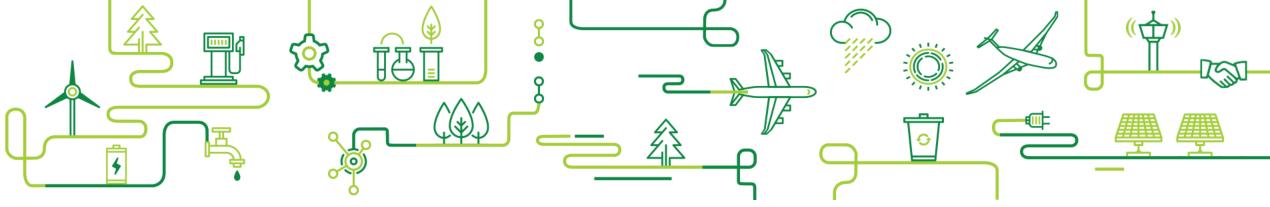


Enabling a green aviation transition

Stephen Arrowsmith

Chief Expert, Environmental Protection – European Union Aviation Safety Agency (EASA)


Enabling a green aviation transition: How green is an aircraft?

Stephen Arrowsmith

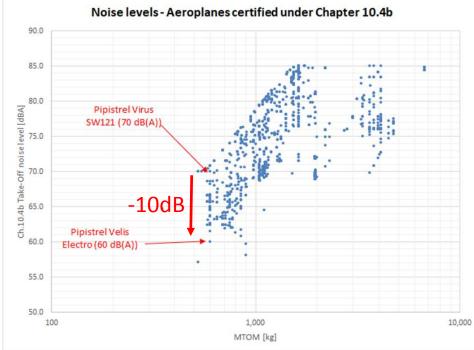
Chief Expert – Environmental Protection European Aviation Safety Agency (EASA)

Supporting innovation

- Existing ICAO certification requirements assess the environmental performance of the aircraft design and technology (e.g. Annex 16 Volume III aeroplane CO₂ emissions standard).
- > Innovative sources of energy for the aviation sector is a key issue to reduce emissions (e.g. drop-in sustainable aviation fuels, hydrogen, electricity).
- > Regulatory framework needs to anticipate and adapt in order to incentivise the uptake of innovative technologies by quantifying and crediting the environmental benefits.
- Various initiatives on electrification of aviation in Europe.

Electric / hybrid aircraft initiatives

- ➤ EASA certified the Pipistrel Virus Electro in June 2020
 the first fully electric general aviation aircraft.
- Similar on-going work also taking place on eVTOL urban taxis and UAS drones.
- Norway's regional air transport system vision:
 - ➤ By **2030**, 1st scheduled domestic flight with electrified aircraft.
 - By **2040**, all civil domestic aviation operated with electrified aircraft, reducing emissions by at least 80% compared with 2020.
 - CAA Norway EASA Innovation Partnership to work towards this vision with industry partners.



Environmental benefits of electrification

- Pipistrel Virus Electro certified against existing ICAO Annex 16 Vol. I noise certification requirements.
 - Significant reduction in noise certified levels due to absence of engine source noise.
 - No emissions certification requirements.

- Issues with measuring emissions performance
 - \triangleright CO₂ emissions dependent on electricity energy mix (e.g. 58 to 773 gCO₂/kWh).
 - Use of renewable energy to generate electricity (29% share in EU) shifts CO₂ emissions impact from aircraft operation to production / maintenance / end of life recycling.
 - Life cycle assessment methodology (various international standards).
 - ➤ Would existing ICAO aeroplane CO₂ standard credit the emissions reductions from novel electrification technology?

Summary

- > Regulatory framework needs to **anticipate and adapt** to novel green technology in order to incentivise uptake by aviation sector.
- **Cooperation between all stakeholders** is essential to realise emission reductions.
- > Novel technology/design/energy sources offer emissions and noise benefits. Quantifying and crediting these benefits is critical to support innovation.
- > EASA European Aviation Environmental Report aims to support that by providing an objective view on the environmental performance of the European aviation sector.

Thank You

ICAO Headquarters Montréal European and North Atlantic (EUR/NAT) Office Paris

> Middle East (MID) Office Cairo

Western and Central African (WACAF) Office Dakar

> Asia and Pacific (APAC) Office Bangkok

Asia and Pacific (APAC) Sub-office Beijing

Eastern and Southern African (ESAF) Office Nairobi

North American
Central American
and Caribbean
(NACC) Office
Mexico City

South American (SAM) Office

