ICAO/ACI Symposium on Implementation of the New Global Reporting Format for Runway Surface Condition (GRF2019)

TALPA IMPLEMENTATION EVOLUTION

TALPA Evolution

History

- Airplane landing and excursion on contaminated surface
- NTSB set in motion various recommendations
- Originated as a Aviation Rulemaking Committee Initiative
- Implemented via voluntary efforts
- Created tools/capabilities to assess surface conditions
- Tied assessed condition to airplane performance

TALPA Evolution

Stakeholder Participants

Regulatory Authorities

- → FAA (Airports, Flight Standards, Certification, NOTAMS, Rulemaking, Legal)
- → Transport Canada
- → Brazilian Certification Authority
- → EASA (Limited Participation)

Other Organizations

- → Air Transport Association
- → Airline Pilots Association
- → Airports Council International
- → Allied Pilots Association
- → National Air Carrier Association
- → National Business Aviation Association
- → National Transportation Safety Board
- → Neubert Aero Corporation
- → Regional Airline Association
- → Southwest Airlines Pilot Association
- → Allied Pilots Association

Airplane Operators

•Part 121

- → ABX Air
- → Alaska
- → American Eagle
- → American
- → Continental
- → Delta
- → Express Jet
- → Federal Express
- → Northwest
- → Pinnacle
- → Southwest
- → United
- → UPS
- → US Airways

Airports

- → Cherry Capital
- → Chicago Airport System
- → Chicago O'Hare
- → Grand Rapids Regional
- → Minneapolis/St. Paul Airport System

Airplane Operators

Part 91-K/125/135

- → Alpha Flying, Inc
- →Bombardier Flexjet
- → Chantilly Air
- →Flight Works
- → Jet Solutions
- → Conoco Phillips Alaska
- → Net Jets
- →Pogo Jet, Inc

Airplane Manufacturers

- → Airbus
- → Boeina
- → Bombardier
- →Cessna
- → Eclipse
- → Embraer
- → Gulfstream
- → Hawker

TALPA Evolution

Airport Operator RCAM Version

Assessment Criteria			Downgrade Assessment Criteria			
Runway Condition Description	Code	Mu (μ) ¹	Vehicle Deceleration or Directional Control Observation	Pilot Reported Braking Action		
• Dry	6					
Frost Wet (Includes Damp and 1/8 inch depth or less of water) 1/8 inch (3mm) depth or less of: Slush Dry Snow Wet Snow	5	40 or Higher	Braking deceleration is normal for the wheel braking effort applied AND directional control is normal.	Good		
5° F (-15°C) and Colder outside air temperature: • Compacted Snow	4	39	Braking deceleration OR directional control is between Good and Medium.	Good to Medium		
Slippery When Wet (wet runway) Dry Snow or Wet Snow (Any depth) over Compacted Snow Greater than 1/8 inch (3mm) depth of: Dry Snow Wet Snow Warmer than 5° F (-15°C) outside air temperature: Compacted Snow	3	to 30	Braking deceleration is noticeably reduced for the wheel braking effort applied OR directional control is noticeably reduced.	Medium		
Greater than 1/8 (3mm) inch depth of: Water Slush	2	29 t	Braking deceleration OR directional control is between Medium and Poor.	Medium to Poor		
• Ice ²	1	to 21 20 or Lower	Braking deceleration is significantly reduced for the wheel braking effort applied OR directional control is significantly reduced.	Poor		
Wet Ice ² Slush over Ice ² Water over Compacted Snow ² Dry Snow or Wet Snow over Ice ²	0		Braking deceleration is minimal to non-existent for the wheel braking effort applied OR directional control is uncertain.	Nil		

Aircraft Operator RCAM Version

Assessment Criteria		Control/Braking Assessment Criteria		
Runway Condition Description		Deceleration or Directional Control Observation	Pilot Reported Braking Action	
• Dry	6			
Frost Wet (Includes damp and 1/8 inch depth or less of water) 1/8 inch (3mm) depth or less of: Slush Dry Snow Wet Snow	5	Braking deceleration is normal for the wheel braking effort applied AND directional control is normal.	Good	
-15°C and Colder outside air temperature: • Compacted Snow	4	Braking deceleration OR directional control is between Good and Medium.	Good to Medium	
Slippery When Wet (wet runway) Dry Snow or Wet Snow (any depth) over Compacted Snow Greater than 1/8 inch (3 mm) depth of: Dry Snow Wet Snow Warmer than -15°C outside air temperature: Compacted Snow	3	Braking deceleration is noticeably reduced for the wheel braking effort applied OR directional control is noticeably reduced.	Medium	
Greater than 1/8 inch(3 mm) depth of: Water Slush	2	Braking deceleration OR directional control is between Medium and Poor.	Medium to Poor	
• Ice	1	Braking deceleration is significantly reduced for the wheel braking effort applied OR directional control is significantly reduced.	Poor	
Wet Ice Slush over Ice Water over Compacted Snow Dry Snow or Wet Snow over Ice	0	Braking deceleration is minimal to non-existent for the wheel braking effort applied OR directional control is uncertain.	Nil	

TALPA Evolution – Moderator/Speakers

Mr. CHARLES.J.ENDERS III (Moderator)

- FAA AFS-220 AIR CARRIR OPERATIONS
- Charles.j.enders@faa.gov Telephone: 202-267-4557

Mr. PAUL GIESMAN

- FAA TRANSPORT STANDARDS and PERFORMANCE
- Paul.Giesman@faa.gov Telephone: 206-231-3156

Mr. PHILLIP DAVENPORT

- FAA OFFICE OF AIRPORTS
- Phillip.davenport@faa.govTelephone: 202-267-7072

Mr. JOE MANTELLO

- FAA TRAFFIC MANAGEMENT OFFICE
- Joe.Mantello@faa.gov Telephone: 773-601-7695

TALPA – Airplane Performance

US FAA Transport Standards

Airplane Performance

Data basis

- Same for all manufacturers and operators
 - One set of assumptions when manufacturers create data
 - One set of operating guidelines for operators
- ICAO and EASA adopted same time-of-arrival landing performance basis

Airplane Performance

Two important parts

- Manufacturer data to support implementation of TALPA
 - AC 25-31 Takeoff non-issue, AC's consistent to the greatest degree possible with EASA contaminated runway certification requirements
 - AC 25-32 Landing Time of Arrival performance data
- Guidance for operators on implementation of performance data
 - FAA 8900 order
 - Future plan to make content from 8900 order also available by Advisory Circular

Airplane Performance Manufacturers

Airplane performance

- TALPA Part 25 AC's reflect the submittal of the TALPA part 25 sub-committee
 - Seven manufacturer participants
 - FAA and Transport Canada
 - ALPA and GAMA
- TALPA ARC included a Part 23 component
 - Limited participation
 - Report was created
 - TALPA report was not comprehensive

Airplane Performance Manufacturers

- Implementation of TALPA is voluntary
 - Airplane performance implementation varies
 - Manufacturer may have implemented TALPA completely
 - New certifications from when TALPA completed (2010 on)
 - All but the very oldest airplanes still in operation
 - Manufacturer may have implemented TALPA partially
 - New certifications from when TALPA completed (2010 on)
 - Provided guidance on adjusting existing data
 - Manufacturers may not have provided any data or guidance

- FAA TALPA is voluntary therefore the operational information provided are "best practices for conducting a landing distance assessment at time of arrival"
- While TALPA is voluntary for operators and manufacturers, it is mandatory for runway reporting at 14 CFR Part 139 airports and non-14 CFR Part 139 airports which accept federal funds.
 - Since mandatory for airports to report RwyCC and ATS will report Braking Action, operators want/need guidance on how manufacturer supplied performance data can be related to TALPA reported runway conditions
 - Flight operations using TALPA Landing Distance Assessment methods are, as a practical matter, necessary (i. e. required)
 - Lack of manufacturer guidance will typically lead to generic factors

Timeliness

- Typically top of descent
- Determine how much field conditions can deteriorate and still land

Source of Data

- Preferable manufacturer historical or based on AC 25-32
- If no data available Generic factors maybe applied to unfactored AFM dry

	Runway Condition Code							
6 (Dry)	5 Grooved/ PFC Runway Good	5 Smooth (non- grooved) Runway Good	4 Good to Medium	3 Medi um	2 Medium to Poor	1 Poor		
1.67	2.3	2.6	2.8	3.2	4.0	5.1		
1.67	1.92	2.2	2.3	2.5	2.9	3.4		
1.67	1.92	2.0	2.2	2.4	2.7	2.9		
1.67	2.3	2.6	2.8	3.2	4.0	5.1		

Safety Margin

15% recommended

Auto-Brake Usage

- Runway dry or wet runways
 - If the manual braking distance provides a 15% safety margin then the braking technique may include a combination of autobrakes and manual braking even if the selected auto brake landing data does not provide a 15% safety margin.

Additional Guidance

- Use of dispatch data
- Touchdown point

Runway Condition Considerations:

- Runway Condition Code
- Expected runway conditions (contaminate type and depth)
- Pilot Braking Action report

Landing performance data should be based on:

- All the conditions that affect landing performance at TOA including:
 - Atmospheric: temperature, slope, wind etc.
 - Airplane: weight, flap and any speed additives
 - · Operation: available braking devices, autoland etc.

Operational Performance Implementation Issues

- Manufacturer's TALPA data/guidance not available
 - Default to factor's and by nature conservative
- Multiple contaminants reported
 - Primarily takeoff issue
 - Data provided by manufacturer for single contaminant on the runway
 - Different airplanes have different critical contaminant for performance
 - Consensus, operators handle the choosing of the critical contaminant for performance purposes
- Last minute industry group demand to not require reporting of wet runway via NOTAM
- Slippery When Wet implementation

Location of TALPA Recommended Operating Guidelines

- FAA Order 8900.1, Vol. 4, Chap. 3, Sec. 1, Dec. 6, 2018
 http://fsims.avs.faa.gov/FSIMS/FSIMS.nsf/pubs/5AF54CCD5BA2070986257D1500665C7A?opendocument
- Safety Alert for Operators 06012 Rewrite, "Landing Performance Assessments at Time of Arrival" – release imminent https://www.faa.gov/other_visit/aviation_industry/airline_operators/airline_safety/safo/all_safos/
- FAA planned AC on TALPA operational "best practices" in 2020
- FAA TALPA performance guidance and practices are adopted by ICAO Airplane Performance Manual and EASA GRF rulemaking task
 - All three entities are using the same airplane performance basis for landing time of arrival landing assessments

FAA/Office of Airports TALPA Implementation

FAA Guidance Documents

- Advisory Circular 150/5200-30D, Airport Field Condition Assessments and Winter Operations Safety
 - Detailed instructions on using the RCAM to produce RwyCCs
 - Updated general guidance, methods, and procedures
 - Source for training & awareness for all stakeholders
- Advisory Circular 150/5200-28F, Notices to Airmen (NOTAMs) for Airport Operators
 - Highlighted NOTAM system for producing RwyCCs
 - Listed reportable contaminant type, percent coverage, depth and other critical elements related to field condition reporting
 - System criteria/examples to coincide with NOTAM tool

NOTAM System

- Enhanced tool for producing RwyCCs and reporting Field Condition NOTAMs (FICON)
 - Modified system on how surface conditions will be reported based on the RCAM criteria
 - System reduces subjectivity and standardizes how the RwyCC is generated and published
 - System calculates and generates RwyCCs based on contaminant information input by the airport operator
 - System comprised of simple dropdown menu selections for the airport operator
 - Established a demo system for testing and familiarity
 - System business rules and methods are transferrable
 - Prepared to coordinate with implementation teams
 - FAA Order 7930.2, Notices To Airmen (NOTAMs), is governing document

Awareness Campaign

Time is critical for a successful implementation

- Developed information for operators and stakeholders to use/supplement existing training and guidance documents
- Conducted outreach nationally via webinars, conferences, industry forums and informational bulletins for airport operators and other stakeholders
- Recorded narrated presentations on process for utilizing the RCAM for field condition assessment and reporting
- Sought industry participation to publish articles in trade publications on field condition assessment and reporting
- Websites built making available information to industry and stakeholders
- FAA Industry Day held ahead of implementation to seek feedback and address stakeholders concerns

Challenges

- Enough time to meet implementation expectations
- Change impact on airport operators
- Break with traditional way of assessing conditions
- Understanding use of existing friction measuring tools after implementation
- Instituting new terminology
- Applying RwyCC upgrade/downgrade actions

Best Practices

- Development of a website for information and a bank of Frequently Asked Questions
 - https://www.faa.gov/about/initiatives/talpa/
- Capability to accept/answer stakeholders on-going questions throughout implementation
- Usable template as a basic framework that can be used to train stakeholders
- Information distribution capability to reach numerous stakeholders simultaneously and means for feedback
- Data gathering source for GRF analysis after implementation

Air Traffic Control TALPA Implementation

ATC Guidance Documents

- Order JO 7110.65 Air Traffic Control
 - Added Runway Condition Codes (RwyCC) "0" (worst) to "6" (best)
 - Replaced "Fair" reportable braking action report with ICAO "Medium"
 - Introduced new categories: "Good to Medium" and "Medium to Poor"
- Order JO 7210.3 Facility Operation and Administration
- Order JO 7110.10 Flight Services
- Aeronautical Information Manual (AIM)
- Aeronautical Information Publication (AIP) ICAO
- Pilot/Controller Glossary

Air Traffic Controller Required Training

Develop Training and Training Guidance

- Appropriate timelines and methods must be established
- Training and updates must be consistent state-wide
- Recommend establishing a training framework/template for standardization

Brief Procedural Changes to All Controllers

- Terminal facilities
- EnRoute facilities
- Both state run and non-government facilities

Aviation/Airspace User Procedural Changes

- Aeronautical Information Manual (AIM)
- Aeronautical Information Publication (AIP)

Publication changes:

- Removed all references to "Mu" and "friction reports"
- Incorporated new Field Condition (FICON) NOTAM format
- Replaced definition of "friction" with new understanding of Runway Braking coefficient
- Describes the Runway Condition Assessment Matrix (RCAM) as the tool for assessing runway surface conditions

ATC / Aviation Procedural Changes

Pilot/Controller Glossary

Terminology changes:

- Types of braking action
 - Changed "Fair" to "Medium"
 - Added two new categories for more precise reporting
- Added and defined Runway Condition Code (RwyCC)
 - More accurately correlates surface contamination with expected braking action in each runway third
- Removed Runway Condition Reading (μ)
- Added and defined Runway Condition Report
 - RwyCCs, percentage, type/depth of contaminant coverage, by runway thirds

Emphasize Controller Procedures Not Affected

- Controllers will still solicit braking action reports from pilots after/upon landing
- Controllers will disseminate to Airport Operators, and pilots, pertinent changes to surface/landing conditions received via PIREPS/NOTAMS
- Controllers will disseminate new information via ATIS broadcasts like Runway Condition Codes.
- Controllers will not add the complete FICON NOTAMs to the ATIS broadcast

Conclusion & Thank you!

