

Subsonic Fixed Wing Project N+3 (2030-2035) Generation Aircraft Concepts -Setting the Course for the Future

- Presented by Fay Collier, Ph.D. PI, Subsonic Fixed Wing Project Fayette.S.Collier@nasa.gov
- Aviation and Alternative Fuels Workshop ICAO, Montreal, Quebec February 11, 2009

- US Policy on Aeronautics
- SFW System Level Metrics
- N+3 NRA Study Concepts
- N+3 NASA In-house Study Concepts
- Questions or Comments

National Aeronautics R&D Policy and Plan

Policy

- Executive Order signed December 2006
- Outlines 7 basic principles to follow in order for the U.S. to "maintain its technological leadership across the aeronautics enterprise"
- Mobility, national security, aviation safety, security, workforce, energy & efficiency, and environment
- Plan (including Related Infrastructure)
 - Plan signed by President December 2007
 - Goals and Objectives for all basic principles (except Workforce, being worked under a separate doc)
 - Summary of challenges in each area and the facilities needed to support related R&D
 - Specific quantitative targets where appropriate
 - More detailed document/version to follow later in 2008

Executive Order, Policy, Plan, and Goals & Objectives all available on the web

For more information visit: http://www.ostp.gov/cs/nstc/documents_reports

SFW System Level Metrics

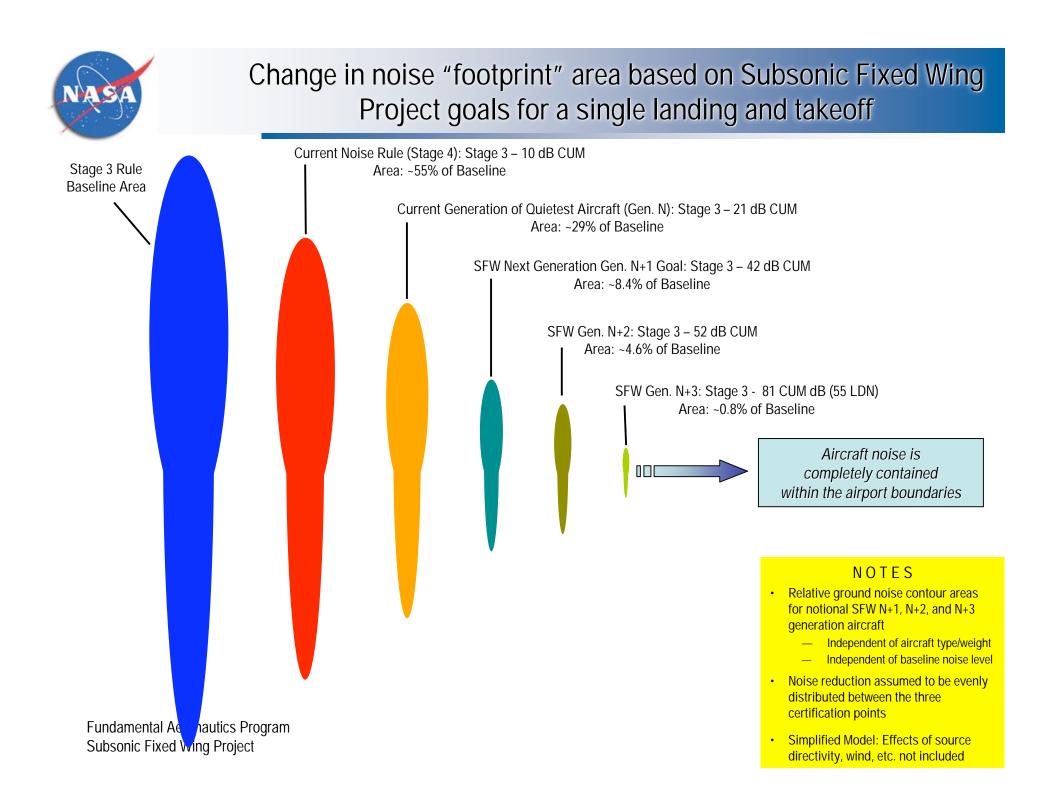
.... technology for dramatically improving noise, emissions, & performance

CORNERS OF THE TRADE SPACE	N+1 (2015 EIS) Generation Conventional Tube and Wing (relative to B737/CFM56)	N+2 (2020 IOC) Generation Unconventional Hybrid Wing Body (relative to B777/GE90)	N+3 (2030-2035 EIS) Generation Advanced Aircraft Concepts (relative to user defined reference)
Noise	- 32 dB (cum below Stage 4)	- 42 dB (cum below Stage 4)	55 LDN (dB) at average airport boundary
LTO NOx Emissions (below CAEP 6)	-60%	-75%	better than -75%
Performance: Aircraft Fuel Burn	-33%**	-40%**	better than -70%
Performance: Field Length	-33%	-50%	exploit metro-plex* concepts

** An additional reduction of 10 percent may be possible through improved operational capability

* Concepts that enable optimal use of runways at multiple airports within the metropolitan areas

--- EIS = Entry Into Service; IOC = Initial Operating Capability


<u>Approach</u>

- Enable Major Changes in Engine Cycle/Airframe Configurations
- Reduce Uncertainty in Multi-Disciplinary Design and Analysis Tools and Processes
- Develop/Test/ Analyze Advanced Multi-Discipline Based Concepts and Technologies
- Conduct Discipline-based Foundational Research

- Identify advanced airframe and propulsion concepts, as well as corresponding enabling technologies for commercial aircraft anticipated for entry into service in the 2030-35 timeframe, market permitting
 - Advanced Vehicle Concept Study
 - Commercial Aircraft include both passenger and cargo vehicles
 - Anticipate changes in environmental sensitivity, demand, & energy
- Results to aid planning of follow-on technology programs

N+3 Advanced Concept Study NRA

- 29 Nov 07 bidders conference
- 15 Apr 08 solicitation
- 29 May 08 proposals due
- 2 July 08 selections made
- 1 Oct 08 contract start
- Phase I: 18 Months
 - NASA Independent Assessment
 @ 15 months
- Phase II: 18-24 Months with significant technology demonstration

- Develop a Future Scenario for commercial aircraft operators in the 2030-35 timeframe
 - provide a context within which the proposer's advanced vehicle concept(s) may meet a market need and enter into service.
- Develop an <u>Advanced Vehicle Concept</u> to fill a broad, primary need within the future scenario.
- Assess <u>Technology</u> Risk establish suite of enabling technologies and corresponding technology development roadmaps; a risk analysis must be provided to characterize the relative importance of each technology toward enabling the N+3 vehicle concept, and the relative difficulty anticipated in overcoming development challenges.
- Establish <u>Credibility and Traceability</u> of the proposed advanced vehicle concept(s) benefits. Detailed System Study must include:
 - A current technology reference vehicle and mission
 - to be used to calibrate capabilities and establish the credibility of the results.
 - A 2030-35 technology conventional configuration vehicle and mission
 - to quantify improvements toward the goals in the proposer's future scenario due to the use of advanced technologies, and improvements due to the advanced vehicle configuration.
 - A 2030-35 technology advanced configuration vehicle and mission

Boeing Subsonic Ultra-Green Aircraft Research (SUGAR)

A Wide Variety of Concepts Will Be Considered

Engineering, Operations & Technology | Phantom Work

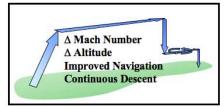
Joined Wing

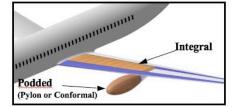
Hydrogen Powered



Platform Performance Technology

Strut-braced Wing


Aerial Refueling


Hybrid Wing Body

Formation Flight

Changes in Mission & Operation


Podded or Integral Batteries

Other Concepts from Worksh

Northrop Grumman

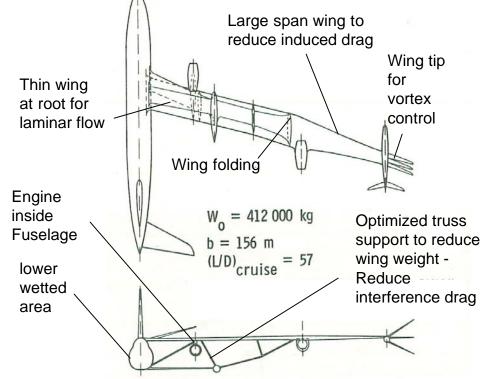
Massachusetts Institute of Technology

Aircraft & Technology Concepts for an N+3 Subsonic Transport

- MIT
- Aurora
- Aerodyne
- Pratt & Whitney
- Boeing PW

General Electric

Small Commercial Efficient & Quiet Air Transportation for 2030-2035



Truss-Braced Wing (TBW) Research

NASA In-house, NIA, Virginia Tech, Georgia Tech N+3 Study

- What: Develop and design a revolutionary Truss-Braced-Wing (TBW) subsonic transport aircraft concept.
- Why: In 1988, Dennis Bushnell, Langley Chief Scientist challenged the aeronautic community to develop a passenger transport aircraft with Lift/Drag ratio of 40. BWB & Pfenninger's TBW have the potential to meet this challenge.
- How: Develop full Multidisciplinary Design Optimization (MDO) analysis tool for TBW design to increase span, reduce weight and drag with thin wing for natural laminar flow, reduced wetted area, folding wing & flight-control, vortex control, advanced composite, efficient engine in fuselage, bio-fuel.

• Revolutionary: If successful, this design will Double the Lift/Drag ratio of a conventional transport aircraft

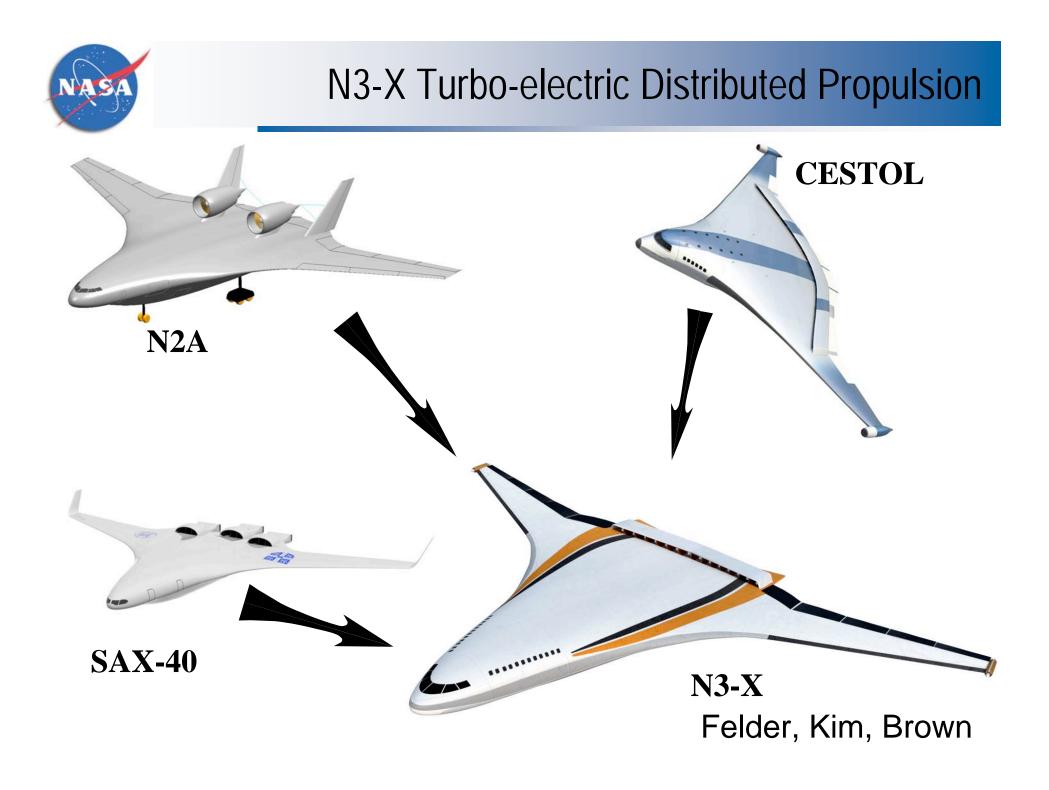
Distributed Turboelectric Propulsion Vehicle

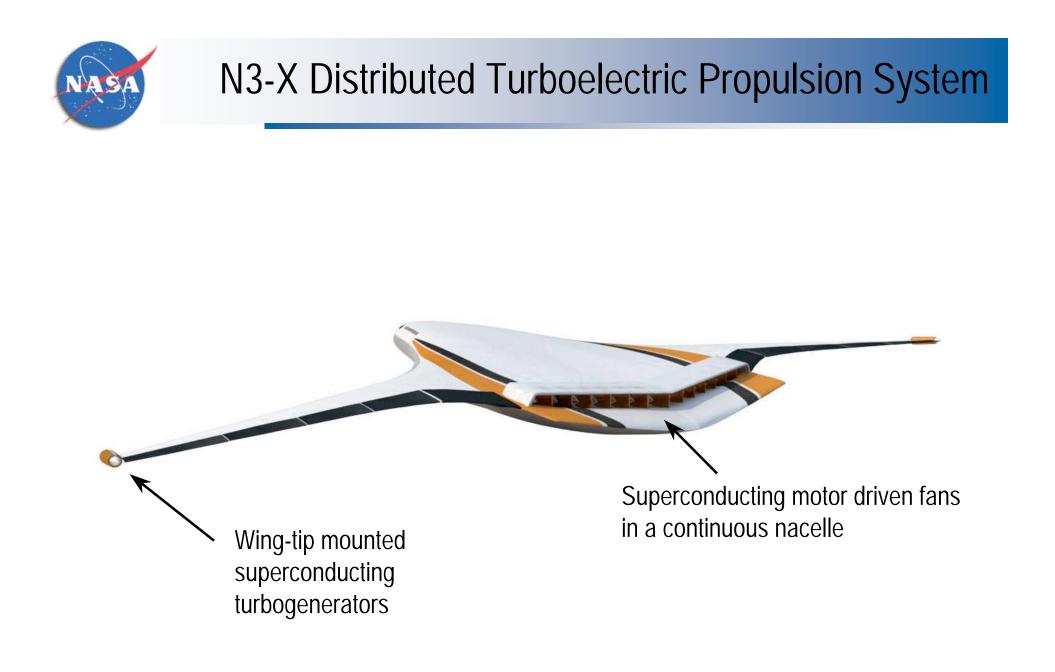
NASA In-house N+3 Study (Workshop in progress at GRC)

Turboelectric Engine Cycle

• Decoupling of the propulsive device (fans) from the power-producing device (engine core) -> High performance and design flexibility of aircraft

• High effective bypass ratio -> High fuel efficiency due to improved propulsive efficiency and maximum energy extraction from the core


• Distributed power to the fans -> Symmetric thrust with an engine failure

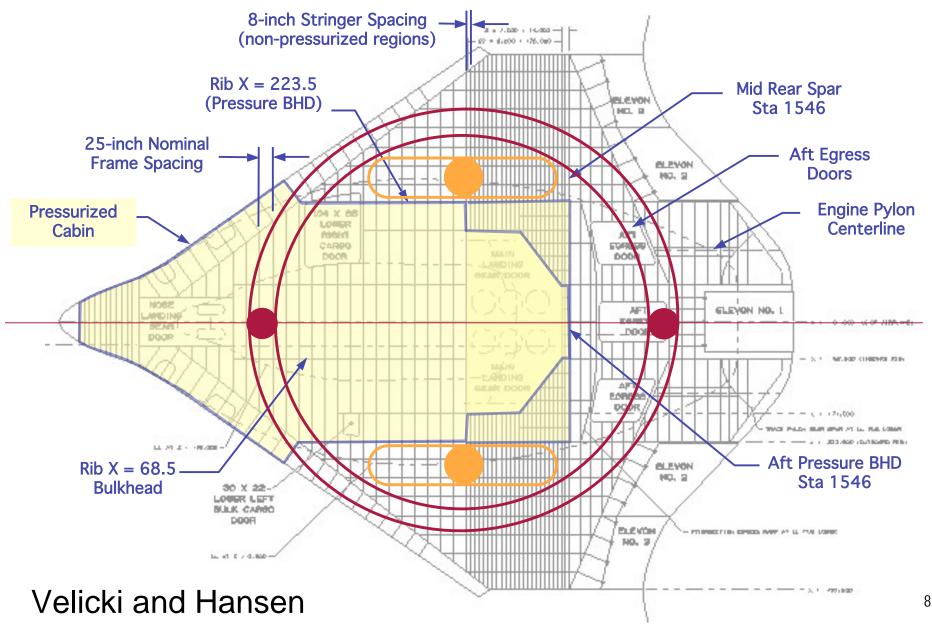

Lightweight High Temperature Superconducting (HTS) Components

- Superconducting motor and generator structures
- Low-loss AC superconductor
- Compact cryocooler
- LH2 tankage (if desired)
- HTS electric power distribution components

Propulsion Airframe Integration

- Large BLI high aspect ratio short inlet and vectoring nozzle
- Distributed fan noise reduction through wing and jet-tojet shielding
- Engine core turbomachinery noise suppression
- Direct spanwise powered lift
- Aircraft control using fast response electric fan motor and/or vectoring nozzle
- Wing-tip mounted engine core/generator
 Aeroelasticity, tip vortex interaction

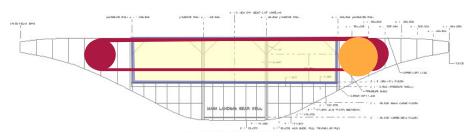
Felder, Kim, Brown



- Jet fuel with Refrigeration
 - Jet-A fuel weight is baseline for comparison
- Liquid Hydrogen cooled and fueled
 - No refrigeration required
 - 4 times the volume & 1/3 the weight of the jet fuel baseline
- Liquid Methane cooled and fueled
 - 5% of the baseline refrigeration
 - 64% larger volume & 14% less weight the jet fuel baseline
- Liquid Hydrogen cooled and Hydrogen/Jet-A fueled
 - No refrigeration required
 - 32% larger volume & 6% less weight than the jet fuel baseline
- Liquid Methane/Refrigeration cooled and Methane/Jet-A fueled
 - 5% of the baseline refrigeration

– 17% larger volume & 2% less weight than the jet fuel baseline
 Fundamental Aeronautics Program
 Subsonic Fixed Wing Project
 Felder, Kim, Brown

Structural Concepts for Storing the LH2



Structural Concepts for Storing the LH2

View Looking Inboard at Rib X = 68.5 (Cabin Divider)

Landing Gear Bulkhead

Fundamental Aeronautics Program Subsonic Fixed Wing Project Velicki and Hansen

Possible Turboelectric - HWB advantages

The turboelectric/hybrid wing body approach may meet 3 of the 'N+3' goals as well as reduce runway length.

Fuel Burn/NOX:

- BLI drag reduction
- 14 fans allows clean integration of large fan area from low fan pressure ratio
- Large turbomachinery core with many embedded, distributed propulsors = very high bypass ratio
- Fan/turbine at any desired speed
- Clean air to turbogenerators
- Asymmetric thrust reduces aero surface drag for control and trim
- <0.5% transmission loss

Noise:

- Low pressure fans for low fan nozzle velocity
- Fan nozzle at surface back from trailing edge
- Low turbogenerator exhaust velocity
- Asymmetric thrust reduces control deflection
- Low cabin noise due to remote location of fans and turbogenerators.

Field Length:

- Blowing at low speed/high power delays separation and increasing lift coefficient
- "Blown" pitch effector
- Higher static thrust

Felder, Kim, Brown

Exotic fuel trades

For same aircraft configuration

- Liquid hydrogen
 - Lower takeoff gross weight, possibly higher empty weight (tankage)
 - Many operational and engineering challenges to solve
 - Method of H₂ production (present method very pollutive), and infrastructure issues
- Liquid Methane
 - Positive benefits lie in-between kerosene and Hydrogen
 - Modest reduction in CO₂ and NOx
- Nuclear-powered
 - Weight of reactor dependent on shielding requirements
 - CO₂ depends on fuel (but greatly reduced). NOx production probably substantially less or about equal to base (based on study assumptions)
 - Safety and acceptance difficult
- Fuel cell powered
 - True zero-emissions (depending on source of H2)
 - Fuel cell technology has a long way to go for transport application (20-25 years)

Fundamental Aeronautics Program Subsonic Fixed Wing Project

Snyder

Questions or Comments

