

Airport Environmental Management – An Overview

ICAO Environment Seminar 1-2 April 2014 Mexico City, Mexico

Jaime Chema Navarro GAP

Airport Environmental Management

- 1. Noise
- 2. Local Air Quality
- 3. Greenhouse Gas Emissions
- 4. Water
- 5. Solid Waste
- 6. Other Issues

1 Noise - Overview

Aircraft Noise Management

 Reducing actual noise levels using aircraft modernization and flight track management

Land Use Planning

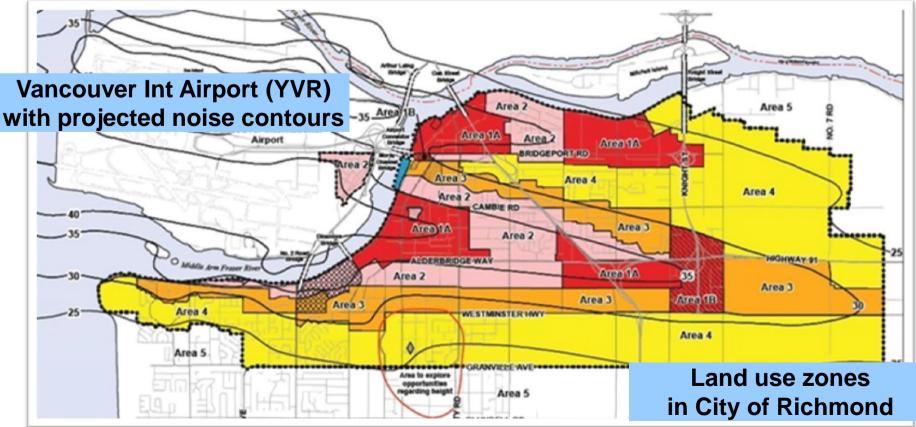
- Reducing the number of people subject to high noise levels
- **Community and Communications**
 - Improving community understanding, attitudes and acceptance of airport activity

1 Noise

Managing noise

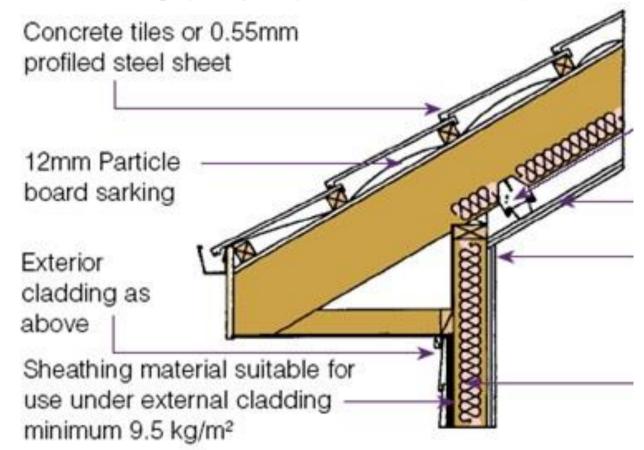
- Runway use
- Tracks to avoid urban areas
- Modern aircraft
 fleet

(Schiphol AMS)



1 Noise - Land Use Planning

- Local government authorities zone the land.
- Need to avoid residences, schools and hospitals in noise affected areas.



1 Noise - Land Use Planning

Sound insulation and ventilation of existing and new housing (only a partial solution)

1 Noise - Community and Communications

- Informing and interacting with communities
- Airport website
- Managing complaints and noise forums
- Focus on Sustainability elements Impacts and Benefits on Environment, Society and Economics
- Noise-tracking web sites
- Clear, transparent and up to date information

1 Noise Tracking Websites

WebTrak

Airports are increasingly realizing that community engagement is more and more important to the operations of the airport. The growing challenge is how to manage this continuous engagement to realize the best results for both the general public and the airport.

Lochard has launched the first in a series of low-risk subscription services aimed at improving and maintaining valuable dialogue with the airport's external stakeholders. This takes the pressure off your operations team and eases the pressure for your management team.

WebTrak provides live aircraft movements. It

gives the community access to flight and noise data and reduces the need and time for airport employees to explain where aircraft actually fly, how often, who they are and where they go.

Read more...

Stansted

200 Hites (CA19)

2015 Without the NPR - Summer Weekday Day Monday to Friday 6.00am - 6.00pm

J

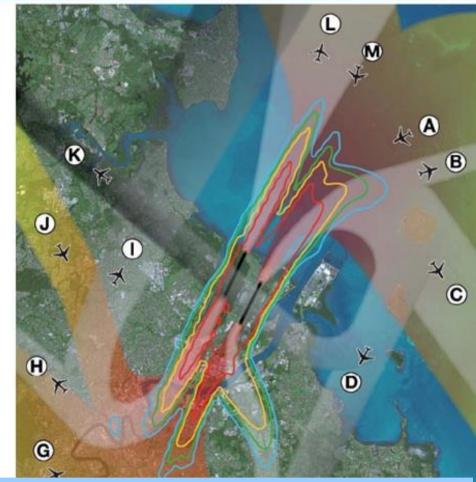
H_K

N

* A + B

C

ights arflight orflichts


M

D

+

2015 With the NPR -

Summer Weekday Day Monday to Filday 6.00am – 6.00pm

tion: Graphics to demonstrate the expected vers with and without the construction of a parallel runway at Brisbane (BNE)

. 0	~	-U	X			
X	G	*	6		ormatio	
Also adiri Inqu	Average number of jet flights on flight path	Expected minimum and maximum numbers of jet flights on path	Percentage of Brisbone Algorith Islai jet flighte on Daffi		Arrivala	new pa
ertval	60	0 - 133	16%	27%	Mean Altitude	overlights of 70dB(A)
		0+2	<1%	25%	4,500 ft	and above during the
Separture	7	0-13	2%	25%		indicated time period
eparture	69	0-110	2% 16%	25%		
Separture	66 46	0 - 122	16%	27%	0.0	- 6 to 9 countights
far Nal		0+108	12%	30%	- 01	- 10 to 19 overflight
latival.	28	0 • 177	8%	25%	Departures	- 20 to 40 evention
Separture	. 9	0 - 19	2%	27%	Mean Alitude	60 at mine
Separture SetMal	21 23	0-47	6% 6%	27%	12,000 ft	evantights
	23	0 - 53		25%	12,000 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1
Separture Virtival	3	0.6	1%	25%		
withat	1	0.2	<1%	28%		

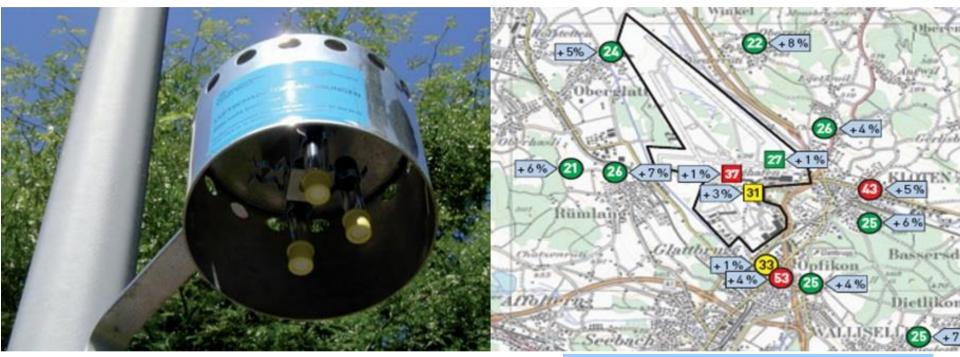
		Right path	on just	path	Contraction (see)	Arrivals	The number of			
A	Antval	57	0 - 135	15%	22%	Mean Altitude	overlights of 70dB/A			
8	Departure	11	0 - 22	3%	7%	4,500 ft	and above during the indicated time period			
C	Departure	7	0-13	2%	9%		indicated ante partic			
D	Departure	64	0-110	17%	7%		- E to 0 overfight			
E	Departure	53	0 - 125	14%	22%	0.0				
F	Antval	62	0 - 126	17%	23%					
G	Antval	7	0 - 69	2%	23%	Departures	20 to 49 overfit			
н	Departure	7	0 - 17	2%	23%	Mean Altitude	50 ermere			
1	Departure	18	0 - 46	6%	23%	12,000 ft	osurflights			
J	Antval	22	0 - 53	6%	27%					
ĸ	Departure	5	0+10	195	8.96					

2 Local Air Quality (LAQ) - Overview

- **Regulations/Guidance**
 - Permitted air quality pollutant levels
- Inventory
 - Identify sources and quantities of emissions
- LAQ Assessment
 - Monitoring pollutant concentrations
 - Modelling dispersion source to receptor
- **Mitigation of Sources**
 - Actions to reduce emissions

2 LAQ – Regional Regulation

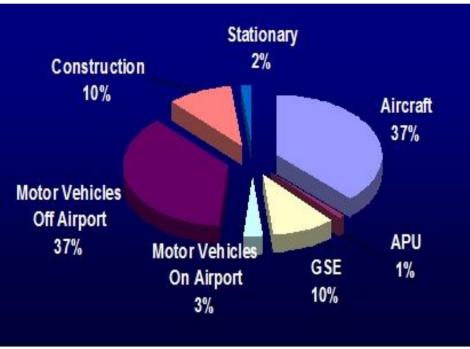
Example limits on local pollutant concentrations – µg/m3

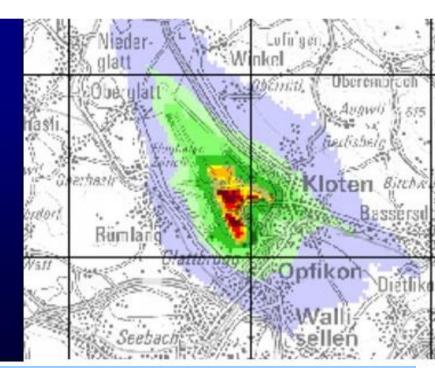

	SO ₂		NO ₂		СО		PM10	
	1 hr	1 yr	1 hr	1yr	1 hr	8 hr	1 d	1 yr
WHO	125	-	200	40	30	10	-	-
EU	350	20	200	40	-	10	50	40
Australia	520	50	220	50	-	10	50	-
Brazil	-	90	320	100	40	10	150	-
Canada	900	60	400	100	35	15	-	-

2 LAQ – Assessment - Measurement for Compliance

Monitoring (measuring) pollutant concentrations Compliance with regulated limits

Red = points of non-compliance





2 LAQ – Modelling and Source Apportionment

Modelling (calculating) pollutant concentrations

- Inventory of emissions sources
- Calculating physical and chemical dispersion
- Source apportionment

Inventory of NOx Emissions

Calculated NOx Concentrations (ZRH)

2 LAQ Mitigation – Reducing Emissions

Providing fixed electrical power (400Hz) and preconditioned air to aircraft at terminal gates replaces APU usage and allows engine switch-off.

2 LAQ Mitigation – Reducing Emissions

Automated metro line between terminals and train station replaces shuttle buses for 140 000 PAX per day. Reduction of 2500 t CO2 and 15 t NOx per year. (Paris CDG)

2 LAQ Mitigation – Reducing Emissions

- **Ground vehicle fleet replacement CNG, SULEV, Hybrid and Electric vehicles.**
- Rapid recharge station for Electric Vehicles (DFW Dallas Fort Worth)

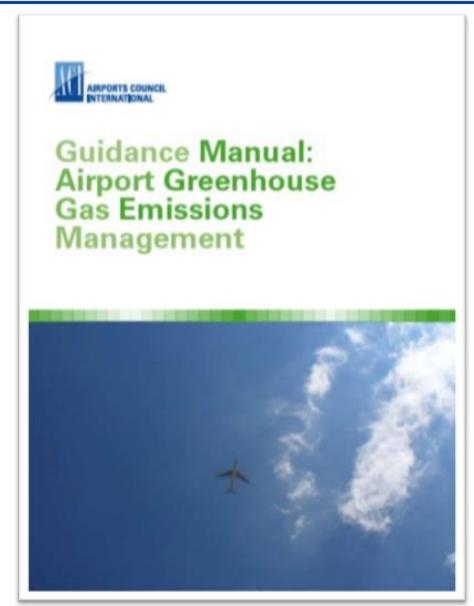
3 Greenhouse Gas Emissions Management

ACI Guidance Manual ACERT Inventory Tool

Airport Carbon Accreditation

- Certification of achievements

More detail will be provided in the ICAO State Action Plan Workshop tomorrow.



3 GHG Guidance Manual

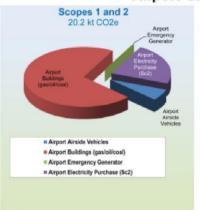
- Emissions Categories
 Scopes 1, 2, and 3
- Inventory
- Goal Setting
- Reducing emissions
- Carbon Neutrality
- Reporting and Certification

Also ES and FR www.aci.aero

314 047

3 GHG Inventory

ACERT v2.0


Do-It-Yourself Airport Emissions Inventory Tool Developed by ACI and Transport Canada Free, no expertise

required

Email: acert@aci.aero

Airport Carbon and Emissions Reporting Tool ACERT Aimont Seattle-Tacoma International Aimort Country United States

Airport:	Seattle-Taco	oma International Airport	Gountry:	United State	35		Aircraft mymts:	314,947
Report Date:	18/6/2012		Ems Factor:	31.3	g CO2/kWh		Passengers:	32,819,796
					Greenhou	se Gases	(t)	
Entity	Source		Scope	CO2	CH4	N ₂ O	CO3e	CO28 %
Airport Operator	Airport	Airside Vehicles	1	1,212	0.25	0.10	1,249	0.29
	Airport	Buildings (gas/oil/coal)	1	14,421	0.26	0.03	14,435	2.49
	Airport	Emergency Generator	1	16	0.00	0.00	17	0.0%
	Airport	Electricity Purchase	2	4,537		-	4,537	0.89
	10			Airpor	rt Operator	Sub-total	20,238	3.49
		Aircraft (LTO & taxi)	3	307,489	9.66	27.82	316,316	53.79
	Tenant	Aircraft APU	3	42,149	1.32	3.81	43,359	7.49
Tenants	Tenant	Aircraft Engine Run-ups	3	456	0.01	0.04	469	0.19
(including	Tenant	Aircraft De-icing	3	0			0	0.05
airlines,	Tenant	Airside Vehicles	3	8,947	1.73	0.74	9,211	1.65
government,	Tenant	Buildings (gas/oil/coal)	3	2,827	0.03	0.03	2,837	0.5%
shops etc.) and	Tenant	Electricity Purchase	3	-				
Employees	Tenant	Fire Training	3	48	0.08	0.39	170	0.05
	Tenant	Landside Vehicles	3	48,411	17.22	4.04	50,024	8.5%
	Airport	Employee Vehicles	3	3,142	1.14	0.26	3,246	0.69
	10				Tenant	Sub-total	425,634	72.29
Public	Ground	Cars, taxi	3	126,643	40.71	10.57	130,776	22.25
(including	Access	Bus, shuttles	3	12,181	1.05	0.99	12,510	2.19
Passengers)	Vehicles	Rail	3	22			22	0.05
						Sub-total	143,308	24.39
TOTAL	Total emissions (tonne)			572,502	73.47	48.82	589,180	
Summary	t CO _{2e}	CO2+ %	Total CO _{2s} Emissions (t)			589,180	1009	
Airport Scope 1	15,701	2.66%	The aircra	ft emissions	calculations	were base	d on generic aire	raft data.
Airport Scope 2	4,537	0.77%	The lands	side traffic calculations were based on estimated traffic data.				lic data.
Airport Scope 3	568,942	96.57%					(* Data for illu	stration only

Airport GHG Inventory

SEA

2011

Alexand manh

THANKS

ACERT was initially developed by Transport Canada and its consultant EBA with the Canadian Airports Council. A global version was developed with the further assistance of Zurich Airport and Toronto Pearson Airport.

eba

3 GHG - Airport Carbon Accreditation

- Carbon management standard designed for the airport industry. Level 1: Mapping
- Inventory of airport emissions
- Level 2: <u>Reduction</u>
- Mitigation of airport-owned emissions
- Level 3: Optimisation
- Involving stakeholders in emissions reduction
- Level 3+: <u>Neutrality</u>
- Offsetting residual airport emissions

www.airportcarbonaccreditation.org

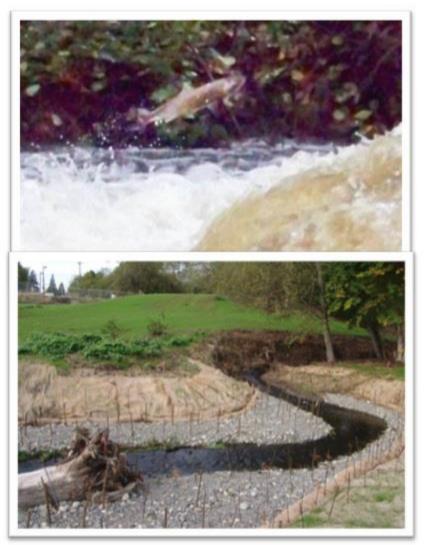
3 Airport Carbon Accreditation

- Launched by ACI Europe in 2009
- Also available in Asia-Pacific and Africa regions
- ACERT v2.0 approved for Airport Carbon Accreditation Level 1 (Mapping) and Level 2 (Reduction)
- Independently administered



22

4 Water - Use - Triple supply system at Hong Kong (HKG)



4 Water – Storm Water Management – SeaTac (SEA)

- Capture
- Storage
- Treatment
- Outflow control

5 Waste Management

Identifying waste streams

- Terminal, deplaned, office, maintenance
- Hazardous materials Reducing waste production
- Awareness

5 Waste Management

Waste Hierarchy Reuse Recycling

 Paper, cardboard, aluminium, composting

6 Other Environmental Matters

Planning and Development

- Wildlife and habitat
- Historical and archeological issues
- **Emergency Planning and Response**
 - Hazardous Materials
 - Spill Management
 - Soil and water contamination
- **Proactive Environmental Initiatives**
 - Operating and life-cycle costs
 - Occupational Health and Safety

Gracias Thanks

Jaime Chema Navarro jchema@aeropuertosgap.com.mx

Also contact Xavier Oh, ACI, Montreal xoh@aci.aero