
AVIATION OPERATIONAL MEASURES FOR FUEL AND EMISSIONS REDUCTION WORKSHOP Weight Management

Florentina Viscotchi Section Chief C Series Aircraft Configuration

BOMBARDIER

To reduce fuel consumption, Mass Properties Discipline can help on two parameters.

Weight

Reduce aircraft weight

Center of Gravity

 Optimised Center of Gravity (CG) position to reduce trim drag to minimum.

Reduced fuel consumption

- Aircraft are designed to be safe, satisfy certification requirements and meet mission performance requirements.
- To be competitive this requires low weight and optimized C. G. to ensure aircraft operating costs are kept to a minimum and this is principally achieved by low mission fuel burn.
- Weight minimization, aircraft drag reduction and engine fuel burn are areas that are continuously challenged throughout an aircraft development program.

Rule of thumb, for regional jets and business applications:

- additional fuel requirement: approx2.6 % of OWE weight increase x hours flown
 - e.g. extra weight = 500 kg
 - flight time = $1.5 \text{ hours} \sim 500 \text{ nm}$.
 - extra fuel burn = 30 50 kg
 - $\text{ extra CO}_2 = 100 160 \text{ kg}$
 - For Every Flight!

Rule of thumb, for regional jets and business applications:

- assuming 3,000 hours/year
 - extra fuel burn = 60 000 100 000 kg
 - extra $CO_2 = 190\ 000-315\ 000\ kg$
 - extra cost = \$ 41 000 69 000 \$US / years / aircraft
 (@ 2.10\$US /Gallon)
 - and that's just the extra-cost due to fuel, per aircraft!
- Weight control is important

Weight Saving Opportunities.

- Usage of 'fly by wire' (load alleviation) (up to -600 lbs)
- Use of new technology material
 - (composites, AL-LI, titanium, plastic, etc.)(up to -3000 lbs)
- Integrated Avionics / Utilities (merge multiple avionic boxes together) (up to -250 lbs)
- System Integration (more electric aircraft, electrical generators imbedded within the engine, starter generators, (up to -1000 lbs)
- Composite wiring & connectors (up to -120 lbs)
- Usage of light carpet (up to -125 lbs)
- Usage of Chromate free paint (up to -150 lbs)

Weight Saving Opportunities.

- Windshield wipers replacement with rain repellent windshield coating
 - -aircraft weight reduction by approximately 24lb as well as aircraft drag;
 - -Can be achieved if regulators amend 121.313 to allow use of equivalent means for rain dispersal.
- Minimize operating items to minimum (Flt Ops)
 (no extra water, paperless cockpit, consumables for 1 flight only, over water kit only if required, etc.)
- Take advantages of summer vs winter passenger weight. (Flt Ops)

Center of Gravity Optimization.

- Flight with an aft center of gravity help to minimized trim drag.
 - Design flight envelope to minimized trim drag.
 - Move heavy equipment at the back of the A/C.
 - Develop fuel burn sequences between fuel tanks to control CG.
 - Optimized climb profile to minimize fuel burn
 - Manage passenger seating configuration to optimized CG position. (Flt Ops)

Center of Gravity Optimization.

 Fuel trim tank in empennage can help to control the CG at optimum point.

Center of Gravity Optimization.

Wing position and interior arrangement also influences CG position.

Weight Management - Summary

- Weight management is an issue to be addressed by both the aircraft manufacturer and the operator.
- The manufacturer
 - To be competitive, provides lowest weight aircraft possible, meeting mission requirements.
 - Is well aware of the compounded effect of additional empty weight needing more fuel to complete mission
- The operator
 - Manages passenger loads, c.g., aircraft / engine maintenance and mission fuel reserves to minimize operating costs
 - Is well aware that mission fuel is biggest contributor to the variable operating costs (approx 1/3 of costs, considering crew, aircraft & engine maintenance, navigation & landing fees)

Thank you!