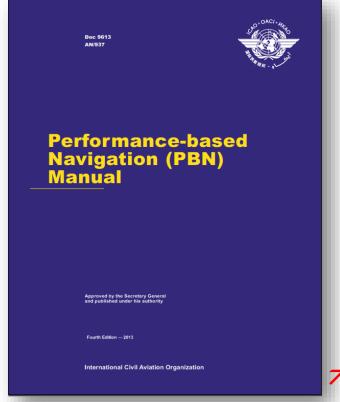

Content


- Regulatory framework
- Why PBN?
- What is PBN about?
- PBN Terminology
- PBN components
- PBN navigation infrastructure
- PBN navigation specifications
- PBN navigation applications
- Relationship between the PBN components
- PBN benefits

Regulatory framework

African Flight Procedure Programme (AFPP)

PBN, No more RNP

Doc 9613 - PBN Manual (3rd Ed. 2007), Nav Specs introduced with performance requirements, (Accuracy, Integrity, Continuity, Total System Error) and also FUNCTIONALITY

Volume I:

Concept and Implementation Guidance:

Part A: The PBN concept

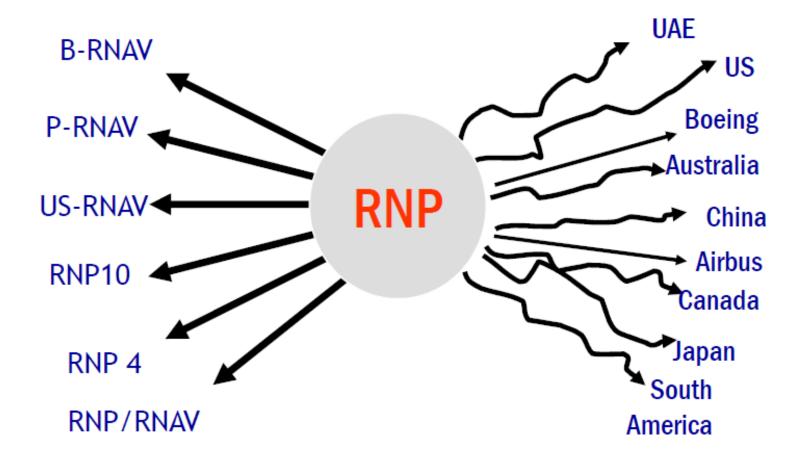
Part B: Implementation guidanc

Volume II:

Implementing RNAV and RNP ops:

Part A: General

Part B: Implementing RNAV OPS


Part C: Implementing RNP OPS

Doc 9613 – PBN Manual (4th Ed. 2013), new Nav Specs introduced. Additional guidance on implementation and certification provided

Why PBN?

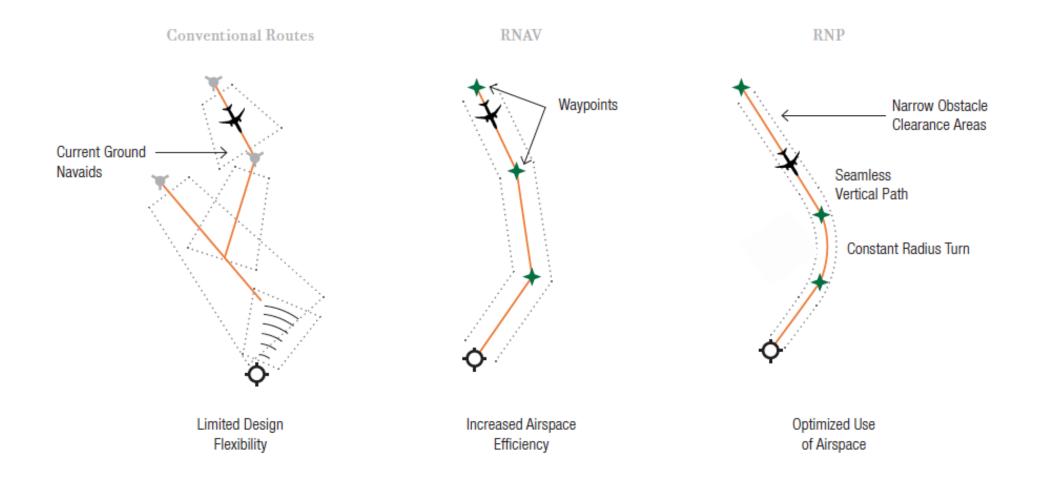
- ☐ Limits of the pre-PBN RNAV:
 - Only sensor-based;
 - No clear guidance for aircraft requirements, operating procedures, training requirements;
 - No clear relationship between on-board avionics and navaids;
 - Interoperability issues
 - Need for global harmonization!

Not safe, not efficient, costly, confusing

NEED FOR GLOBAL HARMONIZATION

What is PBN about?

- PBN is mainly about transitioning to area navigation in a globally harmonized manner by means of implementing navigation specifications
- ...transitioning from what?
 - From conventional navigation to performance-based navigation, or from local or regional area navigation to performance-based area navigation
- ...why globally harmonized?
 - To enable airlines to operate seamlessly from one State to another
 - same airspace design principles
 - representation and control procedures
 - To reduce the number of operational approvals
- ☐ ... How?
 - By the use of **performance** requirements.


What is PBN about?

African Flight Procedure Programme (AFPP)

Globally Harmonized

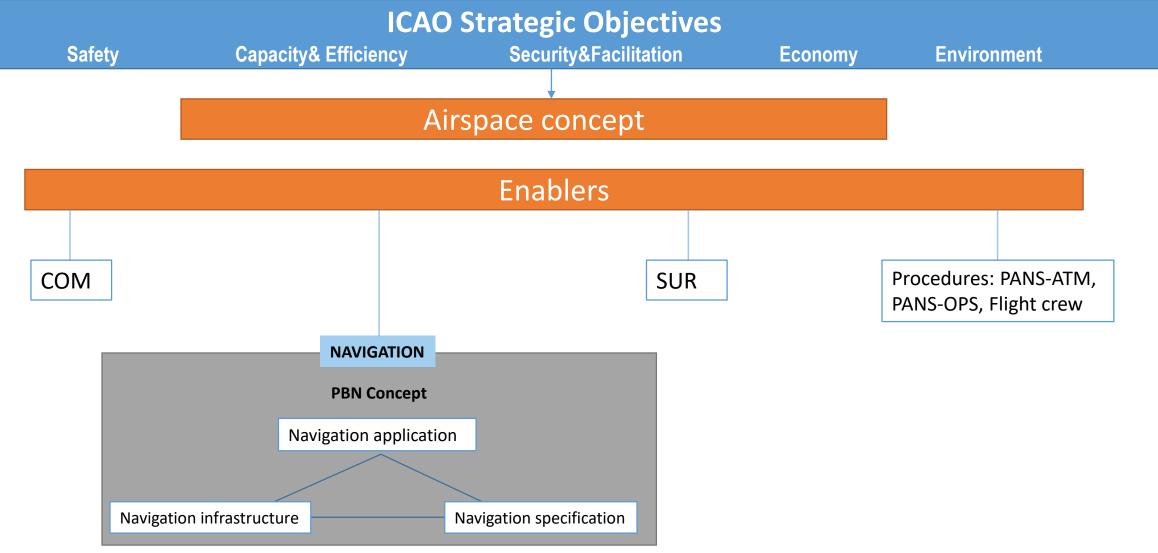
- □ PBN is being implemented according to Doc 9613 in the same manner all around the world.
- ☐ Same design criteria
- ☐ Same pilot procedures
- ☐ Same ATC separation
- ☐ Same phraseology
- ☐ Same airspace design principles... this course will address these, should be harmonized as well

CONVENTIONAL ROUTES COMPARED TO PBN-BASED ROUTES

UNITING AVIATION

Review of PBN Theory

PBN TERMINOLOGY



PBN Terminology

- ☐ Correct terminology is important for clarity:
 - **Area Navigation is the generic term used for area navigation and should never be abbreviated:
 - Area Navigation ≠ RNAV
 - **RNAV is used only in reference to RNAV specifications or RNAV systems.
 - RNP is used only in reference to RNP specifications or RNP systems
 - RNP ≠ Required Navigation Performance.
 - "RNP" of "RNAV" is a Nav Spec designator
 - *1, 2 or 4 is a Nav Spec descriptor

PBN components

Components of the PBN

African Flight Procedure Programme (AFPP)

3 NAVIGATION APPLICATION

NAVIGATION SPECIFICATION

2 NAVIGATION INFRASTRUCTURE

Navigation specifications

- Defined in terms of:
 - Performance: Accuracy, integrity, continuity and availability of the signal
- ■Specifies:
 - The required functionalities
 - The navigations sensors
 - The aircrew and ATC requirements
 - The approval process
- Developed for all areas of operation: En-route*, Terminal and Approach.

Functionality

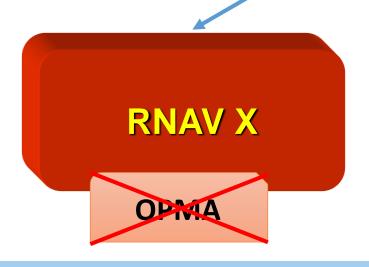
African Flight Procedure Programme (AFPP)

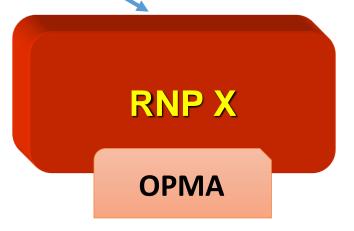
☐ In addition to the performance requirements, PBN also requires certain functionalities:

Examples:

- RNP scalability (1.0 to 0.1 NM in any increments)
- Display parameters (moving map)
- Radius to Fix (RF) or other leg types
- Parallel Offsets
- Baro-VNAV

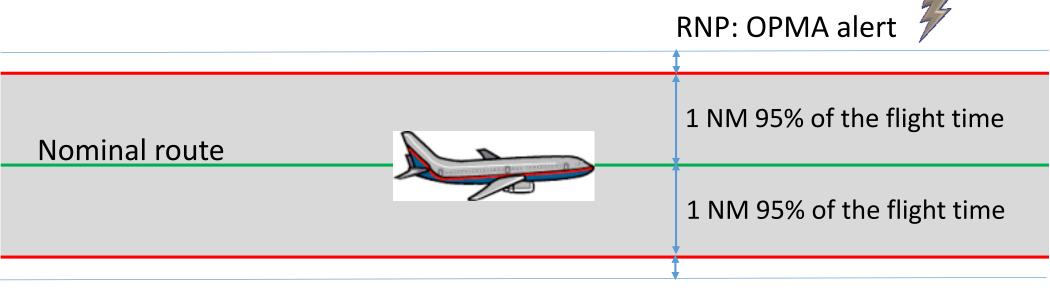
Performance and Functionality


- So PBN is about specifying performance requirements, and functionalities
- □ PBN does not rely on any particular nav sensor, like for example a VOR receiver to fly on victor (VOR) airways
- ☐ PBN is not <u>sensor</u> specific, it is <u>performance</u> based
 - There we mean that performance includes functionality too
- ☐ Therefore we can say that PBN is about a shift from "sensor specific" to "performance based".

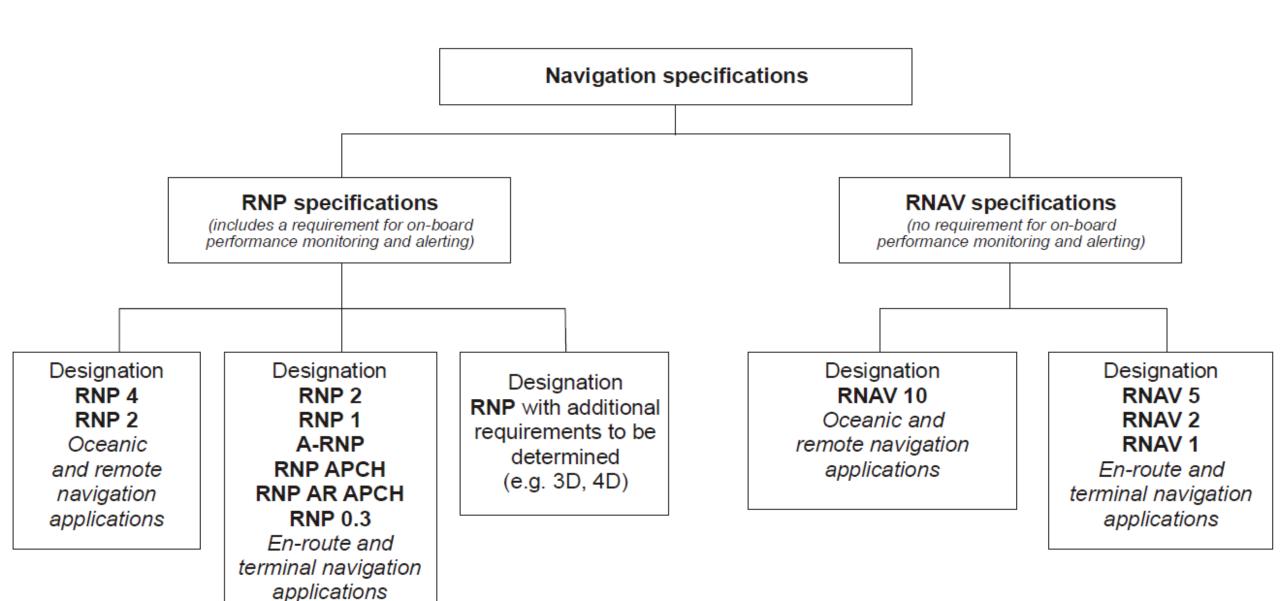

Navigations specifications

NAVIGATION SPECIFICATION

African Flight Procedure Programme (AFPP)



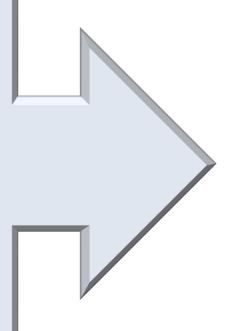
X is the lateral accuracy in NM

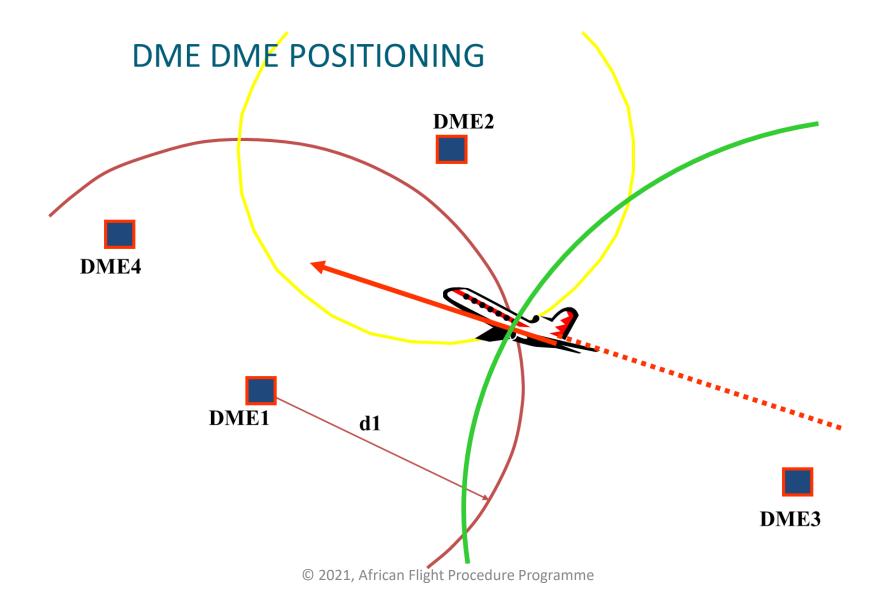

Navspec **not requiring O**n-board **P**erformance **M**onitoring and **A**lerting system

Navspec **requiring** On-board **Performance Monitoring** and **Alerting** system

RNAV: No OPMA alert

OPMA allows the Crew to DETECT that the RNAV/RNP system no longer meets the REQUIRED PERFORMANCE defined in the navigation specification.




Navigation infrastructure

African Flight Procedure Programme (AFPP)

PBN NAVIGATION INFRASTRUCTURE

- ☐Ground-based:
 - **◆**VOR-DME, DME/DME, NDB
- □Space-based:
 - **◆**GNSS
 - Augmented GNSS (ABAS, GBAS, SBAS)
- Self-contained:
 - **◆**INS/IRS

Navigation application

- ☐ PBN application: Use of a PBN navigation specification and a PBN infrastructure on a given area of operation:
 - © Eg: Use of RNP 1 navspec based on GNSS in terminal operation (SID/STAR).
- ☐ Four (04) areas of operation (flight phases):
 - En-route oceanic or remote continental;
 - En-route continental;
 - Terminal;
 - Approach.

Navigation Application

- □ Some Nav Specs can be "applied" in more than one operating environment, for example...
 - **RNAV 5** can be applied on ATS routes in (Continental) En-route airspace or in Terminal airspace beyond 30 NM from the Airport Reference Point (ARP) and above MSA;
 - RNP 2 can be applied on ATS routes in Oceanic/Remote, or in (Continental) En-route airspace;
 - RNAV 2 can be applied on ATS routes in (Continental) En-route, or on STAR or SID segments beyond 30 NM from ARP;
 - **A-RNP** can be applied on ATS routes in (Continental) En-route, or in Terminal Areas on STARs or SIDs;
 - **RNP 1** or **RNAV 1** can be applied on inter-city ATS routes of short distances or in Terminal Areas on STARs or SIDs.

Application by RNAV and RNP

Navigation Application	Navigation specifications				
Navigation Application	RNP	RNAV			
En-route oceanic & remote continental	RNP 4, RNP 2	RNAV 10			
En-route continental	RNP 2, A-RNP, RNP 0.3	RNAV 5, 2, 1			
Terminal	RNP 1, A-RNP, RNP 0.3	RNAV 5, 2, 1			
Approach	RNP APCH, RNP 0.3, A-RNP 0.3, RNP AR				

Navigation Application

RNAV 1 SID

RNAV 10, RNP 4 RNAV 2

RNP 1 STAR

RNP APCH
RNP AR APCH

African Flight Procedure Programme (AFPP)

En-route oceanic & remote continental

PBN APPLICATION		RNP 4		RNP 2	RNAV 10
NAVAID		GNSS		GNSS	GNSS, INS
	Sensor	ОРМА		OPMA	GNSS, INS
NAVDEC	Performance	TSE ≤ 4 NM		TSE ≤ 2 NM	TSE ≤ 10 NM
NAVPEC	Leg type	CF – DF – TF		DF – TF - FRT	-
	Functionality	Offset – FB turn		Offset – FB turn	-
	Surveillance	Non radar		Non radar	Non radar
COMMUN	COMMUNICATION		CPDLC + ADSC	Voice	Voice
	Separation Minima	50 NM	30 NM	Variable	50 NM
	Publication	RNP 4		RNP 2	RNP 10 *

African Flight Procedure Programme (AFPP)

En-route continental

PBN APPLICATION		RNP 2	RNP 0.3	RNAV 5	
NAVAID		See	GNSS	VOR-DME, DME/DME, GNSS, INS/IRS	
	Sensor	Previous slide	ОРМА	VOR-DME, DME/DME, GNSS, INS/IRU	
NAV/DEC	Performance		TSE ≤ 0.3 NM	TSE ≤ 5 NM	
NAVPEC	Leg type		DF - TF	-	
	Functionality		Offset – FB turn	Offset	
	Surveillance		Not dependent	Non radar	Radar
COMMUNICATION			Not dependent	Voice	
Separation Minima			Doc. 4444	Variable	
Publication			-	RNAV 5	

African Flight Procedure Programme (AFPP)

En-route continental

PBN APPLICATION		RNAV 2	RNAV 1	
NAVAID		GNSS, DME/DME, DME/DME/IRU	GNSS, DME/DME, DME/DME/IRU	
	Sensor	GNSS, DME/DME, DME/DME/IRU	GNSS, DME/DME, DME/DME/IRU	
	Performance	TSE ≤ 2 NM	TSE ≤ 1 NM	
NAVPEC	Leg type	IF CF TF DF VA VM VI CA FA FM	IF CF TF DF VA VM VI CA FA FM	
	Functionality	Data base (LOA) – FB turn	Data base (LOA) – FB turn	
Surveillance		Radar	Radar or FOSA	
COMMUNICATION		Voice	Voice	
Separation Minima		Radar (at least 8 NM)	Radar	
Publication		RNAV 2 (Critical DME*)	RNAV 1 (Critical DME*)	

African Flight Procedure Programme (AFPP)

Terminal

PBN APPLICATION		RNAV 2, 1	RNP 1
NAVAID		See	GNSS
	Sensor	previous	OPMA
NAVPEC	Performance		TSE ≤ 1 NM
NAVPEC	Leg type		IF CF TF DF VA VM VI CA FA FM
	Functionality		Data base – FB turn
	Surveillance		Non radar
COMMUNIC	COMMUNICATION		Voice
	Separation Minima		Doc 4444
	Publication		RNP 1

African Flight Procedure Programme (AFPP)

Approach

PBN APPLICATION RNP APCH		RNP APCH	RNP AR	
NAVAID		GNSS	GNSS	
Sensor		OPMA	OPMA	
NAV/DEC	Performance	Final 0.3 NM	From 0.3 à 0.1	
NAVPEC	Leg type	IF TF DF	IF CF TF DF VA VM VI CA FA FM RF	
	Functionality	Data base (LOA) FB turn	Data base (LOA) FB turn VNAV	
	Surveillance	Radar or not	Radar or not	
COMMUN	ICATION	Voice	Voice	
Separation Minima		Doc 4444	Doc 4444	
Publication		RNAV (GNSS) RWY XX or RNP RWY XX	RNAV (RNP) RWY xx or RNP RWY XX (AR)	

NAVIGATION SENSORS

DME/DME

(X)

DME/DME/IRU

VOR/DME

INS/IRS

GNSS

X

X

X

NAV SPECS

RNP 0.3

RNP APCH

RNP AR APCH

RNP (RNAV) 10	X	X			
RNP 4	X				
RNAV 5	X	X	X	X	Χ
RNAV 1 & 2	X		X	X	
RNP 2	X				
A-RNP	X				
RNP 1	X				

UNITING AVIATION

BETWEEN RNAV AND RNP

Review of PBN Theory

DIFFERENCE

What makes RNP different from RNAV?

African Flight Procedure Programme (AFPP)

☐ RNAV

- Use of ground-based NAVAIDs for navigation allowed;
- Cheaper older aircraft (FMS + LNAV);
- More aircraft can meet requirements;
- Easier to implement, but yields less efficient procedures.

☐ RNP

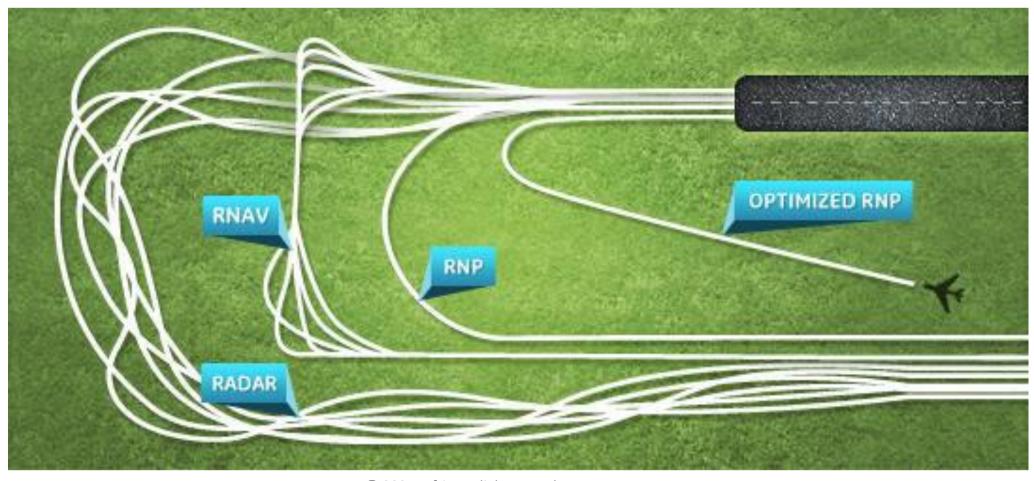
- FMS requires GNSS (FMS + [LNAV/VNAV]);
- Modern, newer airplanes;
- *Less aircraft can meet these more demanding requirements;
- More complex to implement, but yields more efficient procedures.

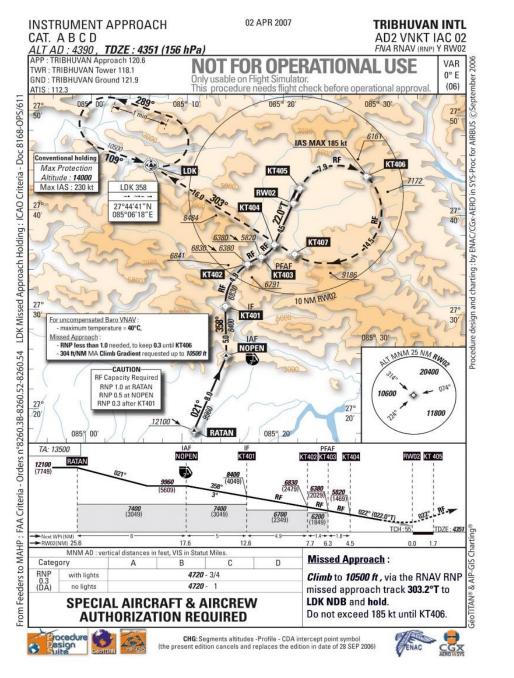
What makes RNP different from RNAV?

- ☐ We can also use the term RNAV to refer to an RNAV System:
 - FMS may use INS or DME/DME or DME/DME/IRU or VOR/DME;
 - No requirement for vertical navigation, and much less functionality.
- ☐ We can also use the term RNP to refer to an RNP System:
 - FMS requires GNSS!!
 - Selectable Performance − 2.0, 1.0, 0.75, 0.3, 0.15 NM;
 - *Vertical Navigation (VNAV) and other functionality like RF legs.

PBN benefits

- PBN:
 - © Clarifies RNP and RNAV operations;
 - Facilitates operational approval process;
 - Improves safety:
 - Reduces CFIT
 - Consistent and predictable flight path
 - Stabilized approach paths
 - Improves operating returns by reducing:
 - Fuel costs;
 - Investment in ground-based system and their maintenance
 - Flight time through direct routes
 - Increases airspace capacity:
 - More efficient direct routes;
 - Reduces airspace conflicts
 - Is environmentally friendly:


PBN benefits


African Flight Procedure Programme (AFPP)

ATC benefits:

- Safety culture
- Greater predictability
- Airspace containement
- Fewer go-arounds
- Less transit occupancy time
- Best practices involving stakeholders in design

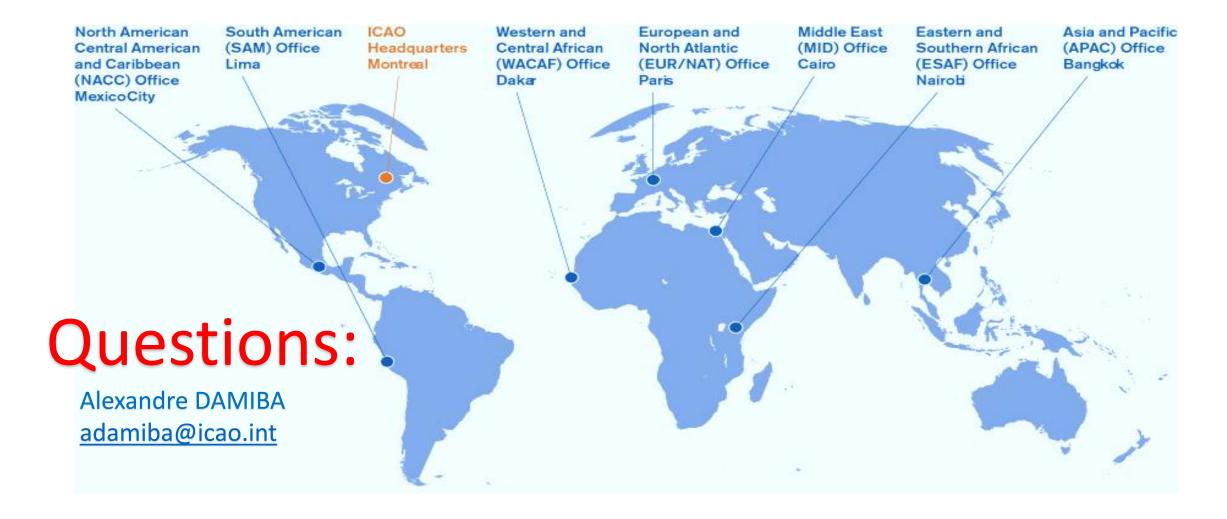
Radar / Conventional vs. PBN

UNITING AVIATION

Review of PBN Theory **SUMMARY**

Summary

- What is PBN about?
 - Area Navigation, Globally Harmonized, Implementing Nav Specs
- Nav Specs and Application / Airspace Concept:
 - All the RNAV and RNP Nav Specs / Nav Application, Nav Spec, Nav Infrastructure
- PBN Terminology
 - Please don't use the abbreviation RNAV for area navigation
- Performance and Functionality
 - Accuracy, Integrity, Continuity and TSE, RNP route structure
- Difference between RNAV and RNP
 - RNP requires On-board Performance Monitoring and Alerting (OPMA) system.


Comprehension Check

- 1. In addition to specifying performance, what else is required by PBN?
 - Functionalities.
- 2. PBN is about moving from "sensor specific" to...
 - Performance based
- 3. What distinguishes RNP Nav Specs from RNAV Nav Specs?
 - RNAV may use ground aids, RNP not! VNAV possible with RNP.
- 4. What is a Nav Spec descriptor?
 - Follows the PBN designator. Specifies the lateral accuracy.
- 5. What are the three PBN components?
 - Navspecs, nav infrastructure, nav application

Comprehension Check

- 6. What is meant by "Navigation Application"?
 - Use of a PBN navigation specification and a PBN infrastructure on a given area of operation.
- 7. Which Nav Specs can be implemented in TMA airspace?
 - RNAV 5, 2, 1, RNP 1, A-RNP, RNP 0.3
- 8. Give one advantage and one disadvantage of RNP.
 - More complex to implement, but yields more efficient procedures.
- 9. Where in the PBN Manual do you find information about PBN Implementation?
 - Volume II.

