

AIRCRAFT BRAKING PERFORMANCE **STANDARDS**

CAPT. JOHN GADZINSKI

FOUR WINDS Aerospace Safety


NEED FOR ENGINEERING BASED ASSESSMENT OF PREDICTED LANDING PERFORMANCE

RnwyCC = 3 = Medium – Airport/Pilot

μ_{Brakes} 0.199 - 0.16 - <u>Engineer</u>


Were my assumptions correct?

BUT...CAN WE ALL SPEAK ENGINEER?

- WHAT ARE MU_{BRAKES}?
- HOW DO I KNOW IF I HAVE A GOOD VALUE?
- HOW CAN I RELATE MU_{BRAKES} TO THE GLOBAL REPORTING FORMAT?
- IS MU FROM AIRCRAFT THE SAME AS MU FROM AIRPORTS?

- STARTED BY ORIGINAL
 MEMBERS OF THE "TALPA
 ARC" 2006-2009
- GLOBAL COMMUNITY OF ENGINEERS WHO ARE TASKED WITH ALL ASPECTS OF AIRCRAFT OPERATIONAL PERFORMANCE.
- ESTABLISHED A SPECIAL
 WORKGROUP IN 2017 FOR
 CREATING STANDARDS
 RELATED TO AIRCRAFT
 REPORTING SYSTEMS.

Lion Team working group formed "To develop standards (not algorithms) for aircraft friction recording and reporting technologies."

Society of Aircraft Performance and Operations Engineers

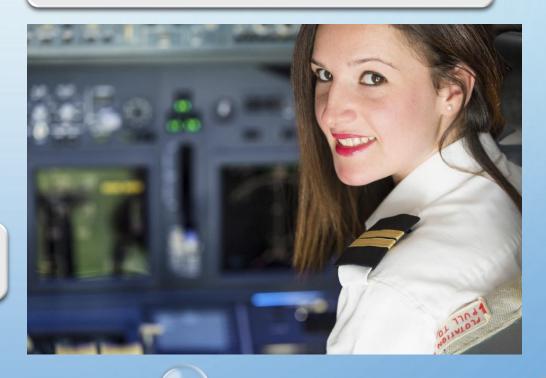
AMERICAN SOCIETY FOR TESTING AND MATERIALS

- 140 + COUNTRIES
- 12,500 STANDARDS
- 30,000+ VOLUNTEERS AND MEMBERS
- COMMITTEE E17 VEHICLE PAVEMENT SYSTEMS
- 2018 E17.26 AIRCRAFT FRICTION

- Harmonization of new aircraft braking performance scale with investigations and research
- Harmonize engineering definitions with definitions of Pilot Reported Braking (AIREP/PIREP)
- Provide an objective guide for an engineering based Safety Assurance Process across national and international operators.

ENGINEERING SCALE FOR BRAKING PERFORMANCE HIGHLIGHTS SEVERAL ISSUES

REASONS FOR AN AIRCRAFT BRAKING STANDARD #1 RISK IS A FUNCTION OF <u>AIRCRAFT PERFORMANCE</u>



 $= \frac{Force \ of \ Braked \ Wheels \ Decelerating \ the \ Aircraft}{Normal \ Force \ on \ the \ braked \ wheels \ (W-L)}$

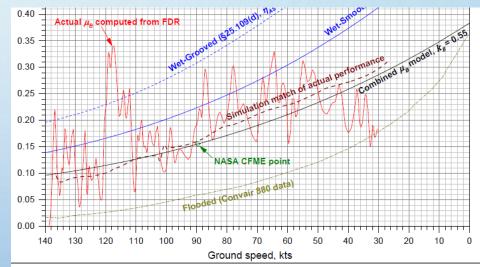
 μ_{Brakes}

Must allow crew to make decisions based on proper guidance, policies, and checklists.

REASONS FOR AN AIRCRAFT BRAKING STANDARD #2

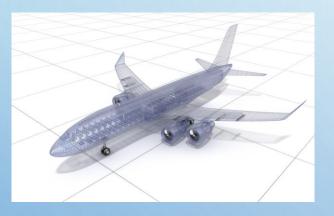
Performance versus Contamination

Braking	μ _{Brakes}	
Good	per §25.109(c)	
Good to Medium	0.20	
Medium	0.16	
Medium to Poor	50% of §25.109(c) Max m _B =0.16, min m _B =0.05	
Poor	0.08	-


Runway Condition • FROST •WET (The runway surface is covered by any visible dampness or water up to and including 3 mm depth) Up to and including 3 mm depth: • SLUSH • DRY SNOW • WET SNOW -15°C and lower outside air temperature: COMPACTED SNOW • WET ("slippery wet" runway) • DRY SNOW or WET SNOW (any depth) ON TOP OF COMPACTED SNOW More than 3 mm depth: • DRY SNOW • WET SNOW Higher than -15°C outside air temperature1: COMPACTED SNOW More than 3 mm depth of water or slush: • STANDING WATER SLUSH • ICE 2

REASONS FOR AN AIRCRAFT BRAKING STANDARD #3

PILOTS BRAKING ACTION REPORTS - CAN WE COMPLETELY DEPEND ON THEM?

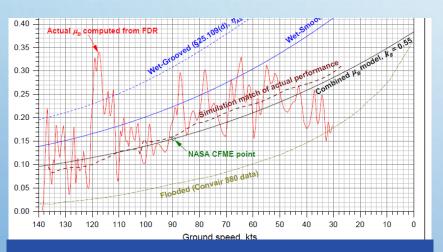


ASTM E3188-19

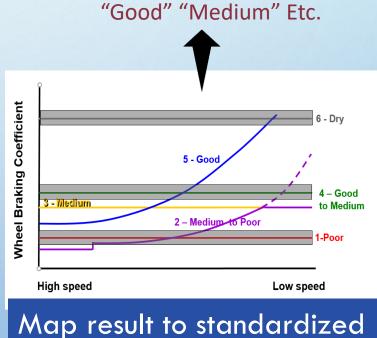
STANDARD TERMINOLOGY FOR AIRCRAFT BRAKING PERFORMANCE YES, YOU CAN SPEAK ENGINEER!!

AIRCRAFT BRAKING COEFFICIENT AIRCRAFT BRAKING SIMULATION EQUIPMENT AIRPORT FRICTION MEASUREMENTS ANTI-SKID EFFICIENCY AUTOBRAKES AVERAGE BRAKING COEFFICIENT BRAKING ACTION AIRCRAFT BRAKING ACTION REPORT PILOT BRAKING ACTION REPORT FRICTION LIMITED BRAKING

FRICTION LIMITED (AIRCRAFT/WHEEL) BRAKING COEFFICIENT MAXIMUM AIRCRAFT WHEEL BRAKING PERFORMANCE MAXIMUM TIRE TO GROUND BRAKING COEFFICIENT MU SLIP CURVE SCAP SLIP-RATIO TIME VARYING BRAKING COEFFICIENT TIRE TO GROUND FRICTION COEFFICIENT TORQUE LIMITED BRAKING WHEEL BRAKING COEFFICIENT


Ensure good data from aircraft

What the Standard Will Address


Friction Limited Aircraft Braking Measurements and Reporting

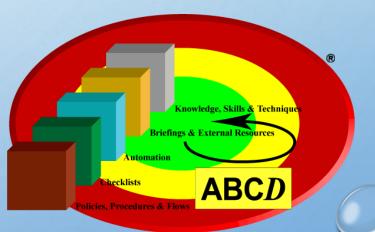
Aircraft Braking Action Report

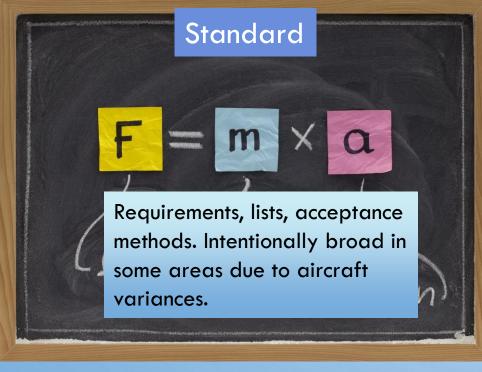
Ensure accurate data analysis

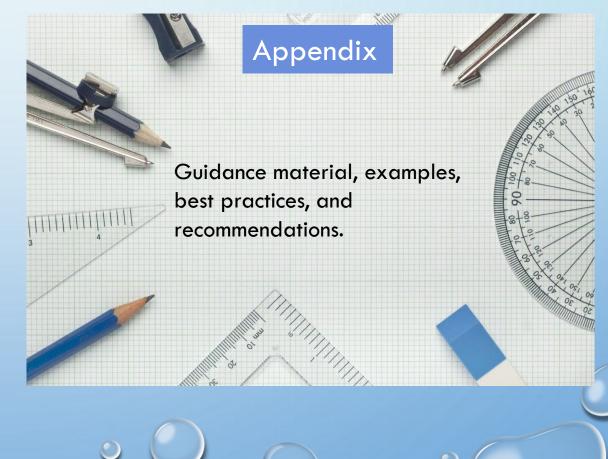
scale (TALPA/APM)

STANDARD PRACTICES FOR FRICTION LIMITED AIRCRAFT BRAKING MEASUREMENTS AND REPORTING

Must not limit participation to only Aircraft Manufacturers




Must provide actionable information for decision making


Not intended as operational policy but must support the creation of policies, procedures, checklists, automation, and briefings

STANDARD PRACTICES FOR FRICTION LIMITED AIRCRAFT BRAKING MEASUREMENTS AND REPORTING

QUESTIONS?

WWW.FOURWINDSSAFETY.COM

JOHN@FOURWINDSSAFETY.COM

WWW.ASTM.ORG

WWW.SAPOE.ORG

