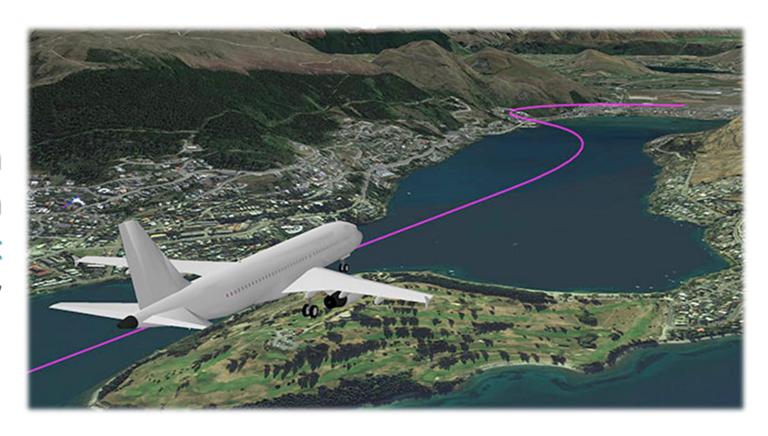


Outlines

- ☐PBN Area Navigation
- **□** Fixes
- ☐ Path Terminators
- ☐ Transitions
- Navigation Systems and Sensors
- ☐ Multi-sensor systems
- ☐ Ground-based NAVAID dependent and independent systems

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION

Area Navigation &
PBN Navigation Systems
AREA NAVIGATION



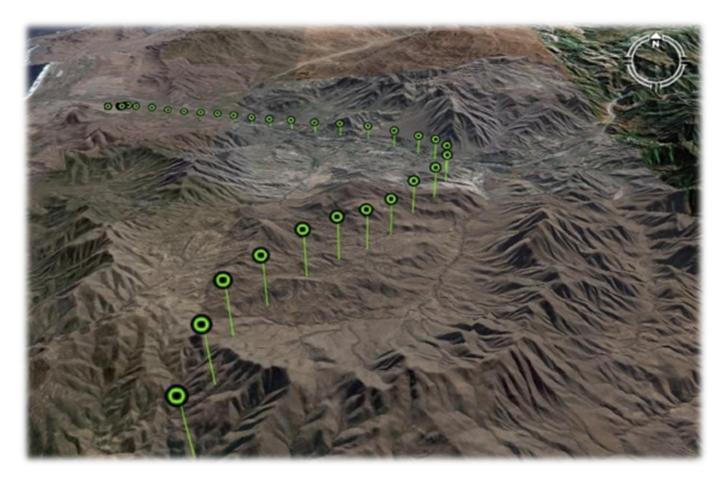
African Flight Procedure Programme (AFPP)

PBN area navigation

Area navigation is a method of navigation which permits aircraft operation on any desired flight path...

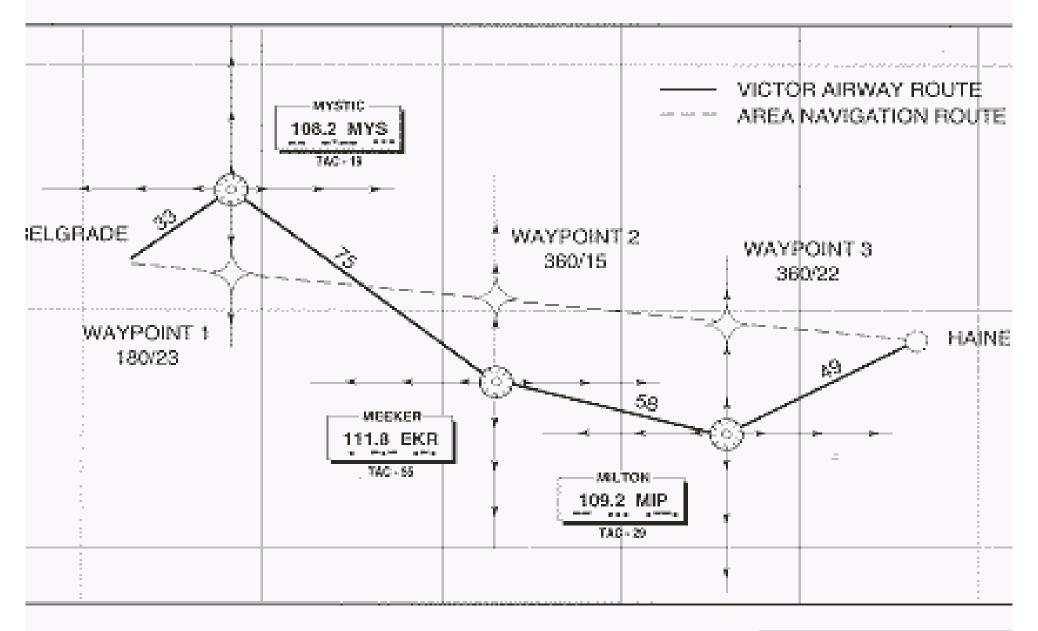
Advantages of PBN Area Navigation

- ☐ More efficient TMA design options:
 - Maneuver around terrain, obstacles and restricted airspace;
 - RNP 1 with RF turns.
- Controllers know what lateral separation to apply:
 - **5** or 6 NM
- Airlines know what aircraft to dispatch...
 - Chart will state GNSS and / or DME/DME/IRU required (C1, D2).
- Separate SIDs for slower and faster climbing aircraft;
- Parallel routes to accommodate a greater flow of En-route traffic with A-RNP.



ICAO Flight Plan PBN Codes

Navigation Systems and PBN FP 2012 Indicators									
	All	GNSS	INS	DME/DME	DME/DME/IRU	DME/VOR			
RNAV 10	A1	A2	A3						
RNP 4	L1								
RNAV 5	B1	B2	B5	B3	B6	B4			
RNP 2									
RNAV 2	C1	C2		C3	C4				
RNAV 1	D1	D2		D3	D4				
RNP 1	01								
A-RNP				A	n example of an older ai	rcraft PBN capabi			
RNP 0.3					Item 18: A3/B5/C3/D3/S1 A3 = INS				
RNP APCH	S1			It					
+Baro-VNAV	S2				B5 = INS C3 = DME/DME				
RNP AR APCH	T2								
+RF	T1				D3 = DME/DME S1 = RNP APCH (no Baro-VNAV)				


Area Navigation &
PBN Navigation Systems
AREA NAVIGATION
FIXES

Area Navigation Fixes (Waypoints)

- ☐ Fixes are defined by latitude and longitude;
- ☐ A "fix" is either based on radio aids or it is an area navigation waypoint;
- □ ICAO defines a waypoint as "a specified geographical location used to define an area navigation route... employing an RNAV system";
- ☐ Dakar Airport OOY ARP is a fix...
 - ₹14° 44′ 22″ N
 - ©017° 29′ 24″ W
- ☐ A geographic location not definable by NAVAIDs is a waypoint...

AREA NAVIGATION ROU

Area Navigation Fixes (Waypoints)

- ☐ Fixes:
 - Begin and end segments;
 - Establish turn points;
 - Establish descent points;
 - Establish change in speed.
- ☐ Waypoint was the original term, but now all waypoints are referred to as fixes:
 - So IAWP is now IAF;
 - * And FAWP is now FAF.

Fixes on a PFD

Area Navigation &
PBN Navigation Systems
PATH TERMINATORS

Area Navigation Route Segments

- ☐ Area navigation route is composed of a series of legs or paths
- □ Path is a segment of a flight (track, course or heading) followed by termination point ...in other words Path Terminator
- ☐ In the TMA path terminators are depicted by ARINC 424 leg types,
- ☐ Fixes are designated by:
 - Five-letter ICAO name codes VUTON
 - Missed Approach Point (MAPt) is designated by RWY & number RW30
 - Sometime by airport designator & numbers DB514

Area Navigation Route Segments

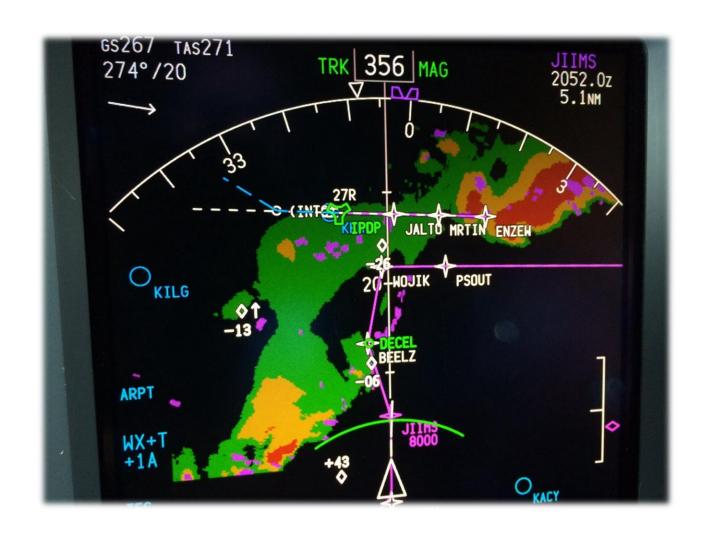
- ☐ Area navigation route is composed of a series of legs or paths
- □ Path is a segment of a flight (track, course or heading) followed by termination point ...in other words Path Terminator
- ☐ In the TMA path terminators are depicted by ARINC 424 leg types,
- ☐ Fixes are designated by:
 - Five-letter ICAO name codes VUTON
 - Missed Approach Point (MAPt) is designated by RWY & number RW30
 - Sometime by airport designator & numbers DB514

Leg Types (Path Terminators)

- ☐ There are 23 defined path terminators:
 - RNP uses only path terminators that are predictable and repeatable.
 - Some holding pattern, heading and altitude terminators are "path terminators";
 - "CLIMB RWY HEADING TO 3 000"... is a VA path terminator
- ☐ Usual RNP AR APCH path terminators:
 - TF (Track to Fix) standard leg type:
 - Aircraft follows the geodesic path to a fix.
 - RF (Radius to Fix):
 - Aircraft follows an arc of a circle, defined by a radius, to a fix.
- ☐ En-route airspace uses different path terminator, for example FRT.

Path / Terminators

African Flight Procedure Programme (AFPP)


Paths

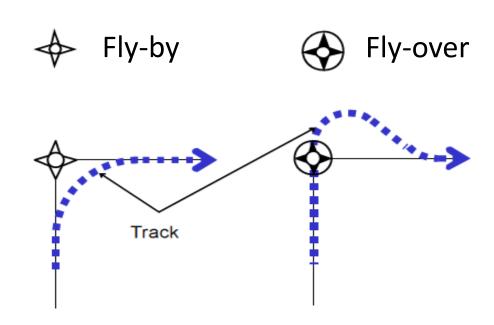
Ś
ō
ä
≘
Ξ
둦
2

	Fix to	Track from fix to	Course to	Heading to	Direct to	Racetrack	DME Arc to	Radius from fix
Fix	IF	TF	CF		DF	HF	AF	RF
Altitude		FA	CA	VA		HA		
Manual Termination		FM		VM		HM		
Distance		FC						
DME Distance		FD	CD	VD		leg type has a		
Intercept			CI	VI	name based on the path and terminator combination			
Radial			CR	VR				
Procedure Turn	PI							

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION

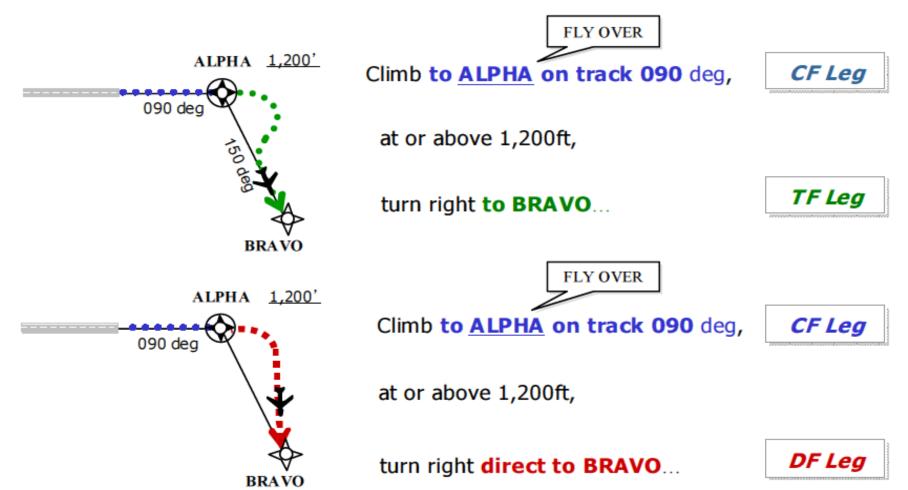
Area Navigation &
PBN Navigation Systems
FIX TRANSITIONS

Fix Transitions (Turns)

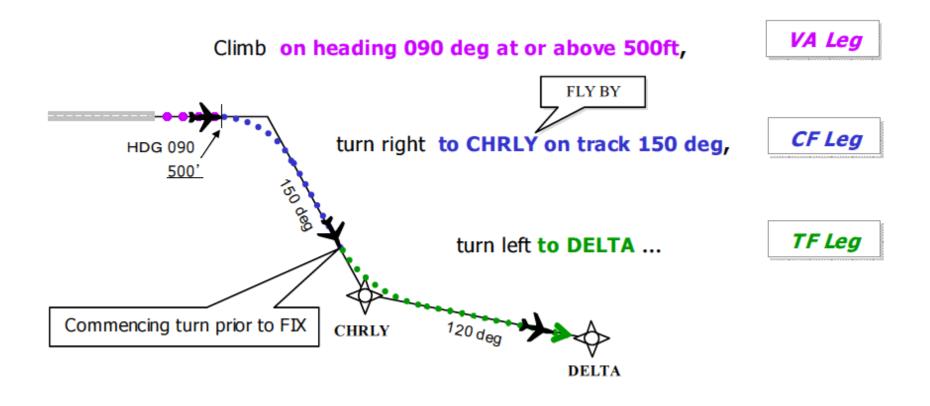

- □At each fix, the aircraft transitions from the current leg to the next leg.
- ☐ There are three transition types:
 - Fly-by;
 - Fly-over;
 - Fixed Radius.
- ☐ We can also refer to these as turns... so "Fly-by" turn.

Fly-by vs. Fly-over Fixes

African Flight Procedure Programme (AFPP)

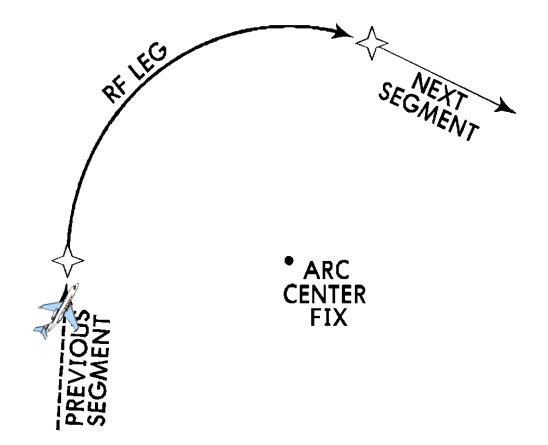

- Area Navigation fix
- Defined by Latitude and Longitude (Lat/Long)
- Two types of Fixes:"Fly-by""Fly-over"

MAPt must is always designated as a "Fly-over" fix no matter if a turn is specified or not

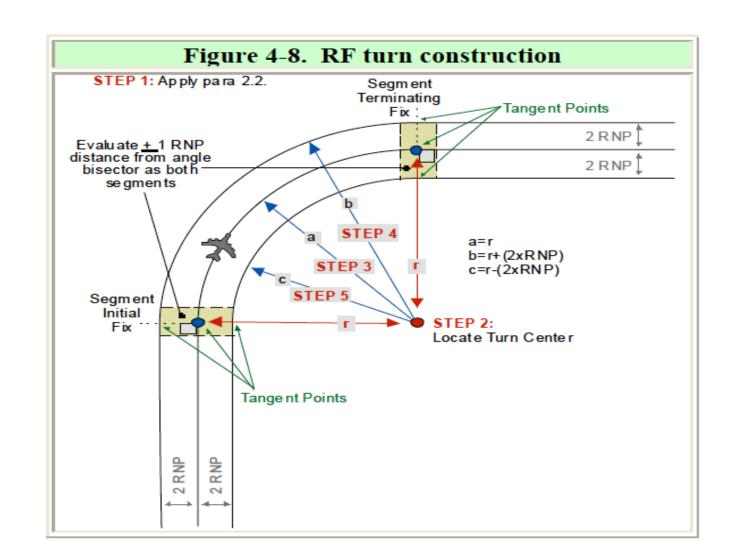


DF vs. TF after "Fly-Over" turn

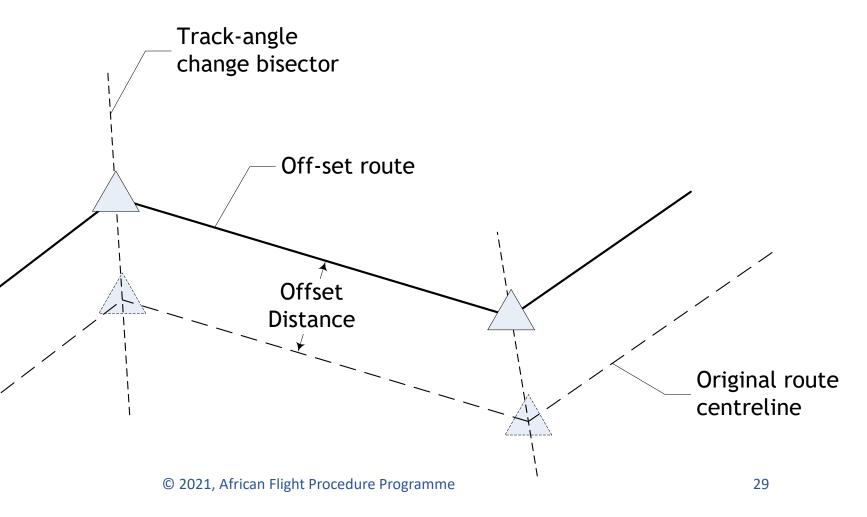
"VA, CF and TF transitions"


Fixed Radius Paths

- ☐ Fixed radius paths (FRP) take two forms:
 - Radius to Fix (RF) when there is a requirement for a specific curved path in a <u>terminal or approach</u> procedure.
 - Fixed Radius Transition (FRT) is intended to be used in en-route procedures.


Radius to Fix Transition (RF)

- □ Follows an arc of a circle, defined by radius to a fix;
- RF is currently only required by the RNP AR APCH and A-RNP Nav Spec;
- RF be added to RNP 1 and RNP APCH.


Radius to Fix transition (RF)

Parallel Offset

- First implemented in the NAT OTS to reduce effect of wake turbulence, after RVSM implementation
- Subsequently to reduce risk of collision between aircraft at wrong altitude
- All aircraft with parallel offset capability have to provide parallel offsets trajectories up to 20 NM in increments of 1 NM NM left or right of course.

Area Navigation & PBN Navigation Systems

SUMMARY OF AREA NAVIGATION

Summary

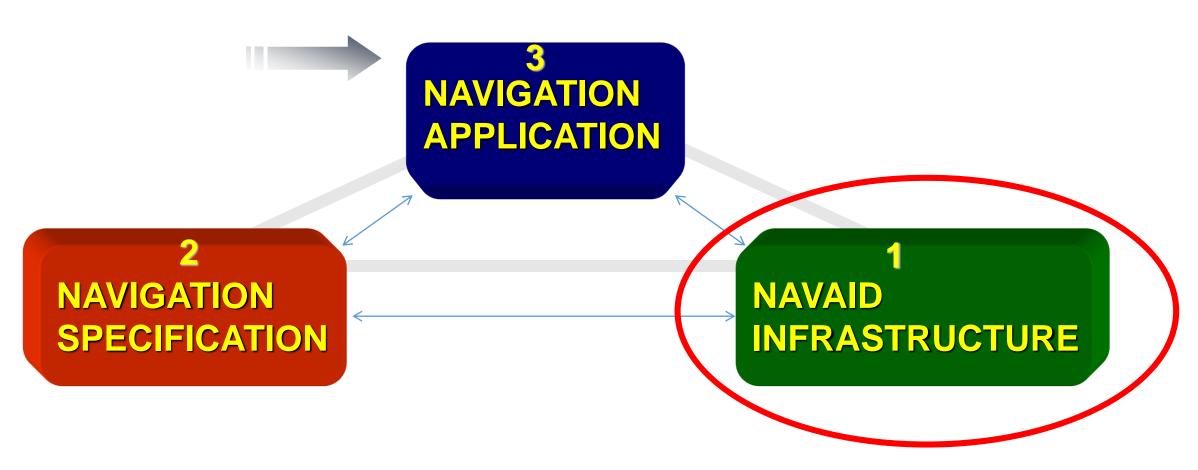
- PBN Area Navigation:
 - Benefits, RNP 1 with RF transitions.
- ☐ Fixes:
 - **Begin and end segments, establish turn and descent points, and change in speed.
- Path Terminators:
 - Segment of a flight followed by a termination point.
- **☐** Transitions:
 - Fly-by, Fly-over, RF and FRT

Area Navigation & PBN Navigation Systems

NAVIGATION SYSTEMS

PBN Navigation Systems – Need to Know

- You need to know about Nav Systems because prior to choosing the correct Nav Spec for implementation, you need to determine aircraft capabilities:
 - For example in the TMA there is a choice of the following Nav Specs:
 - RNAV 1, RNP 1, RNP 1 + RF, A-RNP
- ☐ And RNAV 1 allows three (3) different types of Nav Systems:
 - DME/DME, DME/DME/IRU and GNSS


Types of PBN Navigation Systems

- ☐ There are five navigation systems which qualify for PBN operations:
 - These are GNSS, INS, DME/DME, DME/DME/IRU and VOR-DME
- ☐ The green are ground-based NAVAID dependent and the orange are independent of ground-based NAVAIDs
 - GNSS, INS are the only ones that can be used in Oceanic/Remote airspace
 - TOME/DME, DME/DME/IRU and VOR-DME can be used in En-route and Terminal
- ☐ In PBN, "NAVAID dependent" is different from conventional navigation using individual VOR or DME NAVAIDs.

Components of Airspace Concept

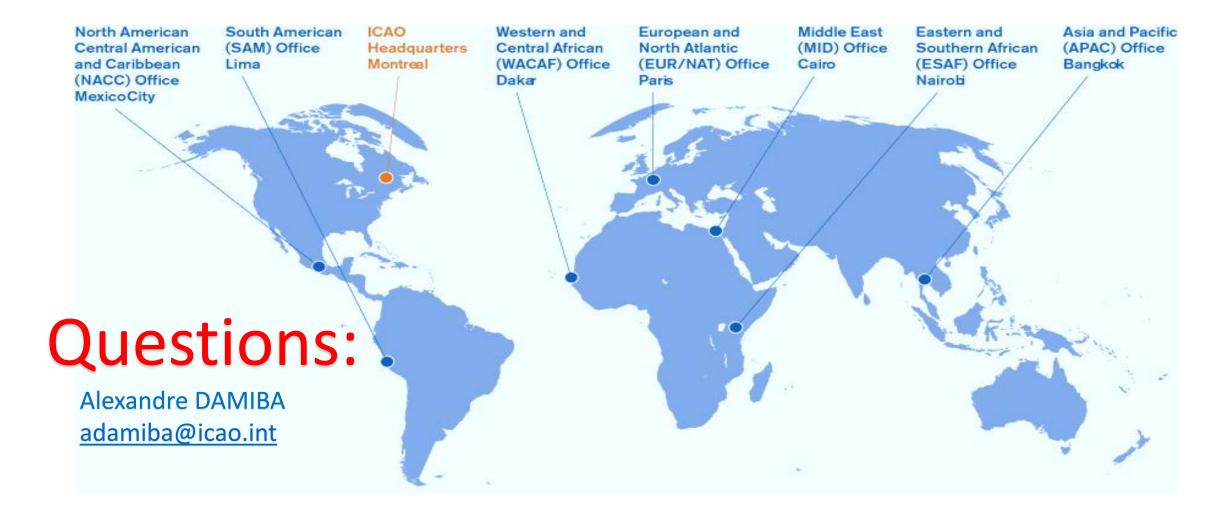
DME/DME/IRU

- ☐ This is **another type** of area navigation system:
 - <u>with DME/DME to improve the continuity of the navigation system by coupling IRU</u>
- ☐ DME/DME with IRU position updating enables the aircraft's FMS to cross-check its **navigation systems** against each other
- ☐ It is **not the same** as having **DME/DME** and an **INS** that are **not coupled** but act independently, as two separate navigation sensors
- ☐ It has the capability to provide navigation through DME/DME gaps, for example through an area 30 to 150 degrees between two DME facilities.

NAVIGATION SENSORS							
NAV SPECS	GNSS	INS/IRS	DME/DME	DME/DME/IRU	VOR-DME		
RNP (RNAV) 10	X	X					
RNP 4	X						
RNAV 5	X	X	X	X	X		
RNAV 1 & 2	X		X	X			
RNP 2	X						
A-RNP	X						
RNP 1	X						
RNP 0.3	X						
RNP APCH	X						
RNP AR APCH	X		(X)				

Area Navigation & PBN Navigation Systems

SUMMARY OF NAVIGATION SYSTEMS


Summary

- Navigation Systems and Sensors:
 - Need to understand navigation systems for aircraft capability assessment to choose the correct Nav Spec for implementation.
- ☐ PBN approved navigation systems:
 - **VOR-DME, DME/DME, DME/DME/IRU, GNSS and INS**
- NAVAID infrastructure assessment:
 - in TMAs for DME/DME navigation.
- ☐ INS, IRS, IRU and INS drift;
- ☐ DME/DME/IRU assessment of gaps.

Comprehension Check

- 1. Give three examples of what fixes can be used for.
- 2. What is the difference between a TF and a CF?
- 3. Which path-terminators are most commonly used for RNP AR APCH?
- 4. How are turns designated on charts?
- 5. When a fly-over fix is followed by a DF leg, does an aircraft rejoin the track leading to the next fix?
- 6. Why do airspace planners need to understand about navigation systems?
- 7. Name two types of ground-based NAVAID independent navigation systems.
- 8. What is the main disadvantage of DME/DME and VOR-DME?
- 9. What is the advantage of a DME/DME/IRU navigation system?

