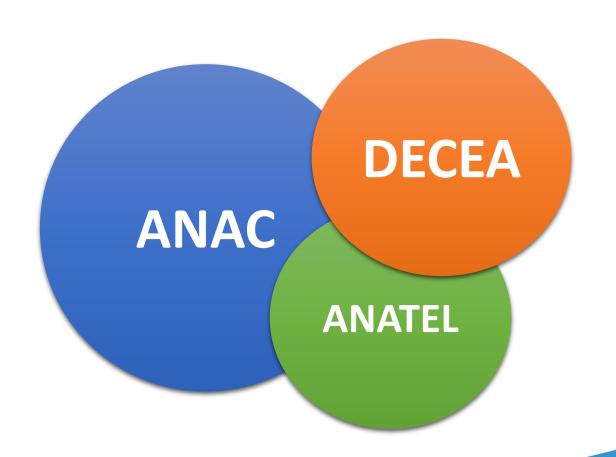


Cybersecurity of UAS: Medium Risk Operations in Brazil

Second Unmanned Aircraft Systems – Remote Piloted Aircraft Systems Implementation/Regulation Workshop (UAS/RPAS/W) for the NAM/CAR/SAM Regions

Agenda

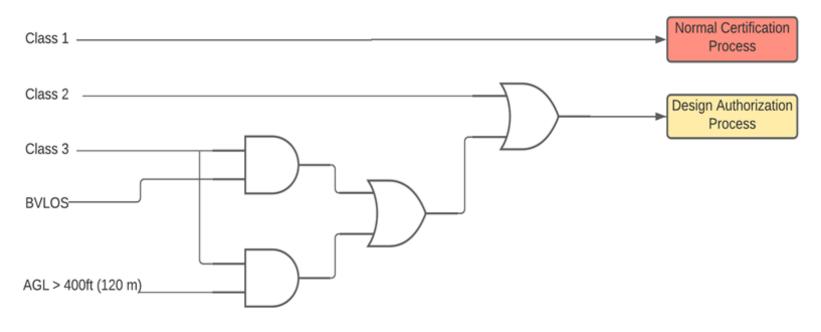
- → Brazilian UAS Regulation
- → Cybersecurity and Safety Concerns
- → Open Problems
- → Conclusions



Brazilian UAS Regulation

- → In 2017 ANAC published the RBAC-E nº 94
- This regulation has established operational rules, airworthiness requirements, pilot licensing, UAS registration criteria, etc.
- → 86,000 drones are registered at the ANAC database, of which 36,000 were reported as commercial (professional uses)

Brazilian UAS Regulation



UAS Airworthiness in Brazil

- → ANAC has divided UAS into 3 groups: Class 1, Class 2, and Class 3
- → Class 1 >= 150 kg;
- → Class 2 above 25 kg and below 150 kg
- → Class 3 above 250 g and below 25 kg
- → There are also distinctions between VLOS and BVLOS, and above or not 400 ft AGL

UAS Airworthiness in Brazil

- → There is no UAS Class 1 certified until now
- → There are nine (9) models approved through the Design Authorization Process

Authorized UAS

Arator 5B / 5C Manufacturer: XMobots (Brazil) Operations: E/VLOS (2 km) up to 2.000 ft AGL or BVLOS (5 km) below 400 ft AGL A5B: Authorized 08JUN2018 A5C: Authorized

07APR2021

eBee Classic/Plus/X
Holder: Santiago&Cintra
(BR)
Manufacturer: Senselfy
(Switzerland)
Authorized operations:
BVLOS (5 km) below 400
ft AGL
EBEEC/EBEEP: 15APR2019
EBEEX: 19JUL2021

Echar 20D

Manufacturer: XMobots
(Brazil)

Authorized operations:
BVLOS (30 km) up to
6,000 ft AMSL

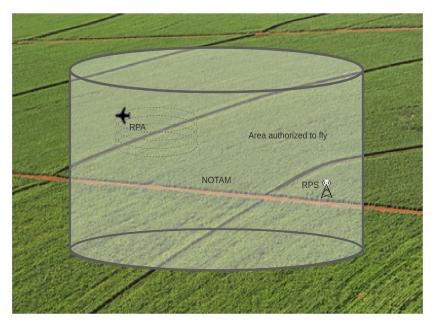
Authorized 10MAR2021

RPAS-112

Manufacturer: Energias
(Brazil)

Authorized operations:

BVLOS (7,2 km) below 400
feet AGL

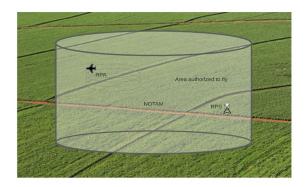

Authorized 10JUN2021

- → For Class 1, certified UAS, we expect to use standards as RTCA DO-326A, DO-355 or DO-356
- → For UAS Class 2, and Class 3 (BVLOS or above 400 ft), Medium Risk, the cybersecurity is addressed through safety assessment analysis which should cover intentional and non-intentional interferences and their effects
- → For UAS Class 3 (VLOS and below 400 ft), Low Risk, there are no airworthiness evaluation. The Cybersecurity is not considered today for those aircraft

- → Cybersecurity is a concept not fully understood by the applicants
- → Extensive use of COTS (Commercial Of-The-Shelf) components
- → UASs are migrating from point-to-point connections to over the Internet
- > Lack of guidance or guidelines focused on UAS cyber

- JARUS (Joint Authorities for Rulemaking on Unmanned Systems)
 https://jarus-rpas.org/
- → SORA (Specific Operations Risk Assessment)
- → SORA objectives:
 - * Avoid fatal injuries to third parties on the ground
 - * Avoid fatal injuries to third parties in the air
 - * Avoid damage to critical infrastructure

- → Cybersecurity analysis needs to achieve the SORA objectives?
- → SORA objectives:
 - * Avoid fatal injuries to third parties on the ground
 - * Avoid fatal injuries to third parties in the air
 - * Avoid damage to critical infrastructure



C-I-A triad

Common Cyber-Threats

- → GPS spoofing
- → DDoS
- → Communication Spoofing
- → GPS Jamming
- → Malware Infection
- → Communication Jamming

Methodology

- → System Architecture Overview
- → ConOps Description
- → Identify the Assets
- → Identify and Rate the Threats
- → Risk Acceptance or Application of Mitigations
- → Life Cycle procedures

Open Problems

- → The airworthiness requirements and operational rules are not harmonized yet
- → There are no guideline or guidance to perform UAS cybersecurity risk assessment
- → We have different ConOps, operational scenarios, manufactures etc. A unique solution to address all cyber cybersecurity concerns seems far from current stage
- Artificial Intelligence (AI) will probably increase the cyberattacks

Open Problems

- → Should we consider cybersecurity of UAS Open Category?
- → Which standards from industry can we use in UAS?
- → Does the operator need some training?
- → UAS ATM will move from voice to data coordination. What is the impact of such change? What are the cyber concerns related with?
- → What will be the impact of UTM, 5G or full automation?

Works

- ANSI, in its Standardization Roadmap for Unmanned Aircraft Systems, states that "Cybersecurity is a critical safety concern that must be addressed in the design, construction, and operation of UAS."
- → ENISA, its document Artificial Intelligence Cybersecurity Challenges Threat Landscape for Artificial Intelligence, calls attention to problems as lack of robustness and vulnerabilities of AI models and algorithms, attacks against Cyber-Physical Systems (as drones and self-drive cars), data manipulation, Distributed DoS attacks, adversarial model interference and manipulation, etc.

Works

- → JARUS WG6 is developing a document do address cyber concerns related to SORA methodology
- The SORA Annex E (Cyber) was available to external consultation in June/21. Currently, the team is on adjudication process of the comments, and It is expected that in the next JARUS plenary the document will be released.

Conclusions

- → Cybersecurity is a hot and challenging topic for UAS
- → CAAs and Standard Organizations have identified the problem but, up to now, we do have a solution that fits to our needs
- → ANAC has not certified UAS under certified category yet. Therefore, today we are not sure if standards like RTCA DO-326A, DO-355 or DO-356 will be enough to address all the concerns of such operation

Conclusions

- → From the Design Authorization Process, medium risk, we realize that for complex ConOps, is missing a guideline/framework to perform the security risk assessment
- Cyber-threats are not so unlikely, specially in urban environments
- → JARUS SORA, and specially Cyber Annex E, are useful to tailor the assessment and requirements
- → We need to develop some studies to pavement the way for more challenging uses of UAS

