

Air ground datalink implementation issues and lessons learned

European experience stemming from Link 2000+ Programme

> David Isaac EUROCONTROL Datalink Central Reporting Office 19th April 2016

We All Have

Datalink Implementation in Europe: Issues

Deadlines not being met

Lack of planning information

Long lead times for fixes

What's installed on the aircraft?

ANSPs and many AU's not ready on time

Problems only found in live environment

Ambiguity in standards

Frequency Congestion

Provider Aborts

Last mover advantage

Lack of data from aircraft

Performance monitoring with a shared frequency

Competitors need to cooperate

Testing against a moving baseline

Technical Issues

Organisational Issues

Scheduling Issues

Technical Issues

Technical Problems and lack of validation of technical solutions

- Provider Aborts
- Congestion of VDL channel
- Various system issues (avionics, network and ground system)

Difficulty in testing

- Many problems not found until in the live environment
- Difficult to obtain data from aircraft in service
- Moving baseline in service... difficult to isolate improvements
- Need to know aircraft avionics configuration to test in-service performance

Some ambiguity in standards

- Complex standards, many levels, many options, some aspects deliberately left unspecified
- Different system behaviours (different interpretations / implementations)
- Incomplete / lack of end-to-end validation of standards

Organisational issues

Lack of overall system authority / integrator

- No testing oversight / control / plan
- Disjointed decisions / no decision

Competitors need to cooperate

- Sharing data can be difficult
- May have conflicting interests
- Difficult to monitor individual ACSP performance with shared frequency

Scheduling Issues

Late implementation by many ANSPs and airspace users

- Many ANSPs failed to meet their obligations under the regulation (e.g. unrealistic reporting / plans)
- Airspace users were also late in equipping their aircraft

Avionics

- Most deployed avionics are not mature
- Long lead times to develop and deploy updates

Motivation to implement

- Lack of commitment to implement, despite Regulation
- Limited perceived operational/performance benefits
- Perceived last mover advantage (some AOs are apparently waiting)

Lessons learned... from Sept 2012

Synchronized commitment & investment are essential ANSPs & Airspace users Different needs, expectations & ROI

Bring together OPS, Tech, Safety & Finance from the start

Get the regulation & standards on the tablePublicise, reach business aviation etc.Stability – make up your mind and stick to it.

Some stakeholders will wait until the last moment Benefit driven – YES but ... Money and legal power needed

Lessons learnt

- Regulation alone doesn't make it happen it needs to be enforced and managed
- Regulation driven implementation leads to a culture of achieving the dates/obligations of the regulation rather than admitting the system isn't ready
- Regulation should be accompanied by incentives (positive and negative)
- Shouldn't grant exemptions too widely or too quickly can stifle the market for third party solutions.
- Once the deadline is missed it's difficult to get it back on track AOs reluctant to invest further until system is proven to work.
- System integration not good enough no clear owner/authority of the system overall – need of end-to-end validation.
- Testing approach has not been good enough to identify problems early.
- ACSP performance is critical and difficult to manage lack of competition doesn't help.
- Certification of avionics does not mean they will perform well in service.

Lessons learnt... on a more positive note

- The certainty of the regulation did stimulate avionics manufacturers to commit to full scale development / manufacturing
- Pioneer phase was successful... many participants and identified problems early

EASA report: Technical issues in the implementation of Regulation

- PA: Combination of different factors:
 - Use of a single frequency for Common Signaling Channel (CSC) and data.
 - Concurrency of AOC and ATN traffics over this single frequency channel.
 - The VGS networks are mainly driven by AOC needs, leading to a saturated and non optimised VGS network or en-route (over FL 285) purposes.
 - The resulting RF complex environment (where there are many VGSs in view) introduces some unexpected demands on the VGS handover logic at airborne level.
 - Increase of the Radio Frequency congestion leading to delays in data transmissions or disconnections.
- Recommended:
 - Action on the ground infrastructure
 - Assessment of the RF and Management of the hot spots
 - AOC versus ATN traffic and A/G CMM services: Distributed or Centralised
 - Avionics / Ground end systems (incl. Multi-frequency)
 - ACSP performance monitoring
 - CM/CPDLC interop. Robustness testing
 - Perform further investigations (Cf. SJU/ELSA study)
- Hence European Commission amended the regulation (cf. 2015/310) that "suspend" the timing and tasked SJU that initiated the ELSA study.

Current SJU datalink activities

The "VDL2 capacity study" (Completed)

<u>Objective:</u> Identification of the **limits of the operational performance of VDL2** in terms of the VHF channel physical limitations and its operational usage for ATS purposes.

<u>Timeline:</u> June 2014- July 2015 (completed - <u>http://www.sesarju.eu/newsroom/all-news/sesar-study-confirms-need-for-next-generation-datalink-technology</u>)

The ELSA study: (Ongoing)

Objectives:

Collection and analysis of data from avionics and ground-systems to **identify the issues** affecting the end-toend performance of the VDL2 Datalink;

Modelling and analysis of the **options for multi-frequency VDL2** deployment, in particular the options for channel use, frequency assignment, network topology and network management;

VDL2 protocol optimization in support of both ATN and AOC communications (through RF Level Modelling and Testing)

Timeline: Feb 2015- Jun2016

SESAR2020 VLD on VDL2

Objectives:

Build confidence on the solution developed by ELSA

Timeline: Q3/Q4 2016→ TBD

- Datalink deployment shall continue.
- Technical problems shall be fixed
- New legal framework?
- Next steps addressed by the European Commission

Questions?

