/CNS		
ASECNA, Conseiller technique du Directeur de	 Kenya Airways, Flight Safety Manager MITRE, Director 		
l'Exploitation	National Transportation Safety Board, Safety studies		
ASECNA, Manager of the Air Circulation Bureau	and Statistical Analysis Director		
I Brown University, Professor	National Transportation Safety Board, Statistic		
I Brussels Airlines, Flight Safety Manager	Director		
I ENAV, Director	I NAVCanada, Director, Operational Analysis		
I ENAV, Flight Operation Manager	I Pildo Labs, Manager		
I ESA, Institutional Relations Director	I Politecnico di Torino, Professor		
I Eurocontrol, Technical Manager	I Princeton University, Professor		
I Eurocontrol, NAV infrastructure and GNSS activities	I Rockwell Collins, Sales Manager		
Manager	I Selex, Product Manager		
I FAA, Director	Sensis, Product Manager		
I FAA, PBN Specialist	I Sensis, Vice President		
I FAA, Satellite Navigation Program Office	I Sia Solutions, Product Manager		
I Flight Safety Foundation, Director of Technical Programs	I South African Search and Rescue Organization, Director		
I Garmin, Product Manager	I Stern University, Professor		
I Honeywell Aerospace, Director, Aerospace Regional	I Thales, Technical Manager		
Affairs	I The World Bank, Manager		

L.E.K. has reviewed a comprehensive list of 19 secondary sources (1/2)

L.E.K.

Title	Author	Date
Africa-Indian Ocean Regional Traffic Forecasts 2004–2020	ICAO – Working paper	Feb-06
Air Nostrum: Business case for SBAS equipage	GIANT	Dec-06
Approach to Assess the Benefits and Costs of ATM Investments	EUROCONTROL	Mar-03
Automatic Dependent Surveillance – Broadcast (ADS-B) seminar and the sixth meeting of ADS-B study and implementation Task Force (ADS-B SITF/6)	ICAO – Working paper	Apr-07
Country Default Spreads and Risk Premiums	Damodaran	2007
EMOSIA - Air Navigation Service Provider Model	EUROCONTROL/ Boeing	Mar-05
EMOSIA - Airport Model	EUROCONTROL/ Boeing	Mar-04
EMOSIA - Model Architecture and Approach	EUROCONTROL/ Boeing	Jul-03
Evaluating the true cost to airlines of one minute of airborne or ground delay	EUROCONTROL	May-04
Inter-regional SBAS for Africa - Review of benefits	Helios	May-05
Interregional SBAS for Africa: Contribution to Strategy	Helios	Jul-08
ISA Aviation Business Case Information Paper	Helios	Dec-08
ISA Funding Options Analysis	ESYS	Jun-06
ISA service implementation plan	Progeny	Nov-07

CONFIDENTIAL


L.E.K. has reviewed a comprehensive list of 19 secondary sources (2/2)

Title	Author	Date
Operational service framework for Inter-regional SBAS for AFI (ISA)	Progeny	Nov-07
Project ATLAS – Cost Benefit Analysis	Access Economics	Jun-07
Project Profile: ISA Regional Module for West and Central Africa	ASECNA	2007
Standard Inputs for EUROCONTROL Cost Benefit Analyses	Eurocontrol	Feb-05
Third Meeting of the AFI GNSS Implementation Task Force	ICAO	Jun-05

Agenda

- Project objectives
- Executive summary
- Outputs
- Model design methodology
- RNP 0.1 scenario
- Appendix
 - interviews undertaken and documents utilized
 - scenarios details
 - inputs

Preliminary benefits results comparison of the three different scenarios based on full LPV implementation date hypotheses

CONFIDENTIAL

Preliminary costs results comparison of the three different scenarios based on full LPV implementation date hypotheses

Agenda

- Project objectives
- Executive summary
- Outputs
- Model design methodology
- RNP 0.1 scenario
- Appendix
 - interviews undertaken and documents utilized
 - scenarios details
 - inputs

CBA general inputs			
Input	Value	Source	
Landings	• In 2008: c.1.3m landings	ACI	
	• CAGR% (2008-41): 4.1%		
	• IFR vs VFR: 90.4% vs 9.6%	SAA, Garmin	
	• CA vs GA: 81% vs 19%	ACI	
Airport runways	• In 2008: 1,101	Jeppesen	
	• IFR vs VFR: 23% vs 77%	Jeppesen	
Fleet	 In 2008 CA (Jet 816 and Turboprop 849) and GA (Jet 195 and Turboprop 463) 	Ascend	
	• CAGR% (2008-41): 4.1%	L.E.K. estimate	
LPV penetration	 100% in 2016, with a 30% by 2010 and 70% by 2014 	ICAO	

Source: L.E.K. interviews and analysis

		17
l	J.E	
L	لا. ا	.N.

CBA CFIT inputs		
Input	Value	Source
% of CFIT occurrence	• 0.00032%	NTSB
EGNOS effectiveness against CFITs	• 87.3%	SAA, FAA, NTSB, FSF, Jet Pro
Average CFIT cost	• Average fatality per accident: 10.75 persons	NTSB
	• Statistical value of life: €173,764	Environmental Protection Agency
	 Average hull loss: €10.75m 	Eurocontrol

There are mainly two discordant opinions on the percentage of CFIT avoidable thanks to EGNOS but we consider all of them

- Eurocontrol, Navigation Domain Manager
- "... The ratio used is 30% and this estimate has to be considered conservative ..." Helios on ISA CBA for Eurocontrol

Source: L.E.K. interviews

In addition to FAA opinion stated on its website L.E.K. has collected some quotes supporting EGNOS contribution to Navaids phasing out which are contrasting the position of Eurocontrol

Pro	We have gathered many opinions in the industry about the EGNOS contribution to traditional navaids phasing out
	" Significant government cost savings due to the elimination of maintenance costs associated with older, more expensive ground-based navigation aids (to include NDBs, VORs, DMEs, and most Category 1 ILSs)" FAA on WAAS
	" Once everyone will use EGNOS the navaids phasing out could start" ENAV, Director
	" EGNOS can contribute to navaids in terms of no need for some additional ILS and for VOR and NDB at least those used in the approach phase" GIANT, Coordinator
	" I wouldn't divide among different categories of VOR and NDB (those used in approach or in navigation phases), all of them are almost obsolete and I confirm that their phasing out is due to EGNOS not all the GNSS system" ENAV, Flight Operation Manager
	" In my opinion is it correct to consider EGNOS the main contributor to the navaids phasing out of VOR and NDB, I wouldn't say it is referable to GPS. EGNOS is the future, we started to produce helicopters without some old equipage because if we can have EGNOS we can a lot of savings and don't rely on these traditional navaids" Agusta Westland, Senior Marketing Manager
	" Your analysis about Navaids phasing out seems accurate to me" South African Airways, PBN Specialist
Against	I The position of Eurocontrol is contrasting the one of FAA and of other decision makers and experts within the industry
	" We don't agree with the FAA position stated on their website and we consider Navaids phasing out a benefit attributable to the all GNSS system" Eurocontrol, Senior Expert: Navigation (CNS CoE)

CBA ADS-B inputs		_
Input	Value	Source
Minutes saved thanks to ADS-B	• 2.1	ASECNA
Share of movements in AFI without radar coverage	• 68.8%	Kenya Airways
Fuel saved	 Unit cost: €/litre 0.27 Average fuel consumption: litre/minute 24.6 	IATA, Airbus, Cessna, Falcon, Bombardier

1	\mathbf{T}	17
	.Ε.	K –
	/• – - •	L.

CBA Navaids inputs			
Input	Value		Source
Population	DME: 3VOR: 60NDB: 556	 ILS: 44 VOR/DME: 174 ILS/DME: 62 	Garmin
Backlog	DME: 18%VOR: 0%NDB: 0%	 ILS: 18% VOR/DME: 18% ILS/DME: 18% 	Eurocontrol
Lifetime	• 20 years		ASECNA
% of underperforming navaids	 DME: 7.5% VOR: 7.5% NDB: 10.0% 	 ILS: 15.0% VOR/DME: 7.5% ILS/DME: 10.0% 	Sia Solutions
Capex (€/000)	 DME: 301.0 VOR: 601.8 NDB: 75.0 	 ILS: 578.2 VOR/DME: 902.7 ILS/DME: 879.1 	
Opex (€⁄000)	 DME: 10.0 VOR: 10.0 NDB: 5.0 	 ILS: 10.0 VOR/DME: 20.0 ILS/DME: 20.0 	

Source: L.E.K. interviews and analysis

CBA DDC inputs		
Input	Value	Source
% of DDC occurrence	• 0.19%	GIANT, Airnostrum in Spain, africaonline, hridir, Eurocontrol
EGNOS effectiveness against DDCs	• 48.5%*	Eurocontrol
Average DDC cost	• Fuel: 14.1 €/minute	Air Transport Association
	• Crew: 1.8 €/minute	
	 Maintenance: 6.9 €/minute 	
	 Aircraft ownership: 5.3 €/minute 	
	• Other: 1.3 €/minute	
	 Average time lost: Delay 50 minutes, Diversion 66 minutes, Cancellation 90 minutes 	Eurocontrol
	 Average passenger time value: 0.01 €/minute 	FAA
	Average number of passengers involved: 43	Eurocontrol
	 Weight of DDC category: Delay 75%, Diversion 20%, Cancellation 5% 	Eurocontrol

Note: * Even though Giant – Airnostrum study states 81.1% Eurocontrol has formally updated the number Source: L.E.K. interviews and analysis

CBA Aircraft equipage inputs		
Input	Value	Source
SBAS receiver	 T2=€14,000; J2=€35,000 (2 SBAS rec.) 	Honeywell
Integration	• T2=€8,000; J2=€30,000	
Installation	• T2=€3,450; J2=€12,000	
Crew training	• T2=€3,000; J2=€3,000	
Documentation	• T2=€700; J2=€5,000	
Certification	• T2=€2,000; J2=€40,000	

Note: T2=Light multi-engine pressurised turboprop aircraft; J2= Midsize business jet aircraft Source: L.E.K. interviews and analysis

CBA Procedures inputs			
Input	Value	Source	
Runways with EGNOS	 Number of runways: 1,101 Number of IFR-LPV runways: 251 Share of runways with EGNOS: 46% 	Garmin, Kenya Airways	
Costs	 Costs of procedures: €21,186 Cost of surveying: €3,107 	ATNS	

CBA Ground infrastructure deployment and operation inputs

Input		Source
REM	 Number of REMs: 2 Cost per REM (capex): €4,000,000 Data processing fee per REM (opex): €2,000,000 Maintenance (opex): 10% of capex 	ASECNA and L.E.K. estimate
RIMS	 Number of RIMSs: 30 Capex per RIMS: €1,237,500 RIMS Site surveys: €3,333 RIMS equipment, deployment and qualification: €916,667 RIMS VSAT comms network: €183,333 Upgrade of calibration aircraft (ATR42): €8,333 Safety case and training: €109,167 Regulatory issues: €16,667 Opex per RIMS: €28,333 ISA Staff: €1,667 Communications: €15,000 Administration and ISA service provider fe recovery (8% of ops before ESSP fee) : €11,667 Maintenance (opex): 10% of capex 	