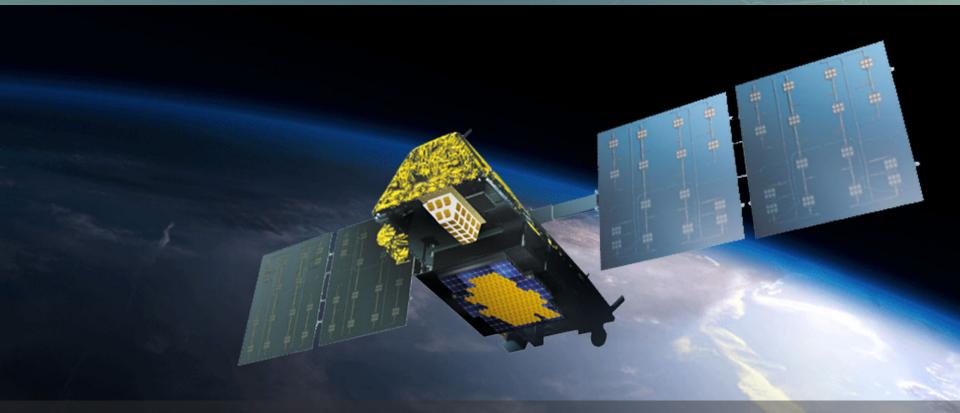
ΝΛΥ СΛΝΛΟΛ

SERVING A WORLD IN MOTION

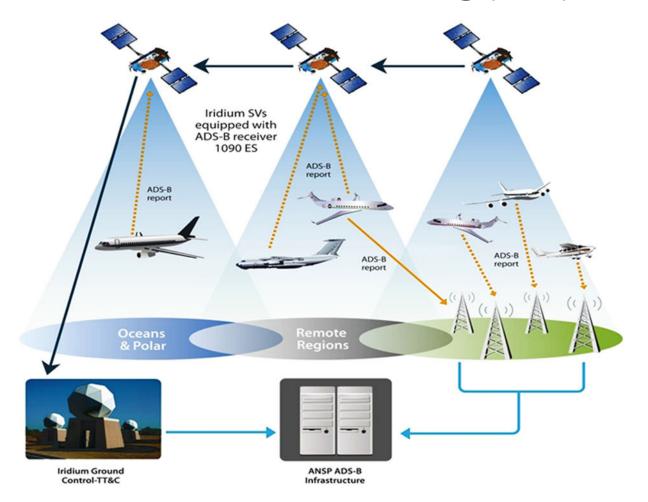
Satellite Based ADS-B NAV CANADA

March 2014


NAV CANADA SERVING A WORLD IN MOTION

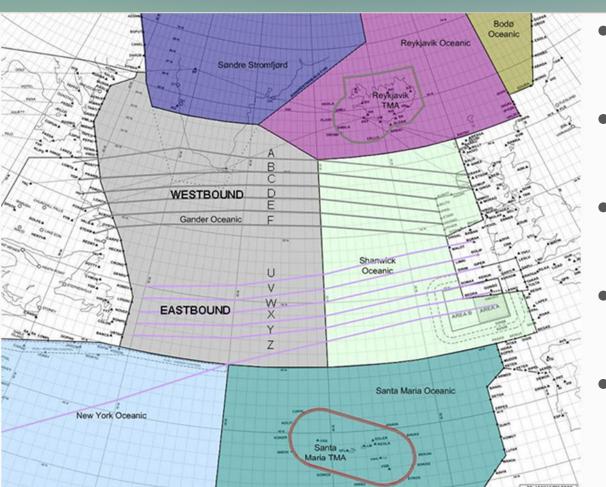
Outline

- Aireon Global ADS-B via LEO satellites
- Why the initial focus on the North Atlantic?
- Benefits Assessment
- Work Underway and Moving Forward
 - Frequency Spectrum



Goal

To reduce aircraft separation minima through ADS-B (out) via global Low Earth Orbiting (LEO) satellites



Aireon ADS-B via Low Earth Orbiting (LEO) Satellites

Focus on North Atlantic Oceanic Airspace

- Organized Track
 Structure NAT OTS
- Eastbound Tracks take advantage of tail winds
- Westbound Tracks avoid head winds
- Procedural Airspace = large distances
- Changes to flight levels, routes, speed by exception

Gander/Shanwick Airspace Today

- 1,000 flights per day (1,300 peak summer day)
- **350,000** commercial flights per year
- +23,000 military & GA flights per year

- 90% of the flights are already
 ADS-B equipped
- **78%** of flights are Data Link (FANS 1/A) equipped
- 80% are capable and use Controller Pilot Data Link Communications (CPDLC)

Aireon ADS-B System Benefits Safety

- ADS-B provides near real time aircraft surveillance
- Improves situational awareness, conflict detection and reaction/resolution
- Aircraft would have more flexibility in emergency situations
- Provides surveillance source separate from the communications (CPDLC) network sources
- More complete and accurate reporting of aviation occurrences, allowing better management of safety risk and better support of the Safety Management System

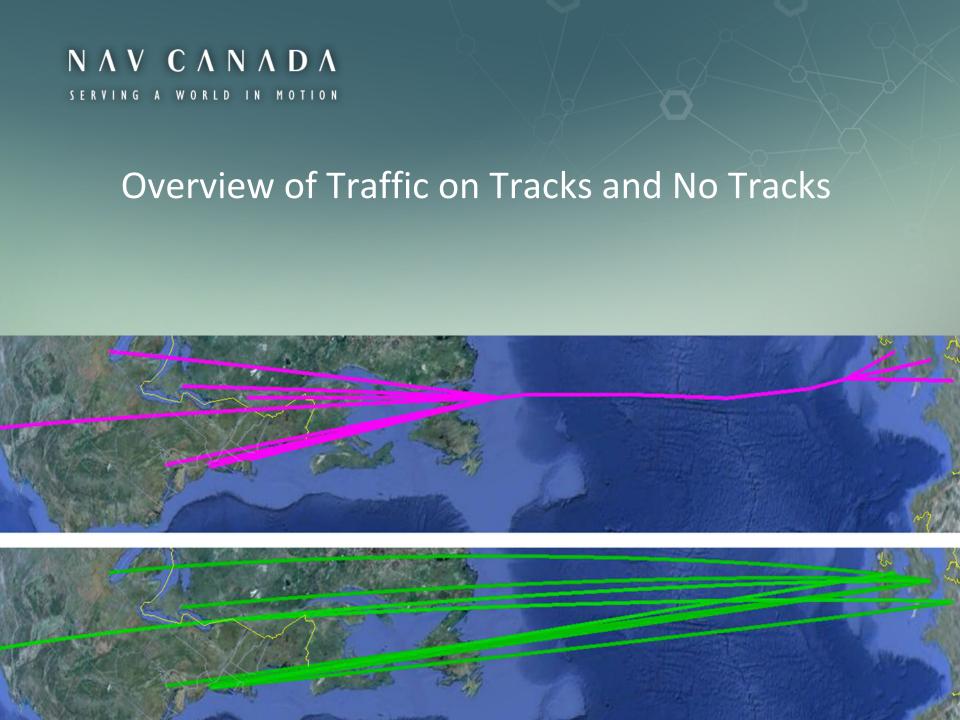
Aireon ADS-B System Benefits

Environmental/Efficiency

- More efficient "domestic-like" flight trajectories in oceanic airspace
- More predictable airline cost planning
- Aircraft able to Climb/Descend and vary speed to chase wind push and avoid headwinds
- Improve opposite direction and crossing traffic profiles
- Significant worldwide reductions in greenhouse gas (GHG) emissions

Aireon ADS-B System Benefits

Predictability/Reliability


- Access to ADS-B data could support traffic flow managementsequencing, merging and balancing for major cities in eastern North America and Western Europe
- Supports information sharing and collaborative process
- SWIM requires flight planning systems, dispatch, and airline gate-to-gate management to become more sophisticated and efficient. Surveillance via Low Earth Orbit satellite ADS-B will accommodate this.

Aireon ADS-B System Benefits

Supporting ICAO ASBU implementation

- B1-SWIM: Performance Improvement through the application of System-Wide Information Management (SWIM)
- B0-FRTO: Improved Operations through Enhanced En-Route Trajectories
- B1-FRTO: Improved Operations through Optimized ATS Routing
- B0-NOPS: Improved Flow Performance through Planning based on a Network-Wide view
- B1-NOPS: Enhanced Flow Performance through Network Operational Planning
- B0-ASUR: Initial Capability for Ground Surveillance
- BO-SNET: Increased Effectiveness of Ground-based Safety Nets
- B1-TBO: Improved Traffic Synchronization and Initial Trajectory-Based Operation
- B1-RPAS: Initial Integration of Remotely Piloted Aircraft (RPA) Systems into nonsegregated airspace

ΝΛΥ ΟΛΝΛΟΛ

Initial Oceanic Assessment

- High level assessment of 8 oceanic
 areas
- Based on 1,000' climb fuel savings
- Up to 3 climbs per flight

- Vetted with IATA airline member familiar with oceanic operations
- Considered conservative and achievable

Oceanic Assessment Benefits

Estimated \$439 million in 2018

Commercial IFR Flights (000s)	Total Fuel Climb Savings (000s)	GHGs (000s Tonnes CO ₂ Equivalent)
390	\$127,000	332.8
514	\$311,742	819.6
904	\$438.742	1,152.4
	IFR Flights (000s)	IFR Flights (000s) Savings (000s) 390 \$127,000 514 \$311,742

Payload being developed by Harris Corporation

- Harris selected to build 81 space-qualified ADS-B receivers in June 2012
- 50+ years designing and manufacturing space hardware and major FAA contractor
- Design phase complete; production starting

Hosted Payload Operations Center to be supported by Iridium

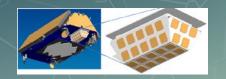
 Developed by an Iridium/Boeing team in Virginia and Arizona

Systems engineering and ground data processing system by Exelis

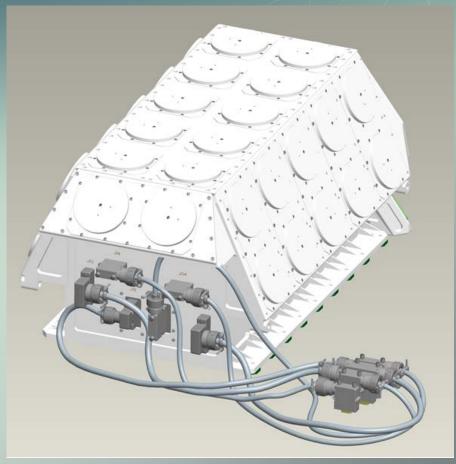
 Exelis has significant expertise and existing infrastructure supporting the FAA ADS-B terrestrial system deployment

Successful Preliminary Design Review completed in Sep 2013

On-track to meet first launch in early 2015
Initial Operations Capability late 2017


Harris ADS-B Payload Development On Target

- Harris ADS-B Payload Critical Design Review successfully completed in May 2013
- Payload completed the Test Readiness and Production Readiness reviews in October 2013
- Payload Qualification Unit completed space qualification testing in March 2014
- Payload Qualification Unit will be shipped to Thales Alenia
 Space in France for further integration and testing with the satellite
- Production of Payload Units has begun

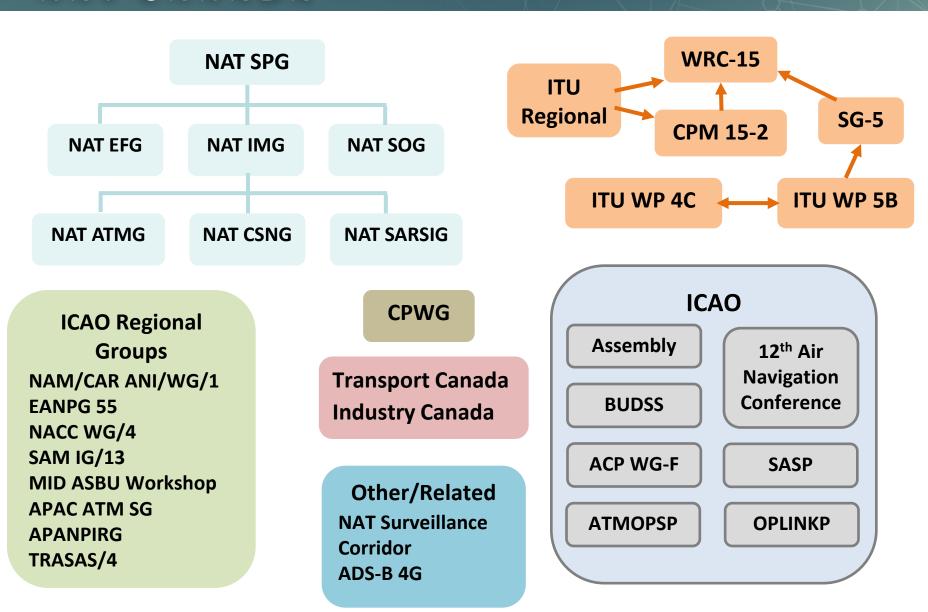

$N \wedge V \wedge C \wedge N \wedge D \wedge$

SERVING A WORLD IN MOTION

Hosted Payload

Inverted Hosted Payload

Coverage


 Interference from FRUIT (other ground based and airborne transmitters) has been minimized

Software solution has mitigated the cone of silence (area directly above the aircraft antenna)

NAVCANADA

Regulatory Roadmap

Focus on 4 Areas:

- 1. ICAO North Atlantic (NAT)
- 2. ICAO Global Assemblies and Panels
- 3. International Telecommunication Union (ITU)
- 4. Other Stakeholders Transport Canada, CPWG (Cross Polar Working Group), ADS-B 4G, etc.

1. ICAO North Atlantic (NAT)

- NAT SPG contributory groups (NAT IMG, NAT SOG & NAT EFG) have received initial CONOPS briefings
- NAT Economic and Financial Group (EFG) also received Benefits Analysis
- NAT EFG is further exploring overall NAT benefits
- Next contributory group meetings in May and June
 - Will focus on support and work to be done.
 - Will present high level safety plan (to NAT Safety Oversight Group NAT SOG)

2. ICAO Global Assemblies & Panels

- Presentations made to ICAO regional groups on the initiative
- Separation and Airspace Safety Panel (SASP) provided input on how to approach collision risk modelling
- CONOPS will be presented to new ICAO Air Traffic
 Management Operations Panel (ATMOPSP) in April
- ICAO Position for the International Telecommunication Union (ITU) World Radiocommunication Conference 2015 (WRC-15) currently DOES NOT include protection for 1090 MHz for aircraft to satellite
- Updated ICAO Position may include information about spacebased ADS-B frequency allocation requirements

3. International Telecommunication Union (ITU)

Goal is that the ITU will approve allocation of 1090MHz for Aircraft to Satellite ADS-B signal at the World Radio Conference (WRC) in November 2015

Industry Canada submitted a proposal that CITEL (a Regional ITU Group) recommend this subject be included in ITU Regional Director's Report so it can be added to WRC-15 agenda

Supporting Proposed Draft New Report (PDNR) has been developed by ITU Working Parties and may be included in updated ICAO Position

Briefing planned at Asia-Pacific Telecommunity (APT) Preparatory meeting for WRC-15

Working with as many ITU Regions as possible on the frequency allocation/WRC-15 agenda issue

4. Other Stakeholders

Transport Canada

- Regular coordination meetings on ICAO working papers
- Good cooperation on numerous initiatives, particularly frequency spectrum issue

Cross Polar Working Group

 Presentation made on the Space Based ADS-B initiative with positive feedback from participants

ADS-B 4G meeting in Ottawa February 2014

Presentation on concept positively received

Actions Going Forward

- Continue to collaborate with ANSPs, IATA/industry and ICAO/regulator to demonstrate and validate incremental improvements.
- Leverage existing technology and continue to improve service, e.g., RLongSM and RLatSM.

In Advance of Satellite Based ADS-B

- RLongSM implemented in Gander and Shanwick OCAs March 21, 2011
- Prepping for RLatSM Phase 1 2015, Phases 2 and 3 TBD
- Publishing Gander Oceanic Transition Area (GOTA) April 2014
 and expanding use of ground-based ADS-B in Oceanic airspace
- Ground based ADS-B corridor Scotland to Greenland 2014-2015
- Mid-Late 2016: implementation of conformance monitoring using available space-based ADS-B data

Application in the NAT: Principles

 Initially, no change to the Organized Track System (OTS) or Oceanic Clearances

 Initial application on core tracks in same direction only

- Use a phased approach
 - similar to Data Link
- Apply priority handling (best equipped best served)

Operational Validation

data collection on ADS-B and communications

 collaboration with stakeholders on final implementation CONOPS

GAATS+ deployment in Prestwick

Initial Application in the NAT

- Late 2017: application of 15 NM longitudinal separation (with RLatSM) between surveillanceidentified aircraft operating on the NAT OTS.
 - Early 2018: 15 NM longitudinal separation expanded to aircraft operating off the NAT OTS.

Future Procedure Changes in the NAT

- Mid 2018: allowing surveillance identified aircraft to operate on all tracks which do not intersect (still RLatSM).
- Late 2018: use of ATS surveillance to maintain 15 NM lateral separation between the tracks of surveillance-identified aircraft operating on non-intersecting tracks;
- Early 2019: application of 15 NM separation between surveillance-identified aircraft

In summary

- Global ADS-B Surveillance is a "Game Changer" for aviation
- Fits with NEXT GEN / SESAR
- Significant fuel & GHG savings
- Avoids ADS-B ground based replacement or some initial installation costs
- Benefits to domestic traffic can be realized in remote areas or through improved air traffic flow management to and from oceanic airspace
- Public will benefit from safer + more expeditious flights in remote, polar and oceanic airspace worldwide
- Opportunity to boost aviation innovation & the environment globally

ΝΛΥ СΛΝΛΟΛ

SERVING A WORLD IN MOTION

Questions?