

Earth System Research Laboratories

Center for International Climate Research

Climate change and aviation

David S Lee, Manchester Metropolitan University, UK David Fahey, NOAA Earth System Research Laboratories, USA Jan S Fuglestvedt, CICERO and IPCC Vice Chair Working Group I, Norway

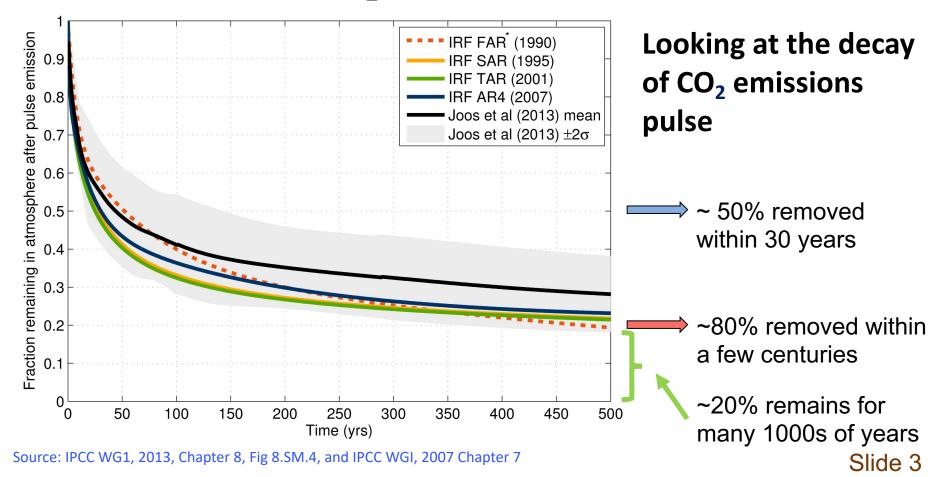
Earth System Research Laboratories

°CICERO

Center for International Climate Research

Climate change context

- Extensive recent background and advances
- A scientific reminder on CO₂
- Aviation and climate
- Challenges



Earth System Research Laboratories

Climate Research

The importance of CO₂ – a scientific reminder

Earth System Research Laboratories

Center for International Climate Research

A scientific reminder of the metrics used

• 'Radiative Forcing' (RF, in watts per square metre) is used to quantify present-day impacts from current and (largely) historical emissions (in the case of long-lived greenhouse gases) as it has an approximately linear relationship with the equilibrium global mean surface temperature change $(\Delta T_s \text{ in Kelvin})$ since the onset of industrialization

$$\Delta T_s = \lambda RF$$

- Where λ is the climate sensitivity parameter in K (Wm^-2)^-1
- Since IPCC AR5, the scientific community is now using the 'Effective Radiative Forcing' (ERF), since it accounts for fast feedbacks from e.g. clouds, aerosols better and has a better relationship with ΔT_s

Earth System Research Laboratories

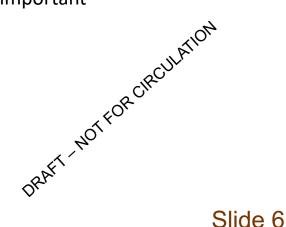
°CICERO

Center for International Climate Research

		Emitted ompound	Resulting atmospheric drivers		Radiative f	orcing by	emissio	ons and		Level of onfidence
Anthropogenic	gases	CO2	CO2				H		1.68 [1.33 to 2.03]	VH
	suoqua	CH_4	CO_2 $H_2O^{str} O_3$ CH_4		I I I I	F F			0.97 [0.74 to 1.20]	н
	Well-mixed greenhouse	Halo- carbons	O ₃ CFCs HCFCs				l I		0.18 [0.01 to 0.35]	н
	Well-m	N ₂ O	N ₂ O				l		0.17 [0.13 to 0.21]	VH
	<u>s</u>	СО	CO ₂ CH ₄ O ₃			H ¦			0.23 [0.16 to 0.30]	М
	d aeroso	NMVOC	CO_2 CH_4 O_3			I I⊷I	l I		0.10 [0.05 to 0.15]	М
	gases and aerosols	NO _x	Nitrate CH ₄ O ₃			1	I		-0.15 [-0.34 to 0.03]	М
	t p	erosols and precursors Mineral dust,	Mineral dust Sulphate Nitrate Organic carbon Black carbon				l l		-0.27 [-0.77 to 0.23]	н
	0	SO ₂ , NH ₃ , rganic carbon Black carbon)	Cloud adjustments due to aerosols	—			l I		-0.55 [-1.33 to -0.06]	L
			Albedo change due to land use						-0.15 [-0.25 to -0.05]	М
Natural		Changes in solar irradiance				H I			0.05 [0.00 to 0.10]	М
Total anthropogenic					2011		-		2.29 [1.13 to 3.33]	н
RF relative to 1750					1980				1.25 [0.64 to 1.86]	н
					1950				0.57 [0.29 to 0.85]	М
				-	•	D	1	2	3	
	Radiative forcing relative to 1750 (W m ⁻²)									

Source: IPCC WGI, 20013, SPM, Figure SPM.5

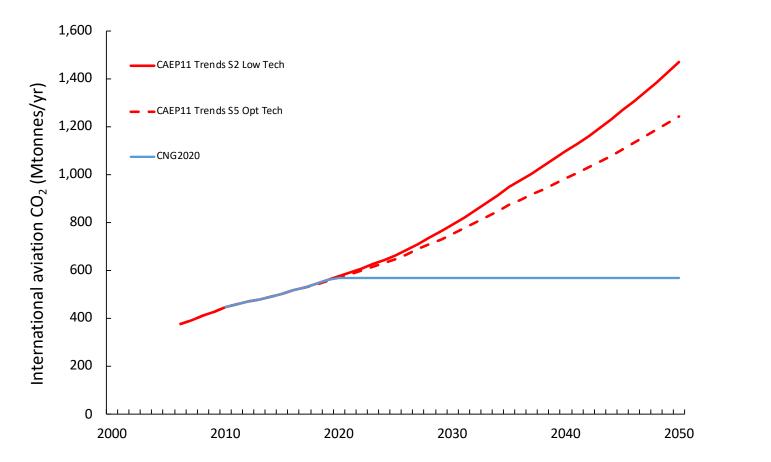
Slide 5



Climate Research

Aviation is more than CO₂

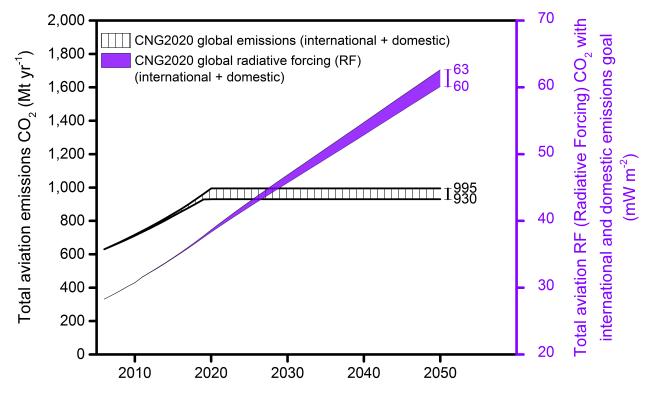
- The non-CO₂ impacts are ~65% of the present-day *Effective Radiative Forcing* from historical and current emissions
- They have larger uncertainties than CO₂ but
- Non-CO₂ impacts remain important


Earth System Research Laboratories

Center for International Climate Research

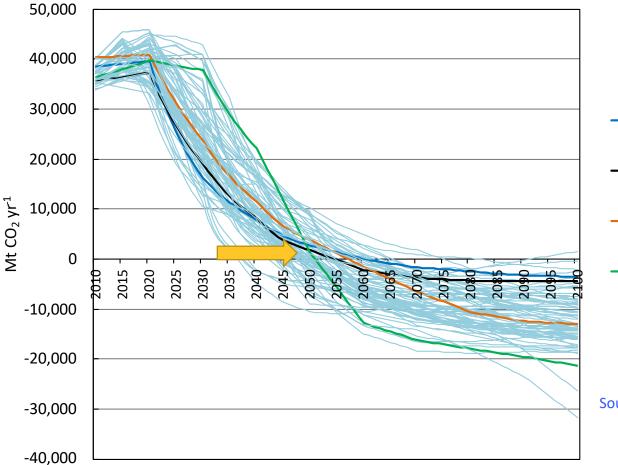
Slide 7

International aviation CO₂ emissions



°CICERO

Climate Research


Why CO_2 is so difficult –scenario applying CNG2020 emissions of aviation CO_2

If the emissions stop increasing (stay constant in this case), the concentrations of CO_2 in the atmosphere continue to accumulate, and therefore the RF (and temperature response) continue to increase

IPCC 1.5 degrees CO₂ emission data

Continued aviation CO_2 emissions to 2050 will be inconsistent with 1.5 degree emission

°CICERO

Center for International Climate Research

Scenarios P1 – P4 are illustrative pathways, see IPCC SR1.5 SPM for summary

Source: IPCC SR1.5 WGI re-drawn

•P1


—P2

P3

P4

Slide 9

Center for International Climate Research

Ongoing and potential future mitigation measures

Measures

CORSIA

CO₂ Airplane Standard

Operational improvements

Lower C footprint biofuels

Carbon neutral synthetic fuels

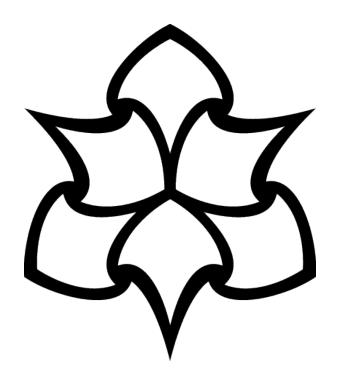
- CO₂ Change in non-CO₂
 - ×

1

- ✓ (if fuel \downarrow ; small \downarrow NO_x, if ≈ EI), potentially small \uparrow in contrails
- ✓ (if fuel \downarrow ; small \downarrow NO_x, if \approx EI)

 ✓ reduced aromatics, S in fuel: decreased contrails, decreased direct negative RF from S aerosol, unknown changes in aerosol – cloud interactions.

Earth System Research Laboratories



Center for International Climate Research

Summary

- Achieving CNG2020 for international aviation CO₂ emissions will still result in a continued <u>increase</u> in RF (and temperature contribution)
- Aviation has additional non-CO₂ emissions, adding to the sector's RF and temperature contribution
- To meet Paris Agreement goals (Article 2a, 4) and net zero emissions by 2050*, continued CO₂ emissions from international aviation are problematic

* IPCC SR1.5 SPM C1 "In model pathways with no or limited overshoot of 1.5°C, global net anthropogenic CO₂ emissions decline by about 45% from 2010 levels by 2030 (40–60% interquartile range), reaching net zero around 2050 (2045–2055 interquartile range)" Slide 11

