

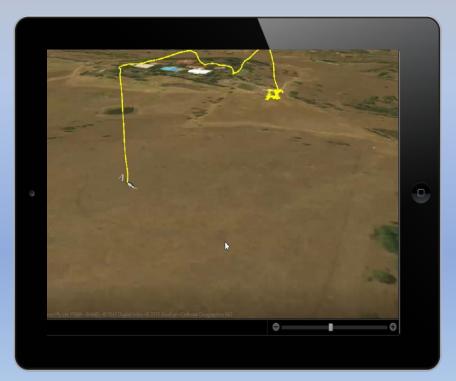
CNPC Implications for UTM Separation Standards

Dr Terrence Martin & Dr Aaron McFadyen ICAO Unmanned Aircraft Systems (UAS) Industry Symposium 22-23 September 2017

Research Motivation Australian UTM BVLOS Trials

Research Background Australian UTM BVLOS Trials

UTM Providers RPAS Operators **Trial Management** LATAS FLY SAFER Nova Systems AIRMAP Experience Knowledge Independence Little Ripper LifeSAVER SKY ... to the rescue


Copyright: Terrence Martin

Secure Integrated Airspace Management

Research Background UTM Trial Take Aways

Separation

 Sensor Referencing & Accuracy

System Latency

Research Background UTM Trial Take Aways: Separation

Q 🛱 🌐 🤇

Current UTM Designs support either point to point flight plans with no bounds on deviations OR Area segregation via polygon allocation with only basic proximity alerting functionality

Cesium Graphics developed by Mr Tim Cervenjak, Nova Syster

CESIUM bing © Analytical Graphics Inc., © CGIAR-CSI, Produced using Copernicus data and information funded by the European Union-EU-DEM layers • This application is using Cesium's default Bing Maps key. Please create a net

260x

QUT

WON'T SCALE AS MORE AIRCRAFT COMPETE FOR SAME AIRSPACE

DOESNT CATER for PLATFORMS WANTING to FLY BVLOS from A to B

CESIUM bing 💿 Analytical Graphics Inc., 👁 CGIAR-CSI, Produced using Copernicus data and information funded by the European Union - EU-DEM layers • This application is using Cesium's default Bing Maps key. Please create a new k

Introduction: Our Contribution

Separation

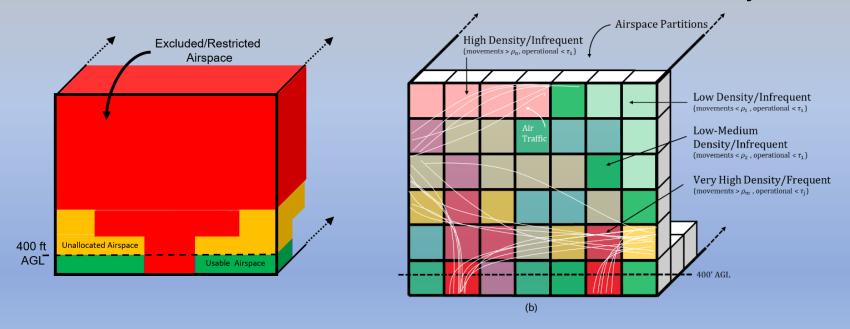
Part 1 **Communication**

Part 2 Geofencing

Dr Terrence Martin

Examination of CNS role in separation and subsequent geofence parameters for UTM

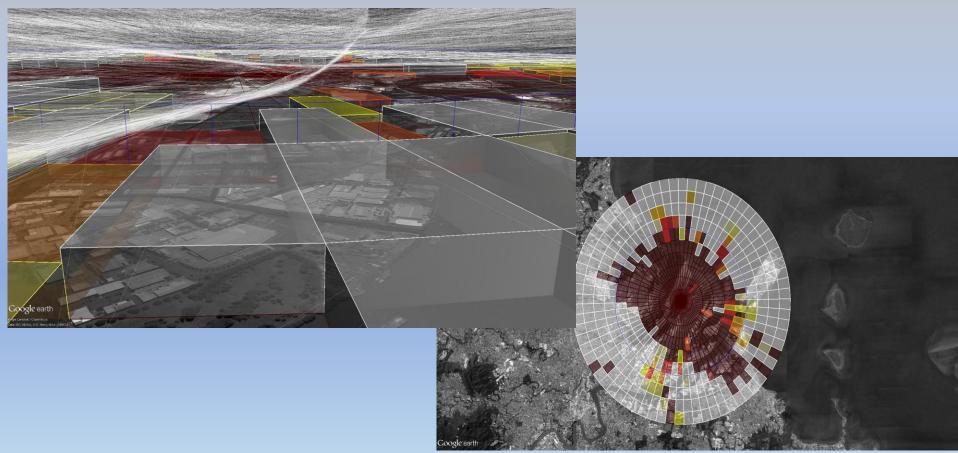
Focusing on support to major distribution routes ie enroute


Dr Aaron McFadyen

Data-driven, risk-based ATM to establish safe and efficient volumetric separation principles to underpin geofencing boundaries

Focusing on the terminal and aerodrome environment

Introduction QUT Contribution Part 2: Dr Aaron McFadyen

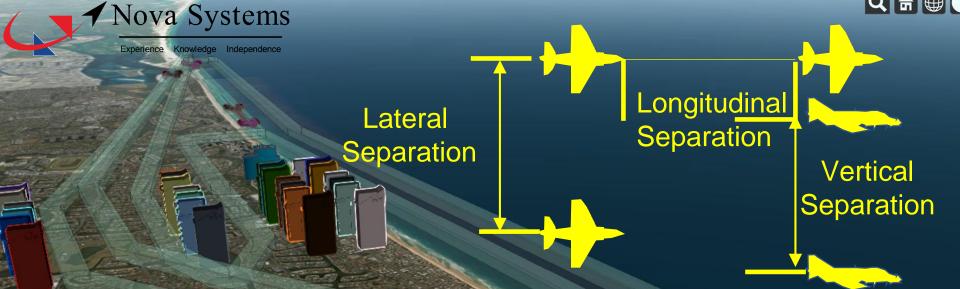

QUI

- Diminishing Operating Options once 3 NM Aerodrome and Controlled Airspace boundaries are factored in
- Large Commercial value in metropolitan areas for UAV supported supply chains

Introduction QUT Contribution: A Prelude to Part 2

QUT

Experience Knowledge Independence


Q ਜ਼ ⊕ UTM Trial Take Aways: Suitable Separation Standards

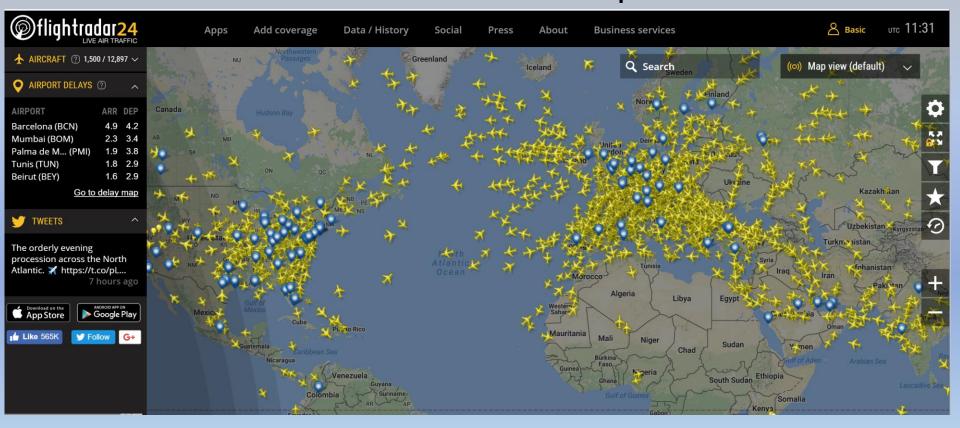
• Trial environment needed procedural separation backup,

Cesium Graphics development support provided by Mr Tim Cervenjak, Nova Systems

CESIUM 👂 bing © Analytical Graphics Inc., © CGIAR-CSI, Produced using Copernicus data and information funded by the European Union - EU-DEM layers • This application is using Cesium's default Bing Mage

And Obstacle Clearance

Cesium Graphics development support provided by Mr Tim Cervenjak, Nova Systems



CESIUM bling 🛛 Analytical Graphics Inc., 🕫 CGIAR-CSI, Produced using Copernicus data and information funded by the European Union - EU-DEM layers • This application is using Cesium's default Bing Maps

CNS, Separation and Reich Whats useful in traditional Airspace

Experience Knowledge Independence

Trial Take Aways: Sensor Accuracy

Striking variation in height referencing across RPAS and UTM Operators: feet/metres, referenced from takeoff, referenced from position, and smoothing

Prompted multiple discussions around sensor accuracy: Lat, Long and Vertical and impact on separation distance

Cesium Graphics development support provided by Mr Tim Cervenjak, Nova Systems

Q 🛱 🌐 🤇

SIDM Data and information funded by the European Union - EU-DEM layers • This application is using Cesium's default Bing M

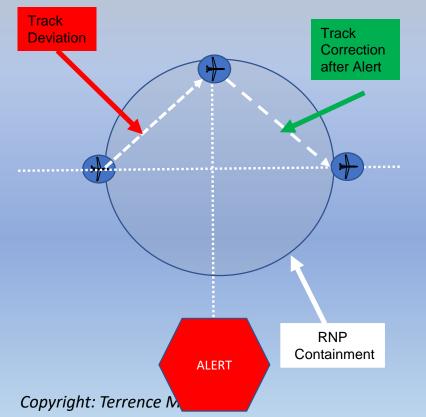
370x

Experience Knowledge Independence

Collision Risk Model needs to acknowledge limits:

Q 🛱 🌐 🤇

- Pitot Static
- GPS and geofence boundary coupling

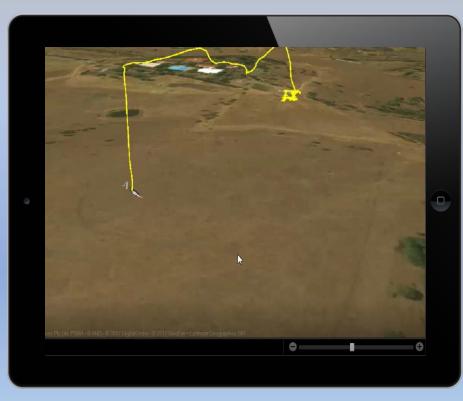

PRESSURE OUTPUT CHARACTERISTICS (V_{DD} = 3 V, T = 25°C UNLESS OTHERWISE NOTED)

Parameter	Conditions		Min.	Тур.	Max	Unit
Operating Pressure Range	Prange	Full Accuracy	450		1100	mbar
Extended Pressure Range	P _{ext}	Linear Range of ADC	10		1200	mbar
Total Error Band, no autozero	at 25°C, 7001100 mbar		-1.5		+1.5	mbar
	at 050°C, 4501100 mbar		-2.0		+2.0	
	at -2085°C, 4501100 mbar		-3.5		+3.5	
	at -4085°C, 4501100 mbar		-6.0		+6.0	
	at 25°C, 7001100 mbar		-0.5		+0.5	mbar
Total Error Band, autozero at one pressure point	at 1050°C, 4501100 mbar		-1.0		+1.0	
	at -2085°C, 4501100 mbar		-2.5		+2.5	
	at -4085°C, 4501100 mbar		-5.0		+5.0	

CESIUM bing analytical Graphics Inc. CGIAR-CSI, Produced using Copernicus data and information funded by the European Union - EU-DEM layers • This application is using Cesium's default Bing Mage

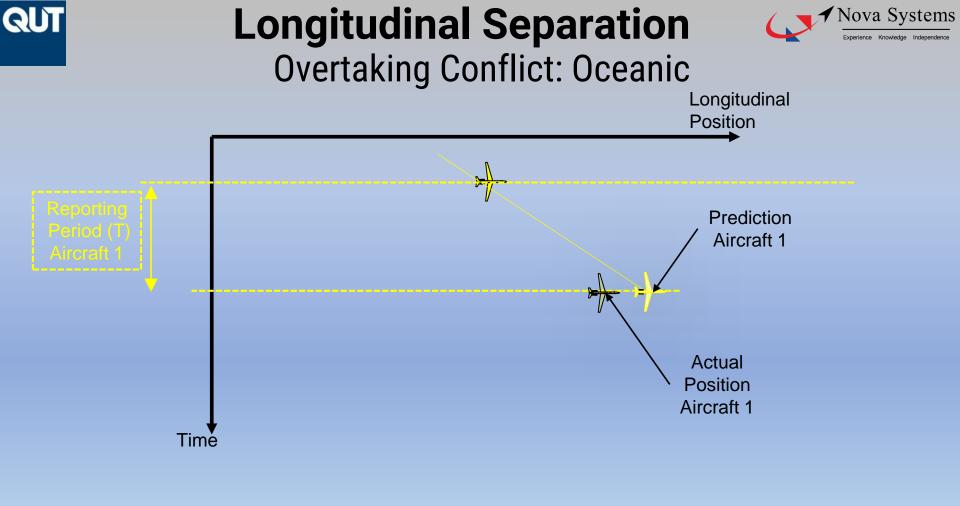
Required Navigation Performance

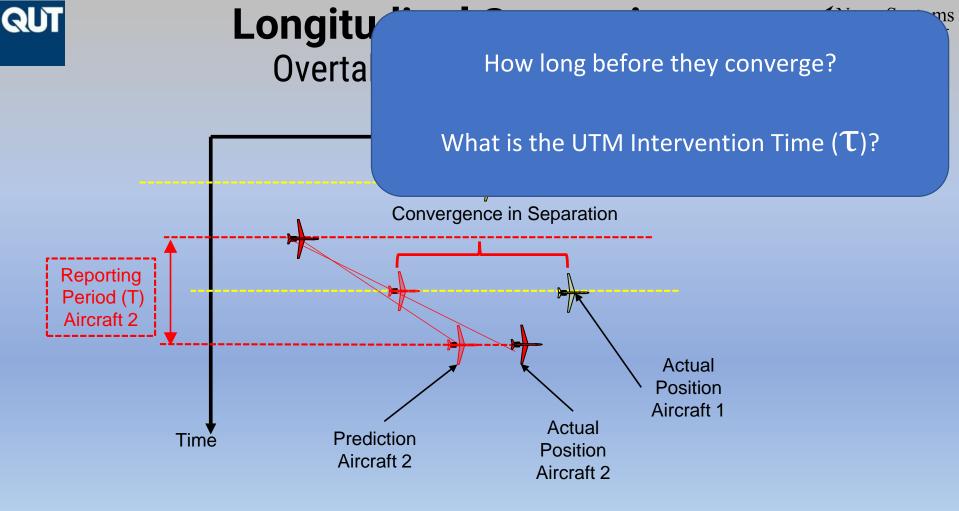
Position Accuracy & Reporting Time


QUT

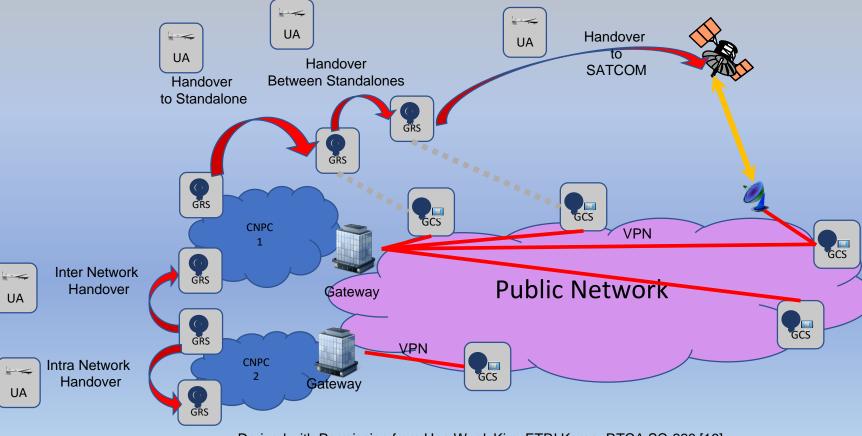
RNP expects you to:

- accurately know your position,
- monitor it and be alerted if you deviate,
- Act to correct it in a timely manner if you do deviate, and
- **communicate** with relevant people (ATC & other pilots), so they can respond




Research Background UTM Trial Take Aways

- Separation
- Sensor Referencing & Accuracy
- System Latency Unattributed Latency led to UTM system stalls: Telco, Platform or UTM?
- Intervention
- How much latency is
 permissible in comms and HMI



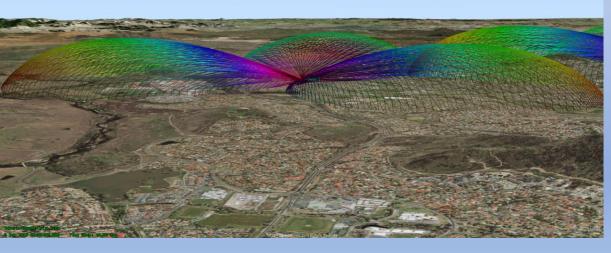
Copyright: Terrence Martin

Derived from Example given in Fijito

Future RPAS CNPC Infrastructure

Copyright: Terrence Martin

Derived with Permission from Hee Wook Kim, ETRI Korea, RTCA SC-228 [16]:



Research Background

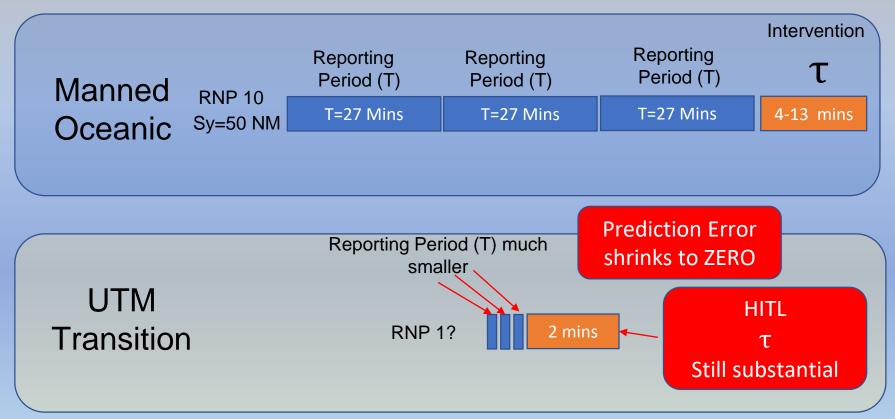
UTM CNPC Infrastructure: Signal Quality and Altitude

Source: LTE Tower Signal data generated by Stephen Dade at Nova Systems using STK

- What will the altitude limitations be using LTE
- Availability, Continuity, Integrity
- How will this be substantiated

Intervention Longitudinal Separation & C2

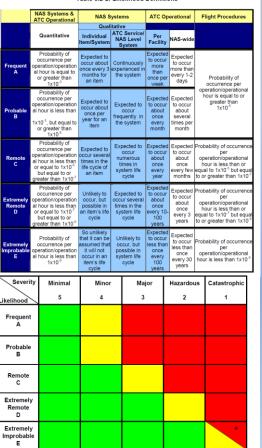
Activity	Time in Seconds ADS	Possible Time in LTE Network
Screen Update time/controller conflict recognition	30	25
Controller Message Composition	15	15
Message Transfer (CPDLC, LTE , RF ??)	90	2*
Pilot Reaction	30	30
Aircraft Inertia plus Climbs	75	10
TOTAL	240	82


Copyright: Terrence Martin

SOURCE: Table 4 Components of tau for normal ADS operations Decomposition of tau for normal ADS Operations and proposed UTM

QUT

Intervention The Old and the New


CNS, Separation & the Reich Model

CNS and Risk

Table 3.2-2: Likelihood Definitions

copyright. Terrence murtin

- ATM uses TLS of 5 x 10 -9 per dimension
- Assumes a collision is catastrophic
- Collision between 2 UAVs is not catastrophic,
- The secondary effect may be!
- What TLS likelihood should we use?
- Went with an arbitrary 0.5 x 10⁻⁶ per dimension

Source: FAA Safety Management System (SMS) and Acquisition Management System (AMS) Guidance Document

The Reich Model In Simple terms

• An aircraft is represented by a box and collision is an overlap of 2 boxes. The collision rate is expressed as:

$$F_{\chi}P_{y}P_{z} + F_{z}P_{\chi}P_{y} + F_{y}P_{z}P_{\chi}$$

Where:

- P_y is the probability that across track separation is less than Λ_y (aircraft width)
 - $P_x \& P_z$ similarly defined
 - is the expected frequency per unit of time where the along track separation shrinks to less than Λ_{χ} (length)
 - $F_y \& F_z$ similarly defined

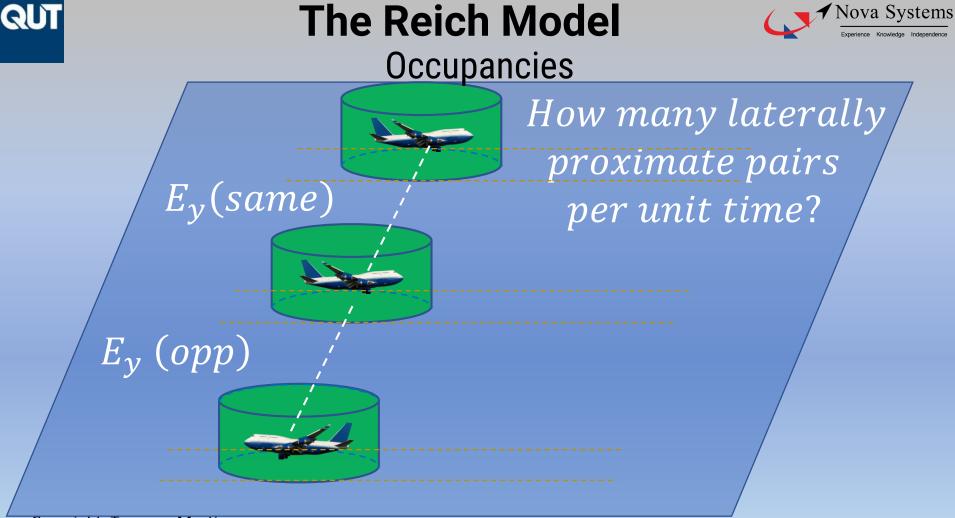
SOURCE: [1, 4]

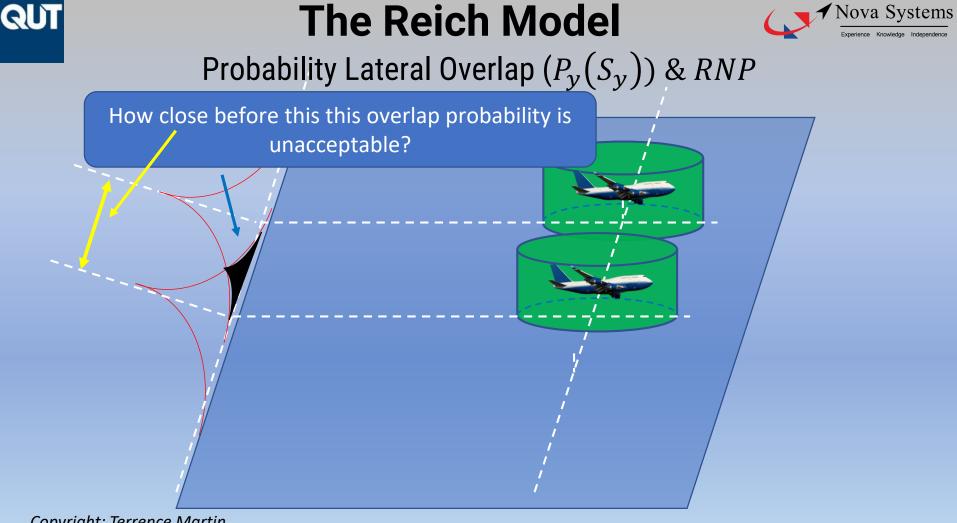
The Reich Model Probability Vertical Overlap: $P_z(0)$

1 - 1)]

(วาม

Expected # fatal accidents per hour


platforms


Linked to /

different

Expected # fail
accidents per flight =
$$P_y(S_y)P_z(0)\frac{\Lambda_x}{S_x}\left[E_y(same)\left\{\frac{|\Delta V|}{2\Lambda_x} + \frac{|y(S_y)|}{2\Lambda_y} + \frac{|z|}{2\Lambda_z}\right\} + E_y(opp)\left\{\frac{2|V|}{2\Lambda_x} + \frac{|y(S_y)|}{2\Lambda_y} + \frac{|z|}{2\Lambda_z}\right\}\right]$$

How often do the
platforms move from
different
flights levels to
to a coincident altitude
Linked to Altimetric
Performance: Total
Vertical Error (TVE)
Copyright: Terrence Martin

 $1 \cdot (C_{1})$

The Reich Model

Expected # fatal accidents per flight hour = $P_y(S_y)P_z(0)\frac{\Lambda_x}{S_x}\left[E_y(same)\left\{\frac{|\overline{\Delta V}|}{2\Lambda_x} + \frac{|\overline{y}(S_y)|}{2\Lambda_y} + \frac{|\dot{z}|}{2\Lambda_z}\right\} + E_y(opp)\left\{\frac{2|\overline{V}|}{2\Lambda_x} + \frac{|\overline{y}(S_y)|}{2\Lambda_y} + \frac{|\dot{z}|}{2\Lambda_z}\right\}\right]$

Where:

 $P_{y}(S_{y})$ Prob. of Lateral Overlap at Separation (S_{y})

$$2\Lambda_{\mathbf{y}}\left[\left(\frac{1-\alpha}{2a_{1}}\right)^{2}\left(a_{1}+\mathbf{S}_{\mathbf{y}}\right)e^{-\left|\frac{\mathbf{S}_{\mathbf{y}}}{a_{1}}\right|}+\left(\frac{\alpha}{2a_{2}}\right)^{2}\left(a_{2}+\mathbf{S}_{\mathbf{y}}\right)e^{-\left|\frac{\mathbf{S}_{\mathbf{y}}}{a_{2}}\right|}+\frac{\alpha(1-\alpha)}{2}\left\{\left(\frac{e^{-\left|\frac{\mathbf{S}_{\mathbf{y}}}{a_{1}}\right|}+e^{-\left|\frac{\mathbf{S}_{\mathbf{y}}}{a_{2}}\right|}}{a_{1}+a_{2}}\right)+\left(\frac{e^{-\left|\frac{\mathbf{S}_{\mathbf{y}}}{a_{1}}\right|}+e^{-\left|\frac{\mathbf{S}_{\mathbf{y}}}{a_{2}}\right|}}{a_{1}-a_{2}}\right)\right\}\right]$$

• **Occupancies**:
$$E_y(same) \& E_y(opp)$$

- Aircraft dimensions: Λ_x , Λ_y , Λ_z
- **Speeds:** relative $(|\overline{\Delta V}|, |\dot{z}|, |\overline{\dot{y}(S_y)}|)$ and ground speeds $(|\overline{V}|)$
- <u>Navigation Performance</u>: Nominal & GNEs: a₁, a₂ & α
- **Nominal Separation:** Lateral (S_y) , Longitud*inal* (S_x) + others.....

The Reich Model Longitudinal Separation & C2

Collision Rate

$$= \left[\frac{2}{T} \times HOP\left(T + \tau\right) \times P_{z}(0) \times \left\{1 + \frac{|\dot{z}|}{2\Lambda_{z}} \times \frac{\pi\Lambda_{xy}}{2V_{rel}^{C}}\right\}\right]$$

MOST RELEVENT FOR THIS PRESENTATION

- (T) : Reporting Period
- (T) : Communication and controller intervention buffer
- (HOP): Horizontal Overlap Probability for pair AC during crossing

<u>Others</u>

- $P_z(0)$: probability of vertical overlap of aircraft nominally flying at the same flight level
- <u>Aircraft dimension</u>: length(Λ_x), width (Λ_y) & height (Λ_z)
- **Speeds:** relative $(2V_{rel}^C, |\dot{z}|)$

Modelling Effort

Experiments Models Employed

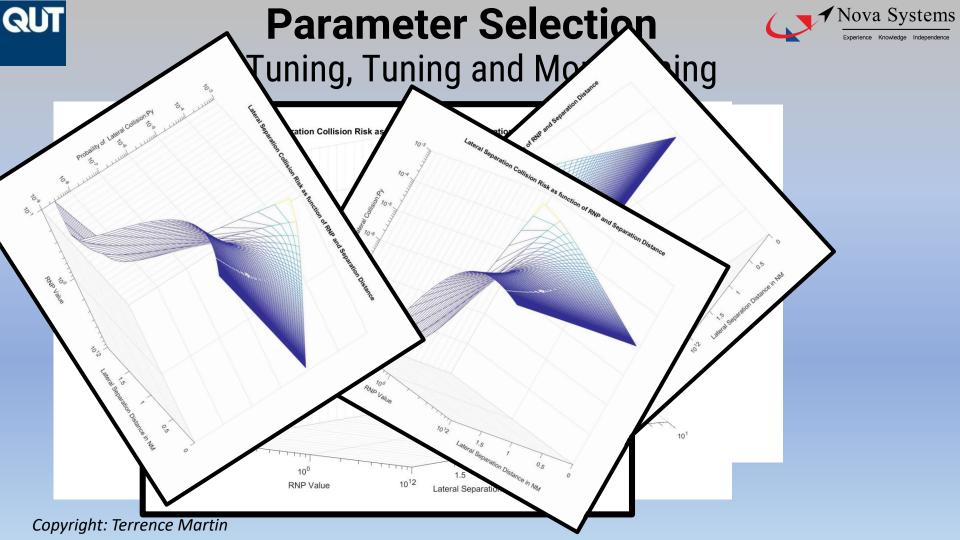
- Longitudinal
 - ICAO Doc 9689 Appendix 1 [4]
 - Ryota Mori, 2014 [5]
 - Walton, SASP 2012 [9]
 - Andersen, RGCSP/10-WP/9 , 2000, [7]
- Lateral & Vertical
 - *EUR/SAM Corridor: 2016 Collision Risk Assessment,* ARINC [8]
 - *Risk Assessment of RNP10 & RVSM in the South Atlantic Flight Identification Regions"* [6]

Model Parameter Scaling

	Manned ICAO 9689 []	UAV Extrapolation				
Aircraft Width (Λ_y)	193.12	3.3 feet				
Aircraft Length (Λ_{χ})	174.45 feet	3.3 feet				
Aircraft Height (Λ_z)	55.43 feet	1.5 feet				
Average Relative longitudinal Speed $ \overline{\Delta V} $	20 kts	2 kts				
Average Relative Vertical Speed z	1.5 kts (RNP 10)	0.15 kts				
Average Relative Lateral Speed $ \dot{y} $	20 kts	2 kts				
Aircraft Aircraft Speed $ \overline{V} $	475 kts	30 kts				
Relative Velocity Collision $(2V_{rel}^C)$	Range: 71-95	7 kts				
$E_y(same)$	Sect 3.4	Varied Traffic Levels under examination				
$E_{\mathcal{Y}}$ (opp)	0					

Copyright: Terrence Martin

SOURCE: ICAO Doc 9689 Appendix A: GENERAL COLLISION RISK MODEL FOR DISTANCE-BASED SEPARATION ON INTERSECTING AND COINCIDENT TRACKS



Model Parameter Scaling Vertical Risk

Parameter	Manned ARINC [x]	UAV Extrapolation
AAD Typical Performance Parameter within DDE: A1	22.3	2
AAD Non-Nominal Performance Parameter within DDE: A1	123.9	12
AAD: Alpha	1.1e-5	1.1e-5
ASE Mixture Overall Mean	4.38 ft	0 ft
ASE Mixture Overall SD	44.14 ft	25 ft
$P_{z}(0)$		0.0393

And Many more.....

Summary

- Separation by segregation is not scalable for any UTM which wants to be commercially viable
- Needs a separation standard: how far apart should we put UAV Traffic: in each dimension.
- Needs improved data on sensor performance variability, traffic projection, LTE network latency.
- What TLS? Will RNP and Height Keeping Standards Apply.
 - If not, what?
- Who will drive this standard? Will there even be one?

THE END

References

- [1] Reich P. G, "Analysis of Long-Range ATS Separation Standards I, II, and III," The Journal of (the Institute of) Navigation, 1966
- [2] S. Endoh, "Aircraft Collision Models", Flight Transportation Laboratory Report R82-2, 1982.
- [3] ICAO Doc 9992, PBN Airspace Design Manual.
- [4] ICAO Doc 9689, "Manual on the Airspace Planning Methodology on the Determination of Separation Minima", 1998
- [5] Ryota Mori, "Refined Collision Risk Model for Oceanic Flight Under Longitudinal Distance-Based Separation in ADS-C Environment", The Journal of Navigation (2014), 67, 845–868.
- [6] Geert Moek, Edward Lutz, William Mosberg, "Risk Assessment of RNP10 and RVSM in the South Atlantic Flight Identification Regions", ARINC Incorporated, May 7, 2001
- [7] D. Anderson, Dr. X.G. Lin, "An Extended Methodology for the Longitudinal Same Track Separation", RGCSP/10-WP/9 11/4/00 10th MEETING Montreal, May 2000
- [8] EUR/SAM Corridor: 2016 Collision Risk Assessment, ENAIRE, 29 May 2017
- [9] Madison Walton, "The Interaction between Assumed Navigational Performance and the ADSC Reporting Rate associated with the estimated longitudinal CRM for the 30 NM Longitudinal Separation Standard", SASP 20th Meeting of the Working Group, Montreal, Canada, 14-25 May 2012
- [10] RTCA DO-362, C2 Data Link Minimum Operational Performance Standards (Terrestrial), September 2017
- [11] ICAO Doc 9869, AN/462, Manual on RCP, 2006
- [12] RTCA DO-343, "MASP for AMS(R)S Data and Voice Communications Supporting RCP and RSP in Procedural Airspace", 2013
- [13] EUROCAE ED-122/ RTCA DO-306, "Safety and Performance Standard for Air Traffic Data Link Service in Oceanic & Remote Airspace", 2011
- [14] ICAO Doc 9905/AN471, "RNP Authorization Required (RNP AR) Procedure Design Manual", 2009
- [15] JARUS, "Required C2 Performance (RLP) Concept", May 2016
- [16] H.W Kim, "Presentation to RTCA SC-228 on CNCP Architecture", ETRI Korea, 2017

[17] [18]

[19] FAA Safety Management System (SMS) and Acquisition Management System (AMS) Guidance Document