ICAO Operational Measures Workshop / Montreal, 20/21 September 2006

Best Practices for Fuel Economy

Presented by:

Olivier HUSSE Senior Performance Engineer

- 28 October 1972: Maiden flight of the A300
- 1973: First energy crisis

Fuel Efficiency

 Airbus is fully committed to fuel economy since the beginning of its existence

A permanent and omnipresent objective for Airbus

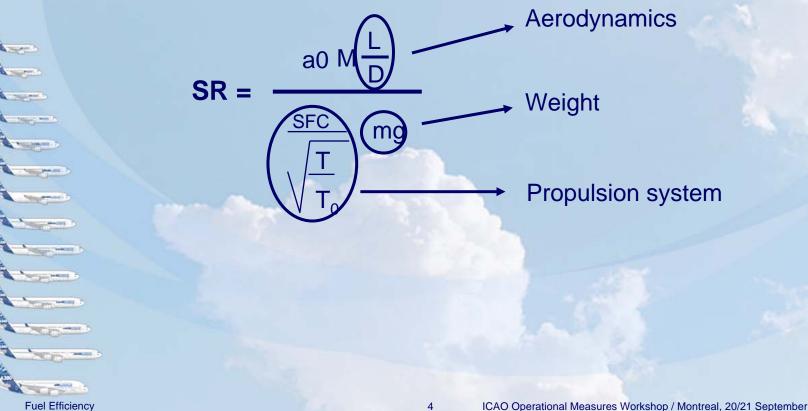
Background

Fuel Efficiency

- A permanent and omnipresent objective for Airbus
- Dedicated efforts made by Airbus
 - in all fields of activity
 - in every phase of product life
 - in all parts of Aircraft
 - in every phase of Aircraft operation

 Experience accumulated jointly by Airbus, Suppliers and Operators has permitted to reach maturity in actually optimising fuel economy

 Incorporation of improvements in technologies, methodologies and modelling techniques, instrumentation, etc., as they become available


3

Dedicated efforts in every phase of operation

What are the physics in operations ?

Dedicated efforts in every phase of operation
To maximise fuel economy, the following is required:

- An aerodynamically clean aircraft

-Well maintained engines

- Good flight planning

- Good flight procedures

Unfortunately there is no magic formula

and the second is

Just the diligent application of well established practices & procedures

- Dedicated efforts in every phase of operation
 - Pre-flight procedures

- -Weight and balance
 - Aircraft loading: further aft Centre of Gravity (CG) position (within allowable range) increases specific range
 - Automatic centre of gravity management through FCMC (Fuel Control and Management Computer)

• Dedicated efforts in every phase of operation

- Pre-flight procedures
 - -Weight and balance

	Aircraft types	Fuel increment KG/1000nm/10%CG	Typical Sector distance (nm)	Fuel increment per sector (kg)
	A300-600	240	2000nm	710
	A310	110	2000nm	330
•	A319/A320/A321	Negligible	1000nm	Negligible
	A330-200	70	4000nm	480
	A330-300	90	4000nm	600
	A340-200	90	6000nm	900
	A340-300	80	6000nm	800
<u> </u>	A340-500	150	6000nm	1550
Efficiency	A340-600	130	6000nm	1300

- Dedicated efforts in every phase of operation
 - Pre-flight procedures

- -Weight and balance
 - Aircraft loading: further aft Centre of Gravity (CG) position (within allowable range) increases specific range
 - Automatic centre of gravity management through FCMC (Fuel Control and Management Computer)
 - Avoid excess weight; eliminate unnecessary weight in order to have the lowest possible ZFW.

- Dedicated efforts in every phase of operation
 - Pre-flight procedures
 - -Weight and balance
 - Aircraft loading: further aft Centre of Gravity (CG) position (within allowable range) increases specific range
 - Automatic centre of gravity management through FCMC (Fuel Control and Management Computer)

 Avoid excess weight; eliminate unnecessary weight in order to have the lowest possible ZFW.

2				And the second se			
	Extra		Fuel used		Extra		Fuel used
A330-300	weight or	Extra Fuel	over a year	A340-500	weight or	Extra Fuel	over a year
1300 nm per sector	fuel in Kg	Used (Kg)	in Kg	6300 nm per sector	fuel in Kg	Used (Kg)	in Kg
	100	6	5650		100	45	14694
	500	26	24500		500	226	73800
	1000	52	49000		1000	453	147900
© AIRUS 2005		1	era	Brank			9
Fuel Efficiency				9 ICAO Operational Measures	Workshop / Montrea	II. 20/21 September 2	2006 AIRBUS

- Dedicated efforts in every phase of operation
 - Pre-flight procedures

Fuel Efficiency

- Quality Flight Planning System features:
 - Good Quality Data:
 - Temperature, wind, aircraft weight, payload, fuel uplift, etc
 - Optimised Speeds and Flight Levels:
 - Flight profiles based on speeds and cruise flight levels that are in accordance with the operators economic criteria
 - For aircraft that can fly in FMGS managed mode, use flight profiles based on operators cost index
 - Optimised Route in terms of track, speed and altitudes:

10

 Compliant with ATC requirements and with the operators economic criteria (fuel & time)

- Dedicated efforts in every phase of operation
 - Pre-flight procedures

- Example of optimised routing
 - Bilateral negotiation, or via IATA, with some local Airworthiness Agencies enables to create more direct routes.
 - As a recent example : a new route in China has been opened. This could save up to 30 mn on the China-Europe flights

- Dedicated efforts in every phase of operation
 - Pre-flight procedures
 - Quality Flight Planning System features:
 - Caracterize aircraft and engine ageing
 - Conduct aircraft performance monitoring program
 - Use factor appropriate to the individual tail number or fleet
 - For more information see «Getting to Grips with Aircraft Performance Monitoring»
 - Minimise Contingency Fuel:
 - Use en-route alternate airports or redispatch procedure when possible
 - Minimise Alternate Fuel:

Fuel Efficiency

Choose alternate airport close to the destination airfield

12

- Dedicated efforts in every phase of operation
 - Pre-flight procedures
 - -Quality Flight Planning System Benefits:
 - Fuel requirements minimised
 - Minimise embarked/contingency fuel through accurate flight planning
 - Achievable Flight Profiles
 - Flight plan prediction of fuel at destination generally achieved (if flight flown as planned)
 - Aircrew have confidence in the flight plan No surprises
 - No need to add extra fuel

Dedicated efforts in every phase of operation

Pre-flight procedures

-MEL, for an airline, provides flexibility in A/C operations

But...

Fuel Efficiency

 For some MEL or CDL items, this flexibility results in higher fuel burn

- So Airbus recommends to rectify these items quickly.

14

- Dedicated efforts in every phase of operation
 - Pre-flight procedures
 - MMEL examples*
 - Nacelle anti-ice valve blocked open :
 - ▶ 0.25% per engine A340/RR,
 - ▶ up to 2% on A330/GE,
 - 0.3% up to 1.7% on A330/PW
 - ▶ 0.5% on A330/RR
 - Wing anti-ice valve blocked open :
 - 2% increase in fuel consumption on A340/CFM,
 - ▶ 1.5% on A330/GE,
 - up to 6% on A330/PW
 - up to 5.5% on A330/RR.

other limitations might be imposed in the MMEL operational part or CDL 15

- Dedicated efforts in every phase of operation
 - Pre-flight procedures
 - MMEL examples*
 - Fuel auto-transfert inoperative :
 - ▶ 1% on A330,
 - from 1.7 to 3.2% for an A340-500
 - from 2 to 3.7% for an A340-600.

- CDL examples*

Fuel Efficiency

- Boomerang seal on aft pylon fairing : 0.4%
- Winglet :1.2% for an A340-500
- Bearver tails : 2.1% for A340/RR

other limitations might be imposed in the MMEL operational part or CDL 16

- Dedicated efforts in every phase of operation
 - Pre-flight procedures

Fuel Efficiency

- Ground Equipment and the APU:
 - Limit use of APU whenever possible (depending on GSE availability and price, on turn-around time...)
 - APU and engine start up time needs careful planning in conjunction with ATC

17

Keep passenger comfort in mind

- Dedicated efforts in every phase of operation
 - Pre-flight procedures
 - Taxying:

Fuel Efficiency

- Taxiing with one (2) engine (s) out saves fuel but some drawbacks to be considered: operators must base their policy on airport config. (taxiways, runways, ramps, etc.)
- Consider uphill taxiway slope and high weights, reduced redundancy, warm up & cool down times, problems away from gate, etc

ICAO Operational Measures Workshop / Montreal, 20/21 September 2006

Dedicated efforts in every phase of operation

- In flight procedures
 - Take-off Flap

- Lowest flap/slat setting will give lowest fuel burn and best flight profile
- Other priorities such as maximising TOW, maximising flex temp, etc may require other flap settings
- Take-off Acceleration Altitude
 - The minimum acceleration altitude required by regulations will optimise fuel consumption
- Computerised Flight Plan
 - As much as possible, stick to CFP flight levels and climb, cruise and descent techniques

- Dedicated efforts in every phase of operation
 - In flight procedures
 - Climb

1st Assigned FL

Fuel Efficiency

 Optimum climb law is depending on the Aircraft, on selected modes and cost indices

20

 In general, it is not profitable to climb at high-speed laws except for time imperatives, neither to climb at very slow climb laws

IOC

CI = M

Dedicated efforts in every phase of operation

- In flight procedures
 - Climb
 - Optimum climb law is depending on the Aircraft, on selected modes and cost indices

Aircraft	Climb		∆Fuel – kg						
	Mach No.	270KT	280 KT	300 KT	320 KT	330 KT			
A300	0.78	+40	+15	0	+5	+10			
A310	0.79		+5	0	+5	+15			
A318/A319/A320	0.78		-15	0	+30	+70			
A321	0.78		-10	0	+25	+60			
A330	0.80	+15	+5	0	+20	+35			
A340-200	0.78	+45	+20	0	+10	+25			
A340-300	0.78	+105	+50	0	-5	+20			
A340-500/600	00 0.82		+135	0	-5	-10			

Dedicated efforts in every phase of operation
 In flight procedures

-Cruise

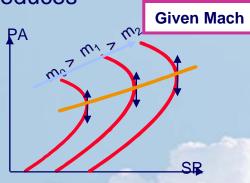
Fuel Efficiency

Cruise is the most important phase in terms of fuel savings

Fuel efficiency during cruise can be optimised by

Cruise with stepped climb

Cruise with an economic speed



- Dedicated efforts in every phase of operation
 - In flight procedures

Fuel Efficiency

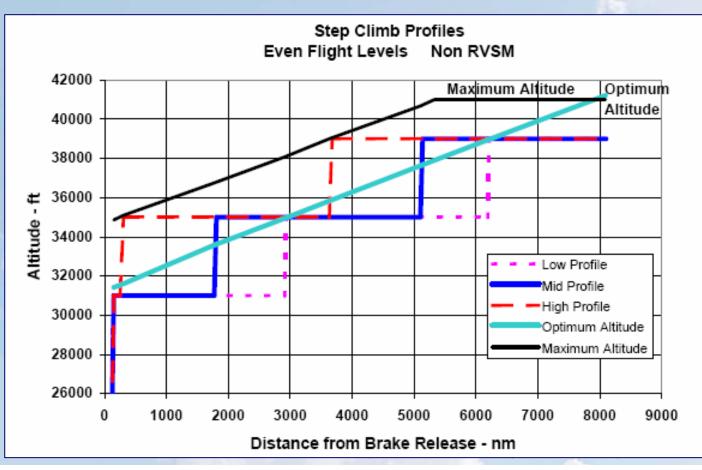
- Cruise with stepped climb
 - Optimum altitude (for time and costs) increases as weight reduces

 When ATC allows them, step climbs are performed to stay close to the optimum.

9

AIRBUS

Dedicated efforts in every phase of operation


In flight procedures

A more

2005

Fuel Efficiency

- Cruise with stepped climb

Fuel Increase

(%)

5.2

5.3

6.2

7.9

6.2

7.9

5.5

5.5

5.6

6.2

6.0

4.1

Fuel Increase

393

378

336

Dedicated efforts in every phase of operation

- In flight procedures
 - -Cruise with stepped climb
 - Delaying climb to the next step should be avoided

Aircraft

A340-212

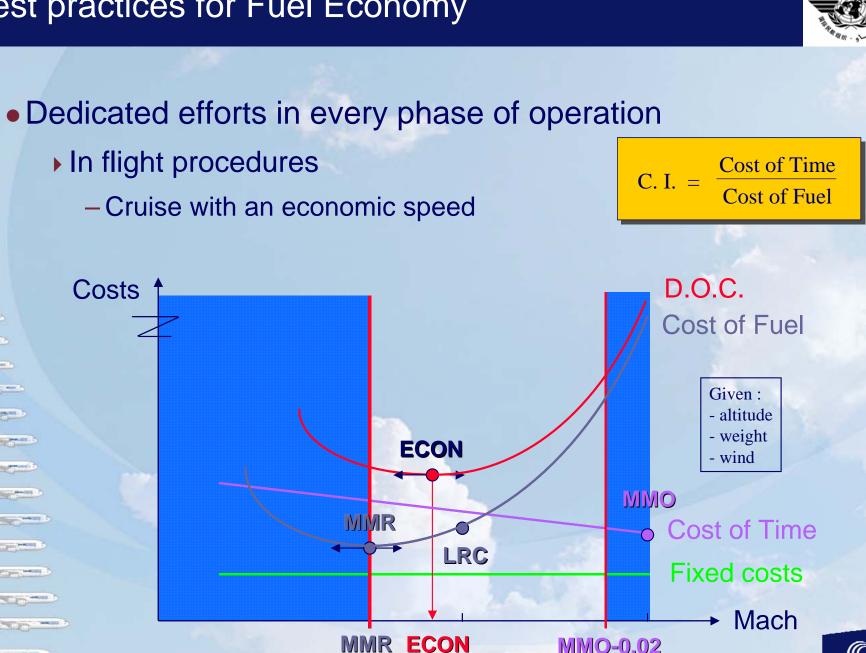
A340-313E

A340-500/600

		Туре	(kg)
urn for a		A300B4-605R	238
segment		A310-324	221
0 with		A318-111	150
FL370		A319-132	184
	-	A320-211	158
		A320-232	187
		A321-112	155
		A330-203	324
		A330-343	342

Dedicated efforts in every phase of operation

- In flight procedures
 - Cruise with an economic speed
 - When possible, it is recommended to fly in managed mode (using FMS).


 Indeed, flying at a given Cost Index provides the benefit of flying at the Optimum Mach Number as a function of aircraft weight, flight level and wind component.

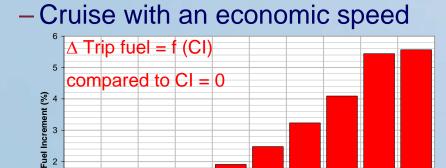
C. I. =
$$\frac{\text{Cost of Time}}{\text{Cost of Fuel}}$$

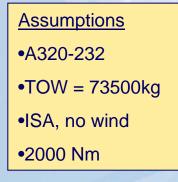
26

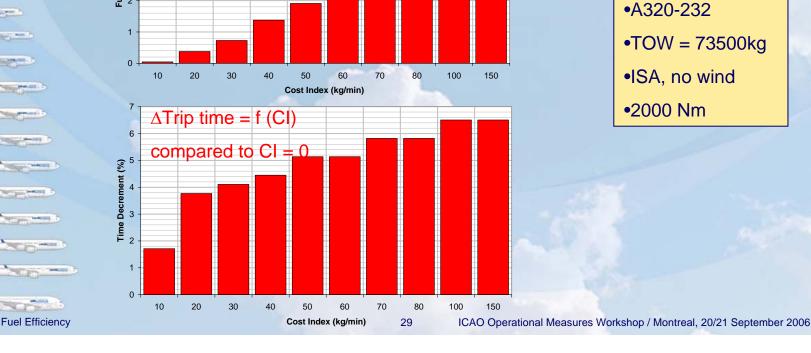
Fuel Efficiency

27

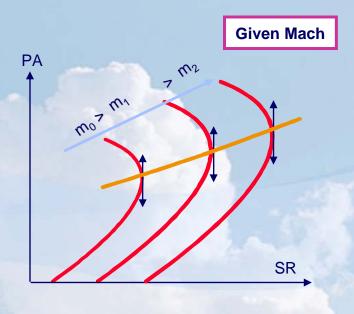
ICAO Operational Measures Workshop / Montreal, 20/21 September 2006


- Dedicated efforts in every phase of operation
 - In flight procedures


- Cruise with an economic speed
 - Optimum cruise altitude and airspeed depend on Aircraft, weight, wind, and cost index (CI)
 - Lowest fuel consumption is obtained at the lowest cost index (however the time penalty has to be watched)
 - A330 at FL350, 50kg of fuel is saved for 10 minutes of additional flight time between CI=0 and CI=20.
 - FMS optimises the flight plan (including the flight profile) accordingly



- Dedicated efforts in every phase of operation
 - In flight procedures

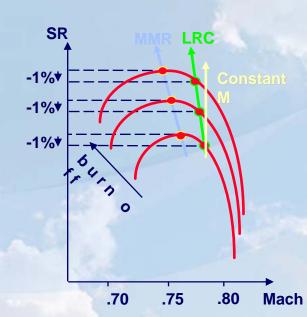

AIRBUS

- Dedicated efforts in every phase of operation
 - In flight procedures

Fuel Efficiency

- Cruise optimization
 - If ATC imposes <u>Mach Number</u>, crew can only optimise altitude and fly on selected mode. Information and recommendations are given in FCOM
 - > a step climb is worthwhile only if the cruise time is long enough

30



- Dedicated efforts in every phase of operation
 - In flight procedures

Fuel Efficiency

- Cruise optimization
 - If ATC imposes <u>Flight Level</u>, crew can only optimise speed and fly on selected mode. Information and recommendations are given in FCOM
 - flying at LRC is recommended
 - wind must be in-depth evaluated...

Given altitude

- Dedicated efforts in every phase of operation
 - In flight procedures
 - Descent

Fuel Efficiency

- Fuel consumption increases significantly with airspeed and also in case of a premature descent
 - Descent performance depends on A/C, weight and cost index

TOD

The lower the cost index, the lower the speed, the less steep the descent path, the longer the descent distance, the greater the descent time, the earlier the top of descent (TOD) point, the lower the fuel consumption

Cl increase

The FMS computes the TOD as a function of cost index

32

CI MAX

CONCISTING OF

- Dedicated efforts in every phase of operation
 - In flight procedures
 - Descent

Fuel Efficiency

From FL350

Туре	∆Fuel – kg									
	240KT	260 KT	280 KT	300 KT	320 KT	330/340KT *				
A300	-55	-60	-30	0	25	35				
A310	-55	-60	-30	0	25	40				
A318, 319, 320	-50	-40	-20	0	20	25				
A321	-35	-40	-20	0	20	35				
A330	-110	-105	-60	0	50	70				
A340-200/300	-70	-90	-50	0	50	75				
A340-500/600	-125	-130	-70	0	70	100				

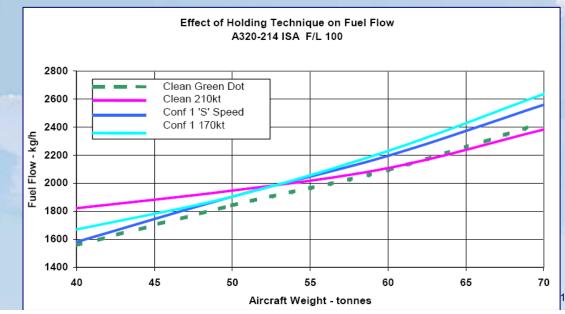
- Dedicated efforts in every phase of operation
 - In flight procedures
 - Holding

A series

Fuel Efficiency

 Green dot speed is the one or 2 engine out operating speed in clean configuration; being approximately the best lift to drag ratio speed, it provides in general the lowest fuel consumption

Actually, Green Dot speed allows a significant increase in speed at the expense of a very limited fuel consumption increase



Dedicated efforts in every phase of operation

- In flight procedures
 - Holding

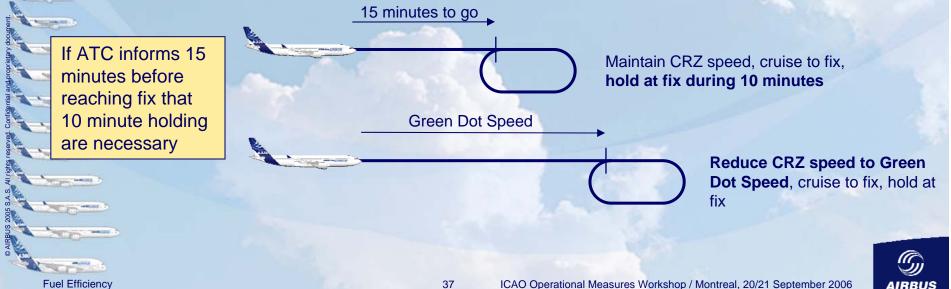
Fuel Efficiency

- Green dot speed is the one or 2 engine out operating speed in clean configuration; being approximately the best lift to drag ratio speed, it provides in general the lowest fuel consumption
 - Green Dot Speed may not be appropriate at some airports. it is then advised to hold at a lower speed, or in FLAP 1 at S speed

AIRBUS

Dedicated efforts in every phase of operation

- In flight procedures
 - Holding
 - Green dot speed is the one or 2 engine out operating speed in clean configuration; being approximately the best lift to drag ratio speed, it provides in general the lowest fuel consumption
 - There is an optimum holding altitude, but holding altitudes are often imposed by ATC


ssumptions		Flight Level	50	100	150	200	250	300	350	400	
FLAP 0		A300B4-605R	4	2	1	0	3	8	16		and the second
		A310-324	11	5	2	0	0	5	9	23	
Green Dot		A318-111	13	8	4	2	1	0	0	5	
Speed		A319-112	19	11	3	1	0	1	0	4	
		A320-214	13	5	3	1	1	1	0	2	
Increase of fuel		A320-232	7	5	5	5	2	0	4	11	
<u>ow (kg/h) in</u>		A321-211	14	11	8	3	0	1	5		
ercent		A330-203	2	1	0	0	2	4	8	18	
		A330-223	9	9	5	2	0	1		14	9462
		A340-343	10	5	1	0	0	2	7	16	
		A340-212	3	2	0	0	2	3	5		
		A340-313E	2	1	0	0	2	3	5		
Fuel Efficiency		A340-642	6	2	0	1	2	3	4	11	eptember 2006

Dedicated efforts in every phase of operation

- In flight procedures
 - Holding
 - Green dot speed is the one or 2 engine out operating speed in clean configuration; being approximately the best lift to drag ratio speed, it provides in general the lowest fuel consumption
 - Holding optimization : linear holding at cruise level and at green dot speed should be considered

- Dedicated efforts in every phase of operation
 - In flight procedures
 - Holding

- Green dot speed is the one or 2 engine out operating speed in clean configuration; being approximately the best lift to drag ratio speed, it provides in general the lowest fuel consumption
 - Holding optimization : linear holding at cruise level and at green dot speed should be considered

Aircraft type	Weight kg	Cruise Flight Level	Cruise Speed	Fuel savings kg	
A300	120000	350	0.8	95	
A310	110000	350	0.8	115	
A318	50000	350	0.78	120	
A319	50000	350	0.78	135	
A320	60000	350	0.78	80	
A321	70000	350	0.78	50	1
A330	180000	390	0.82	95	
A340-200	200000	390	0.82	10	
A340-300	200000	390	0.82	45	
A340-500/600	270000	390	0.82	5	nber 2006

- Dedicated efforts in every phase of operation
 - In flight procedures
 - Approach:

- Keep in clean configuration as long as possible
- Delay gear selection
- A continuous descent approach saves fuel
- Visual approach from downwind saves fuel
- However, do not compromise the stabilised approach philosophy

- Dedicated efforts in every phase of operation
 - In flight procedures
 - Landing Flap:

- The lower flap setting will save fuel
- However consider runway length, exit point, occupancy time, runway surface conditions, tailwind, brake cooling, no Cat 2 or 3 landings, etc

Additional opportunities

Fuel Efficiency

 Aircraft family concept, extensive use of concurrent engineering processes, of virtual mock-ups, more sophisticated simulation testing means (software, laboratory, simulators), increased system reliability, reduce the ground and flight test time, the number of ferry flights, some of the continued airworthiness flight tests

 CCQ/MFF allows short transition training for crew and training flights can be replaced by simulator sessions

FMS improvements and bad weather detection improvements

Maximised load factors, with optimised aircraft /route combinations

41

RVSM (Reduced Vertical Separation Minima) in Europe since Jan. 2002 allows to fly nearer the optimum altitude for fuel burn

Other considerations

Fuel Efficiency

- In the design field, Airbus is involved in considerable research activities, currently in progress, relative to fuel consumption and emissions reduction.
- Collaborative efforts (manufacturers, operators, airports, authorities, finances, passengers) required to efficiently match supply air transport services to demand for an efficient passenger & cargo air transport

42

This document and all information contained herein is the sole property of AIRBUS S.A.S. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. This document and its content shall not be used for any purpose other than that for which it is supplied.

The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, AIRBUS S.A.S. will be pleased to explain the basis thereof.

_s

© AIRBUS 2005