Indra

ATM automation and integration

February 2020 Ciudad de México, México

Index

Presentation	1
Automation Systems	2
Automation Development	3
AIDC-NAM Integration	4

ındra

Presentation

- Corporation
- Indra Air
- Solutions and services
- Innovation
- References

Corporation

Indra is one of the leading global technology and consulting companies and the technological partner for core business operations of its customers world-wide. It is a world-leader in providing proprietary solutions in specific segments in Transport and Defence markets, and the leading firm in Digital Transformation Consultancy and Information Technologies in Spain and Latin America through its affiliate Minsait. 1.11111111 1111 1111 1.1.1 11. 111 11 1111 11.11 1.1.1 1111 111 11 11 11 1111 1.1 1111 11111 1.1 -----...... 11<mark>....</mark> 1.1.1

+3.000 M€ In revenues

.....

Countries

R&D

Indra Air Creating Skies Together

+ 4.000

Facilities in over 160 countries Years of Experience in ATM solutions

+100

+ 85%

World passenger travel making use of Indra ATM technology at any time of flight

Key member of SESAR

SESAR1 (2008-2016) Co-lead in "En Route & Approach ATC", & "Airport Systems"

SESAR2020 (2016-2021)

Participation in 25 of the 27 awarded projects Leader in projects: PJ15 (Common Services) & P18 (Trajectory Management)

Solutions y Services

Indra Air Automation

We are your reliable partner in ATM business

Indra Air Communication

We implement Full VoIP Dual Dissimilar VCCS solutions

Indra Air Navigation

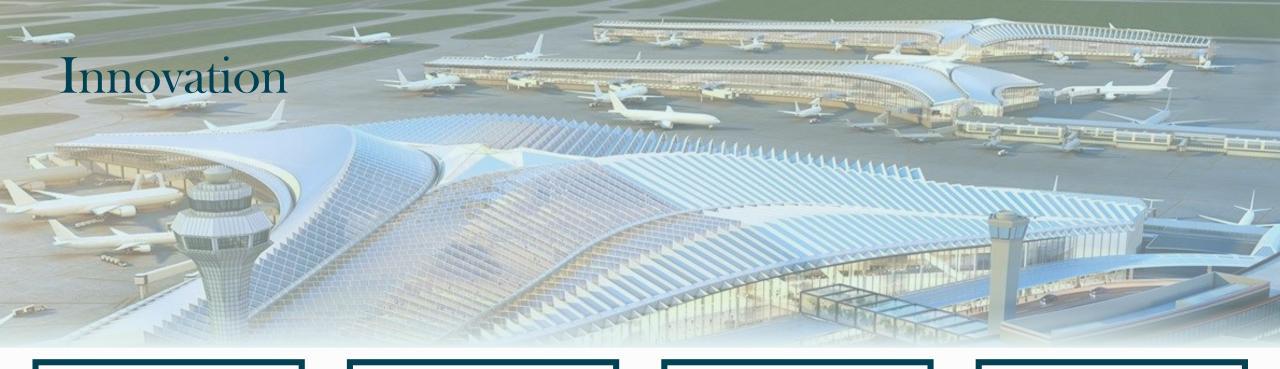
We enable more than 100,000,000 safe landings

Indra Air Surveillance

We have deployed over 400 surveillance systems

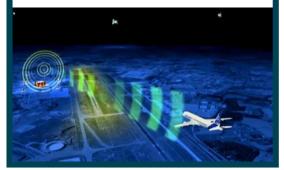
Indra Air Drones

Connecting Drones safely, creating a better airspace



Indra Air Information

We guarantee the right digital Aeronautical information at the right time

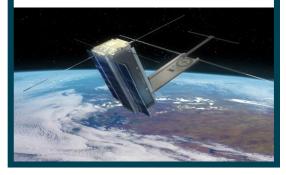


GBAS

Ground Based Augmentation System for safer landings

IRTOS

Digital remote tower system enhanced with AI capabilities


Indra Air Drones

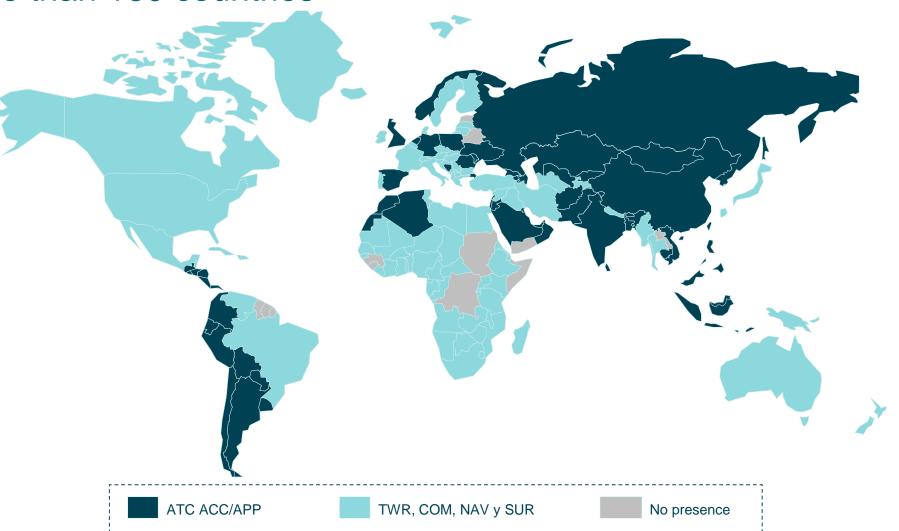
End-to-end drone traffic management platform

Space based CNS

All-in-one CNS system from a satellite constellation

References

Deployments in more than 160 countries


Automation/Simulation 400 deployments

Navigation 2.800 deployments

Surveillance 400 deployments

Communications 550 deployments

Information 100 deployments

ındra

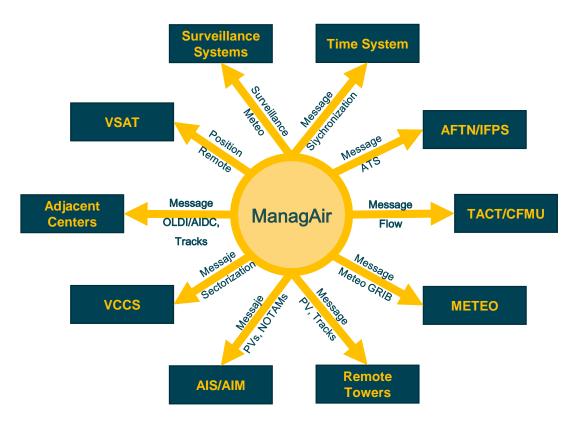
Automation Systems

- ATM Automation system
- Remote towers
- Tower system
- Flow tools
- IFPS
- UTM

2

Mission

- To enhance the safety of the flights by providing ATCOs with information of air movements from Surveillance Sensors such as Radars, ADS-B, Multilateration (WAM/MLAT) and Weather data along with Planning information such as Flight Plans, Airspace availability and Flow Management in order to provide control via Voice or Data Link
- The Indra Solution, the latest Indra ATM solution, is one of the most advanced, safe and reliable Automation air traffic control system and in a continuous evolution path
- It operates in more than 180 ATS units worldwide, integrating the latest & most advanced ATC functionalities


Indra

Hardware + Software

- Flexible and modular architecture
- TCP/IP & UDP communication protocols
- ATM LAN based in standard Ethernet
- Red-Hat Enterprise Linux OS
- Compatible with high-resolution screens (up to 4K)
- Use of commercial database managers (PostgreSQL & MySQL)
- Compiled using high-level languages: ADA & C
- Optimized graphics and HMI
- Contingency and redundancy

External Interfaces

Indra

Sub-systems Index

RDCU	SDP	FDP	SNET
Radar Data Compressor Unit	Surveillance Data Processor	Flight Data Processor	Safety Nets
D/AMAN	CWP	EFS	DLS
Departure and Arrival Manager	Control Working Position	Electronic Flight Strips	Data Link Server
FDS	DAT	DRF	BIL
Flight Data Server	Data Analysis Tool	Data Recording Facility	Billing Facility
	CMD Control & Monitoring Display	DBM Database Manager	

The highlight of the automation functions

4D Trajectory – Based Operations	ATC Tools	AOI – Area of Interest	Concepts: FRA – Free Route Airspace FUA – Flexible Use of Airspace
Strategic Constrains	Silent Coordination	PBN – Performance Based Navigation	Incidence Evaluation Tool
VPW – Vertical Progression Window	GRIB – Meteorological Information	ADS-B Server	Integrated Billing
CDM – Collaborative Decision Making	Multi-sector Planner	Contingency	Cyber-security

Classification and selected references

NINOX

Consortium formed by Indra – Avinor - Kongsberg:

- Developed by Indra and Kongsberg to Avinor
- The largest project in the world that is currently being deployed
- Indra evolves its NOVA 9000 family, control tower automation solution, in the new InNova family, which can also manage remote towers

IRTOS

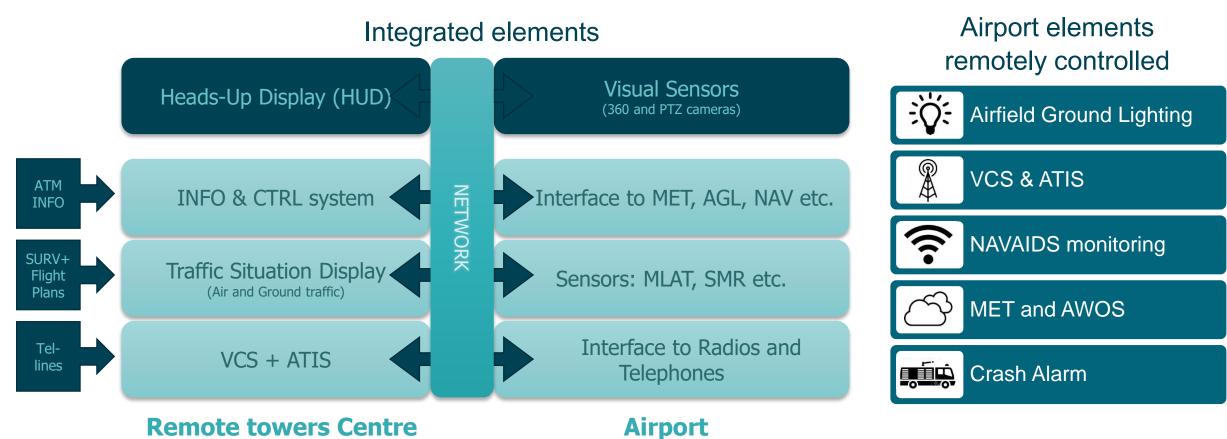
Indra Remote Tower Optical System:

- Developed and updated by a multidisciplinary team of electro-optical specialist and ATM systems engineers
- The IRTOS solution integrates sophisticated image processing algorithms with proven ATM functions
- In 2015, at the Girona airport (Spain), the first IRTOS was developed and validated for SESAR tower contingency tests
- The second generation of IRTOS provides an important performance and functional jump with respect to the previous generation.

Cameras Systems

Wide range of options according to operational needs

- Rotational and/or fixed camera
- Ocular resolution
- Low intervention at the airport
- Panoramic view (360° or less)
- Pan-Tilt-Zoom Camera
- Signal Light Gun
- Adaptive bandwidth according to functionalities


For remote tower use a width between 40 Mbps to 300 Mbps is needed with a 360° panoramic view. Then within the airport there are other solutions such as secondary/provisional tower or provide augmented reality to a tower, where bandwidth is resolved in another way

Elements

Integrated systems

The system allows to integrate the air traffic display (A-SMGCS with ATM function) with the following functions:

- Electronic flight strips
- Automatic taxi routing and guidance
- Control and monitoring of stop bars and taxiway centerline lighting
- Display of meteorological information and statistics, METAR messages
- Departure, pre-departure and arrival sequencing

Integrated Tower Systems offer the following benefits:

- Improved situational awareness with one harmonized HMI for all necessary functionality
- Reduced workload for controllers
- Improved communication and information sharing capabilities
- Increased safety due to the combined safety nets
- In case of remote towers, improved cost-efficiency

Indra

Tower system

Collaborative Tools

By having the right information, better decisions can be made. The same applies to stakeholders involved in airport operations

Our Airport Collaborative Tool provides a presentation of real-time and stored information of aircraft movements and statistics to users of system and other parties, such as airlines, security, fire stations and ground handlers. This allows for better planning, less delays and improved operational efficiency, benefiting all stakeholders, including the passengers.

In addition to the traffic window, the following information is typically presented:

- Time calculations: runway occupancy time, taxi to/from stands and runways, time on stand, de-icing time, departure queue time and arrival waiting time for stand
- Event counts: number of movements for each threshold and for the entire airport
- Cumulative counts: average time spent on stand, taxiway and runway usage

Benefits of collaborative tools:

- More efficient traffic flow, as air traffic controllers are enabled to predict and monitor the flow, delays and possible bottlenecks
- Efficient planning and communication to customers, as key stakeholders get the latest information about the traffic and expected delays
- Improved planning of maintenance by airport operations: tarmac, runway inspection, etc.

Flow tools

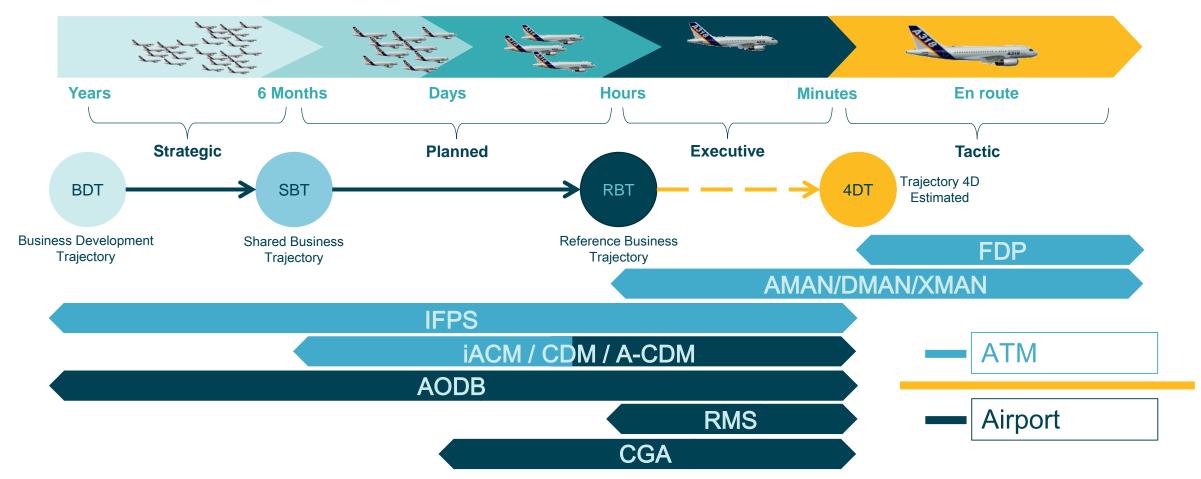
iACM: Indra Airspace Complexity Manager

ICAO & UE promote the adoption of flow management tools as a measure to increase capacity and quality of service

- ICAO ASBUs: Network Operations (NOPS) Thread
- UE Pilot Common Project 4: Network Collaborative Management

Benefits

iACM goes beyond the classic flow tools


- Safety is the first objective
- New objectives related to the perception of society, such a as environmental or accumulated delay, are added

Integrated concept from the planning phase to the tactical phase

- Interactive assessment of situations base on expected traffic
- Assessment of the impact of the application of alternative scenarios

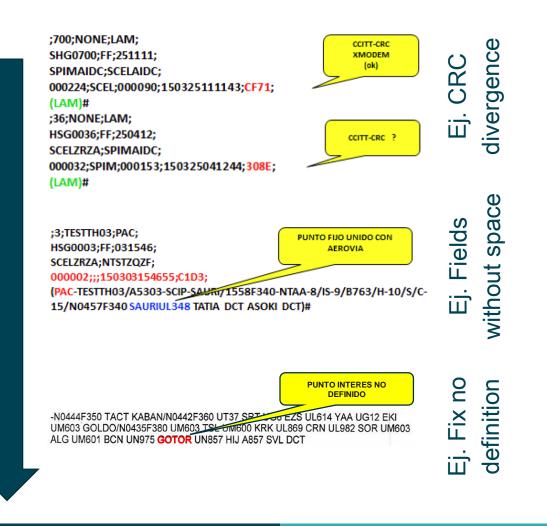
Flow tools

Others ATFM tools

IFPS

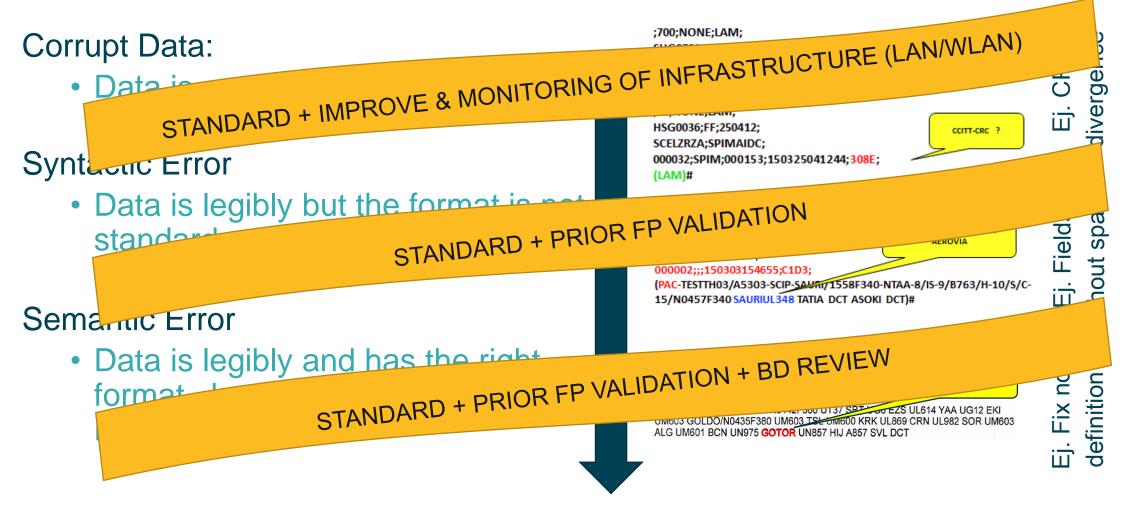
Conflicts detected in the validation of flight plans

Corrupt Data:


• Data is not "legibly" to system

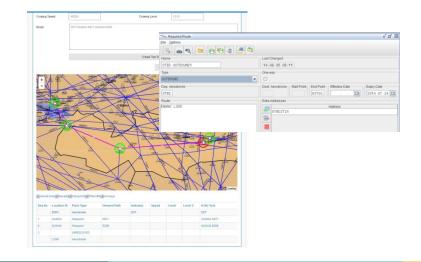
Syntactic Error

 Data is legibly but the format is not standard


Semantic Error

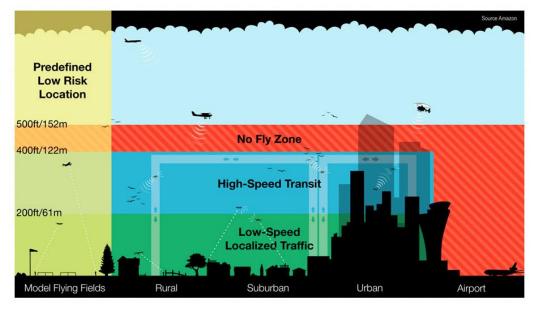
 Data is legibly and has the right format, but any field is out of range

Conflicts detected in the validation of flight plans

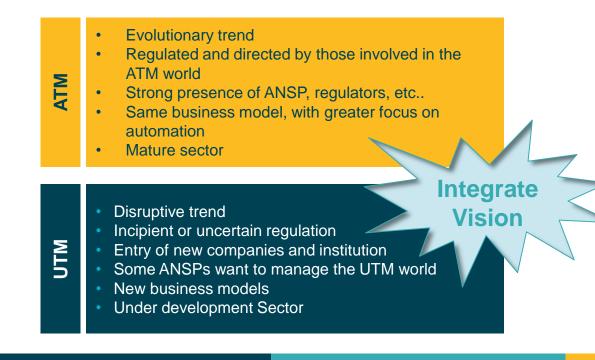


IFPS

IFPS: Advanced flight plan validation


Flight Plan without error

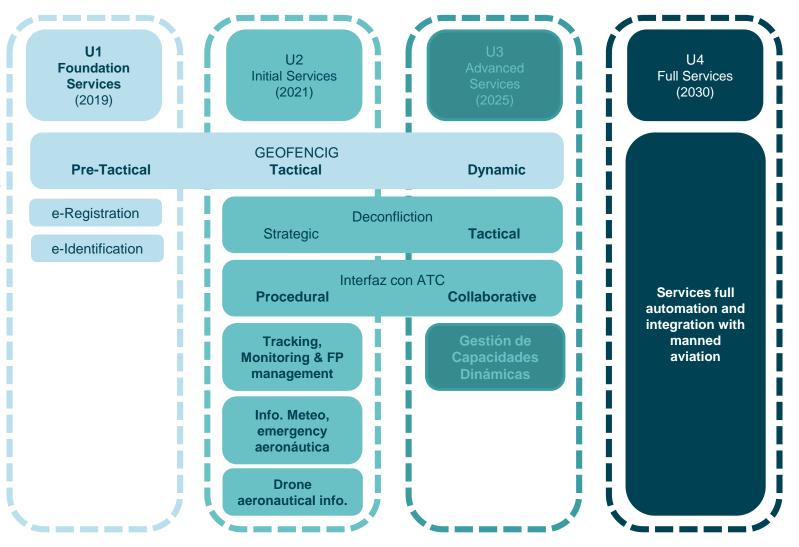
- Centralized BD to ensure the optimization of flight plans
- Approval, forwarding or automatic rejection (configurable) of flight plans and related ATS messages, based on ICAO rules (global and regional eAIP information)
- Operational Response Messages (ORM), designed for advanced flight plan validation:
 - Format and content check
 - ORM are based on EUROCONTROL specifications, eg. IFPS User Manual Edition 18.0 (long/short ACK, REJ, MAN)
 - Configurable response (manual/automatic) based on the originator profile
 - Message forwarding based on address replacement
- Advanced function including:
 - Loading of predefined/preferred routes, national or regional (OACI CAR or SAM)
 - Automatic Check of Element 15 of FPL & CHG message against routes
 - Advanced statistics & monitoring of system
 - Message forwarding based on predefined routes
 - Scalable for regional use through collaboration between countries.
 - Centralize airspace management of different regions
- It is the key to a future airflow management system



The Challenge and our vision

- How to coordinate the operation between UTM & ATM worlds?
- What happens to the UAV business when its airspace is very restricted?
- What to do when a drone invades a forbidden space?

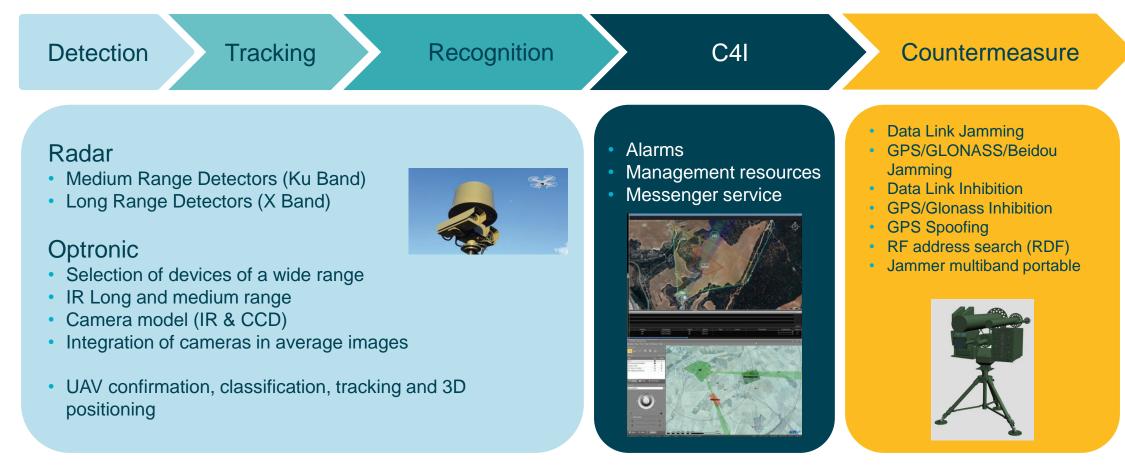
An integrated vision to share the information and thus allow operation of UAVs in controlled airspace (ATM zones)



Roadmap: U Space

U-space is a ser of new services and specific procedures designed to Support safe, efficient and secure access to airspace for large numbers of drones

These services rely on a high level of digitalization and automation of functions, whether they are on board the drone itself, or are part of the ground-based environment.



Our Solution • System core • Provides a layer of **connectivity services** JTM Hub **ATM Systems** • Provides a set of nuclear services that ANSP/CAA coordinate UTM environment guarantying safety Security Forces Security [Ie/Tei Forces **UISS - UTM** Infrastructure **UTM Connect Emergency Teams Services Suppliers** Emergency Teams Enables the connection of UTM • Local Authorities **UDSP - UTM Data** Drones users within UTM environment **Service Providers** • Enables, groups and delivers UTM services to the end user (drones, pilots and operators, Drone ᄊᆑᇔ local authorities) **Operators UTM Added Value** • Different interfaces (mobile apps, -Ò **Pilots Service Suppliers** web, API interfaces...)

Security solution

ARMS Anti RPAS Multisensor System

ındra

Automation development

- Roadmap
 - ASBU OACI
 - SESAR
- iTEC example

Since Aircon to ManagAir

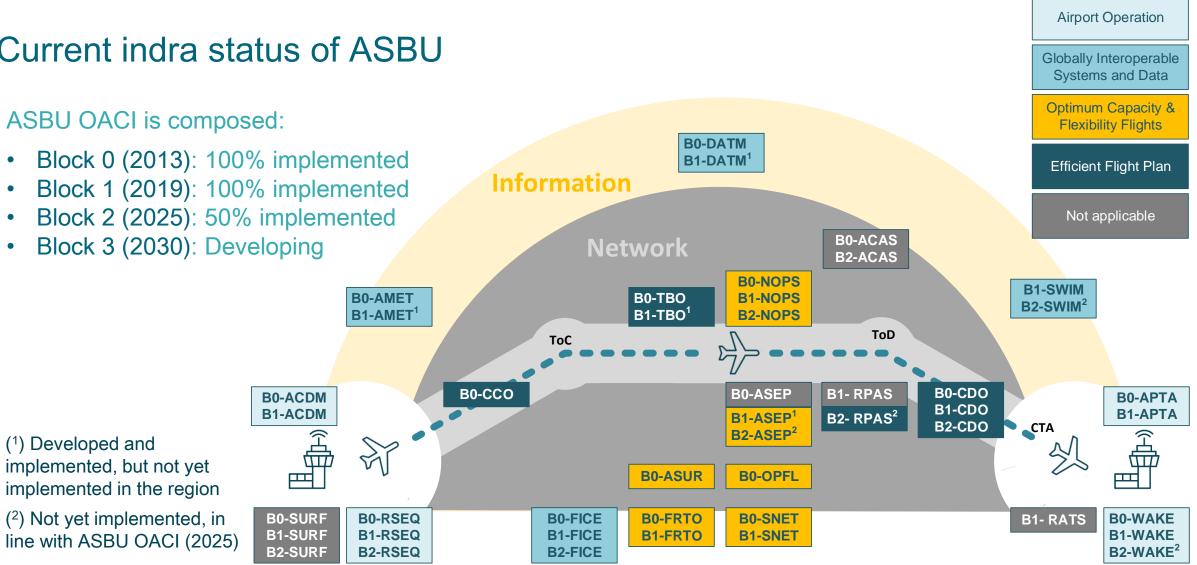
The evolution to managAir is one of the most advanced, safe and reliable solution available today. It is in constant evolution with a roadmap aligned with the standards from ICAO ASBU, SESAR Master plan and NextGen, along with local requirements from every of our customers

ICAO Aviation System Blocks Upgrades (ASBUs)

ICAO 2016-2030 Global Air Navigation Plan (GANP v5)

EUROCONTROL SESAR Master Plan

including SESAR 2020



ASBU OACI

Current indra status of ASBU

ASBU OACI is composed:

- Block 0 (2013): 100% implemented
- Block 1 (2019): 100% implemented
- Block 2 (2025): 50% implemented
- Block 3 (2030): Developing

¿What is SESAR (Single European Sky ATM Research)?

- It is the European Air Traffic management (ATM) modernization program. Basically the current situation has the following problem:
 - Airspace is inefficient by design
 - Airspace capacity is not being maximized
 - Automation levels are limited
 - Lack of harmonization (interoperability, standardization, etc.)
- It combines technological, economic and regulatory aspects within the Single European Sky (SES) policy:
 - Framework (1), Service Provision (2), Airspace (3) and Interoperability (4)
- It implies the synchronization of the plans actions of the different stakeholders and federation of resources for the development and implementation of the required improvements throughout Europe

Objetives

It implies the synchronization of the plans and actions of the different stakeholders and the federation of resources in a performance partnership for the development and implementation of the required improvements throughout Europe

SESAR

SESAR

Indra key member

- Active member of the operational and transversal Work Packages (WPs)
- Indra is part of 124 of the 302 projects
- **97%** of projects submitted have been awarded
- Co-lead WP 12 Airports Systems
- Main technological partner in WPs 8 & 14 -System Wide Information Management (SWIM)
- Technological partner in WPs 13 & 15 Network Information Management & Nonavionics (CNS)
- Co-lidera WP 10 En Route & Approach ATC
- iTEC Advanced System of automation aligned with WP 10

Interoperability Through European Collaboration

SESA

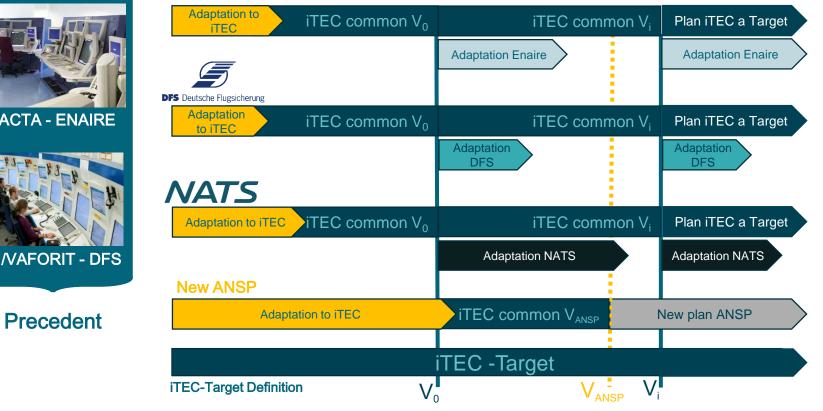
iTEC is an ATM system collaboratively developed by **ENAIRE, DFS, NATS,** (original ANSPs), LVNL, AVINOR, ORO NAVIGACIJA y PANSA and Indra as technological partner and supplier

The objective is to deliver improved operational performance and increased cost efficiency through the introduction of a common:

- Concept of operations based on SESAR, including 4D-trajectory management
- Airspace structure aligned with FABS and based on common airspace types
- System architecture that features improved interoperability via FOs and SWIM
- ATS system with interchangeable ATS components supported by open standards

iTEC ATM Benefits

- \checkmark Increase in capacity by minimizing routine tasks while increasing safety and productivity
- ✓ Interoperability between ATM systems using SESAR data interfaces
- \checkmark Trajectory-based operations reduce flight diversions, flight time, fuel consumption and CO2 emissions



Ejemplo iTEC

History and unification concept

ENAIRe =

SACTA - ENAIRE P1/VAFORIT - DFS

iTEC iTEC Kick-Off: DFS, ENAIRE, NATS, Indra LVNL joins iTEC alliance 1° Version of iTEC ready Signing of the iTEC CWP collaboration agreement. The new CWP generation integrates seamlessly with iTEC iTEC enters into operation in Prestwick (UK) Avinor joins iTEC alliance

2007

2011

2014

2015

2016

2017

iTEC Centre. Automation System (iCAS) goes live in Karlsruhe (DE)

ORO NAVIGACIJA 6 PANSA joins iTEC alliance

AIDC-NAM integration

- Exchange ATS data
- Systems & links
- Analysis & experience

Exchange ATS data

Historical context

As Air Traffic grows, the needs of support systems for the Controllers become more sophisticated, particularly to maintain operational safety. Therefore, the Exchange of information between Controllers to coordinate the responsibility change over an aircraft, which was formerly done by voice, is essential

For this reason, the OLDI (On-Line Data Interchange) messaging protocol is born to respond to the European need to maintain its operational safety under a growing air traffic flow in a complex airspace. The air traffic flow continues to grow and it is required that the messages Exchange be carried out automatically. The OLDI protocol becomes the bases of different initiatives that adopt regional particularities, in this way AIDC (ATS Interfacility Data Communications) is born in ASIA/PACIFICO (ASIA/PAC) region and ICD NAM of common coordination is defined in NORTH AMERICA (NAM) region

Indra

Exchange ATS data

CAR/SAM definition to implement AIDC

The ICD AIDC of ASIA/PACIFIC (ASIA/PAC) region and the "Guide for the implementation of AIDC through the interconnection of adjacent automated centers (AIDC)" publication define the AIDC implementation in the Region. Since 2008 Indra, for its part, begins to work in the region with AIDC ASIA/PAC protocol for each new Project and updating according to customer requirements.

Message	Meaning	Message Class
ABI	Advance Boundary Information	Notification
CPL	Current Flight Plan	
EST	Coordination Estimate	
PAC	Preliminary Activate	
MAC		
CDN Coordination Negotiation		
ACP Acceptance		
REJ Rejection		
TOC Transfer of Control		Control transfer
AOC Acceptance of Control		Control transfer
LAM Logical Acknowledgement Msg		Aplication
LRM Logical Rejection Msg Man		Managment

Message	Meaning	Message Class
EMG	Emergency	
MIS	Miscellaneous	
PCM	Profile Confirmation Message	Miscellaneous
PCA	Profile Confirmation Acceptance	
TRU	Track Update	
ASM	Application Status Monitor	
FAN FANS Application Message		Possible future
FCN FANS Completion Notification		inclusión
ADS	Surveillance ADS-C	
TDM	TDM Track Definition Message	
NAT Organized Track Structure		Specifics regional
		messages

Set of extra messages

ICD NAT y APAC messages

Set of core messages

Set of core messages

Exchange ATS data

Definición NAM de una interfaz de comunicación común (NAM ICD)

Since August 2000 to September 2008, when the *North American (NAM) Common Coordination Interface Control Document (ICD) revision A* appears, the NAM members worked on different draft of this document. Then the next revisions are adding members and messages to the class. At 2015 the revision E is reached. The deployed systems by Indra in CAR Region are Class 3 revision D

Category	Message	Meaning	Class
Pre-takeoff	FPL	Filed Flight Plan	1
coordination (1)	CHG	Change	2
	EST	Estimate	2
	CPL	Current Flight Plan (1)	1
Active flight	CNL	Cancellation (1)	2
coordination	MOD	Modify (2)	2
	ABI	Advance Boundary Information (3)	(5)
General Information (3)	MIS	Miscellaneous	2
	IRQ	Initialization Request	2
Interface	IRS	Initialization Response	2
Management (4)	TRQ	Termination Request	2
	TRS	Termination Response	2
	ASM	Application Status Monitor	2

Category	Message	Meaning	Class
	RTI	Radar Transfer Initiate	3
Padar Handoff (5)	RTU	Radar Track Update	3
Radar Handoff (5)	RLA	Radar Logical ACK	3
	RTA	Radar Transfer Accept	3
	POI	Point Out Initiate	3
Point Out (5)	ΡΟΑ	Point Out Accept	3
	POJ	Point Out Reject	3
Transfor (2)	ТОС	Transfer of Control	(5)
Transfer (3)	AOC	Acceptance of Control	(5)
ACK	LAM	Logical Acknowledgement (1)	1
ACK	LRM	Logical Rejection (3)	2

Note: Diference between Revision D & E, in yellow messages introduced in revision E.

(1) ICAO Doc.4444

(2) New message

(3) PAN ICD

(4) Based on CAATS protocol

(5) Complementary messages are not Class 1, 2 & 3

Systems & links

ICD implemented in the region

The protocols implemented in the Region are:

PAÍS	LOCACION	TIPO	ICD	VERSION
	Tegucigalpa (HN)	Ope/Sim	NAM AIDC	Class 3 rev.D ASIA/PAC V3.0
	llopango (SV)	Backup	AIDC	ASIA/PAC V3.0
	Comalapa (SV)	Ope/Sim	NAM AIDC	Class 3 rev.D ASIA/PAC V3.0
	Managua (NI)	Ope/Sim	NAM AIDC	Class 3 rev.D ASIA/PAC V3.0
COCESNA	La Aurora (GT)	Ope/Sim/Cont	NAM AIDC	Class 3 rev.D ASIA/PAC V3.0
	Mundo maya (GT)	Ope/Sim	AIDC	ASIA/PAC V3.0
	San Pedro Sula (HN)	Ope/Sim	AIDC	ASIA/PAC V3.0
	Belice (BZ)	Ope/Sim/Cont	NAM AIDC	Class 3 rev.D ASIA/PAC V3.0
	San José (CR)	Ope/Sim/Cont.	NAM AIDC	Class 3 rev.D ASIA/PAC V3.0
BAHAMAS	Nassau	Ope	AIDC	ASIA/PAC V3.0
PANAMÁ	Panamá	Sim/Cont	AIDC	ASIA/PAC V3.0

Note: there are NAM interfaces thay operate as Class 1

PAÍS	LOCACION	TIPO	ICD	VERSION
	Bogota	ACC/APP	AIDC	ASIA/PAC V3.0
	Barranquilla	ACC/APP	AIDC	ASIA/PAC V3.0
COLOMBIA	Rio Negro	APP	AIDC	ASIA/PAC V3.0
	Cali	APP	AIDC	ASIA/PAC V3.0
	Villavicencio	APP	AIDC	ASIA/PAC V3.0
	Guayaquil	ACC/APP	AIDC	ASIA/PAC V3.0
ECUADOR	Quito	APP	AIDC	ASIA/PAC V3.0
ECUADOR	Manta	APP	AIDC	ASIA/PAC V3.0
	Shell	APP	AIDC	ASIA/PAC V3.0
PERÚ	Lima	ACC/APP	AIDC	ASIA/PAC V3.0
	Ezeiza	ACC/APP	AIDC	ASIA/PAC V3.0
	Cordoba	ACC/APP	AIDC	ASIA/PAC V3.0
ARGENTINA	Mendoza	ACC/APP	AIDC	ASIA/PAC V3.0
ARGENTINA	Resistencia	ACC/APP	AIDC	ASIA/PAC V3.0
	Comodoro	ACC/APP	AIDC	ASIA/PAC V3.0
	Aeroparque	APP	AIDC	ASIA/PAC V3.0
	Iquique	ACC/APP	AIDC	ASIA/PAC V3.0
	Antofagasta	APP	AIDC	ASIA/PAC V3.0
CHILE	Concepción	APP	AIDC	ASIA/PAC V3.0
CHILE	Temuco	APP	AIDC	ASIA/PAC V3.0
	Puerto Montt	ACC/APP	AIDC	ASIA/PAC V3.0
	Punta Arenas	ACC/APP	AIDC	ASIA/PAC V3.0
URUGUAY	Carrasco	ACC/APP	AIDC	ASIA/PAC V3.0
PARAGUAY	Asunción	ACC/APP	N/A	N/A

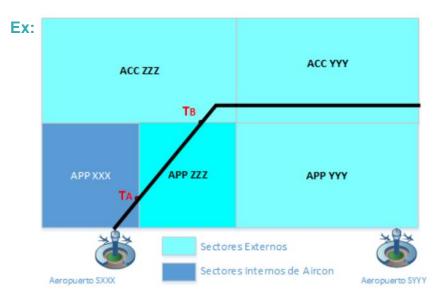
Note: Paraguay is not updated

Analysis & experience

Problems according to our experience

Rejection of Messages: The messages have a clear definition, according to the standard, but situations are not standardized when connecting to other systems (non-standard) or there are different sources generate the same message

Understanding of optional/mandatory: Within the messages there are fields declared as Optional or Mandatory, as there are multiple existing formats of use for the same fields (ex: Lat./long or fix). The system must be able to accept these particularities


Parametrization and requirements definition: Define according to criteria and standards, know the reality of the cases before designing and parameterizing

Other external factors:

- Connectivity between centers and systems
- Previous protocols and agreements
- Continuous training

Ex: Divergent CRC Ex: Badly written fields Ex: ADEXP vs ICAO format Ex: Duplicate messages

Ex: The PAC message may include field 15 (optional)

Indra

Contact: Rodrigo San Martin rasan@indracompany.com ATM Internacional Av.Isidora Goyenechea 2800, Piso 12 Las Condes – Santiago Chile +56 2 2810 3600

Santiago