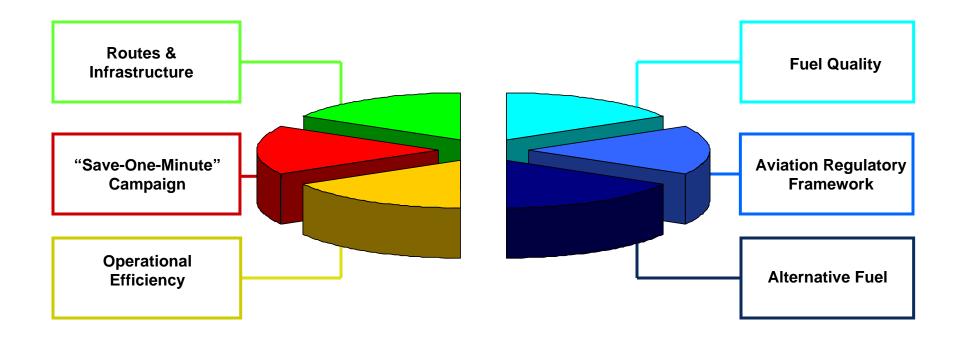


IATA FUEL EFFICIENCY CAMPAIGN

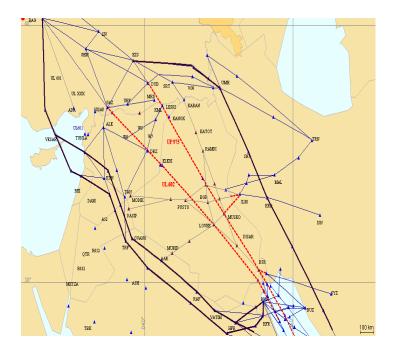
Juergen Haacker Director, Operations

Montreal, 21 September, 2006



IATA Fuel Efficiency Campaign

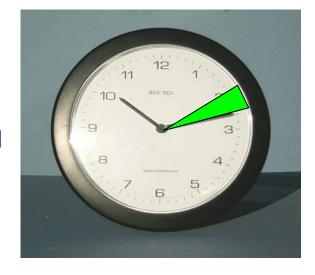
- Jet fuel price driving airline fuel efficiency
 - Increased 5% from 2003 2005
 - ✓ Industry is on track for 10% improvement 2000 2010
- ☐ IATA industry priority 2006: US\$ 1.5 billion fuel savings
 - 7 200 infrastructure enhancements = USD 500 million
 - → "Save-One-Minute" campaign = USD 300 million
 - Operational Efficiency/Go-Teams = USD 700 million


Campaign Elements

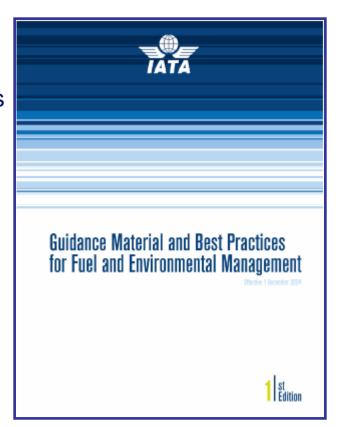
Elements I – Route Improvements

- Identify Route Improvement opportunities
- Calculate Improvement Benefits in cooperation with airlines and OEM's
- Liaise with States and Authorities to ensure implementation

Elements II – Airports


- Analysis of airspace environment
- Identification of improvement opportunities and potentials
- Recommendations for infrastructure enhancements (e.g RNAV)

Elements III – "Save one Minute"


- - → Average air transport flight time is 97 minutes
 - → 40 million operations per year = USD \$400BN
 - ✓ Saving just <u>ONE MINUTE</u> per flight would potentially save over USD \$4BN annually

Elements IV - IATA "FUEL BOOK"

- Provide airlines with "best practices"
 - Developed by IATA Fuel Conservation experts
 - Second edition under preparation
 - Part of IATA Fuel Conservation Training
 - → Fuel Efficiency Benchmark under preparation

Elements V - "GO - Teams"

- Individual on-site assessments
 - ✓ IATA experts from Flight Operations, Dispatch, Engineering&Maintenance
 - Detailed joint analyses of airline procedures and practices
 - Comprehensive recommendation report including potential calculation for each action

FUEL EFFICIENCY CALCU	LATOR					
Price of fuel		US\$/Gal	US\$/kg			
	FUEL PRICE	1.820	0.599			
APU Usage Reduction per cycle	kghr	APUNTS	Target Dep	Target Arr	Cyclestyr	APU Bun
8767-300	150.0	2600	15	5	1,200	330,00
APU Optimization (one pack only)	kg/hr	Dept/min	An/min	Cyclestyr	Savings/kg	Saving
8767-300	35.0	15	5	1,200	14,000	\$8,38
APU Usage 10 minute reduction /cycle	kg/hr	Reduc/Min	Cycles.yr	Savings/kg		Frequer
0767-300	150.0	10	1,200	30000	\$17,972	100%
APU Optimization (one pack)	Kg/hr	hrs/ yr	Savings/kg	Savings/\$	Frequency	
0767-300	35.0	2600	91,000	\$54,516	100%	\$54,5
APU ON Bleed off on ground	Kg/hr	1				

GO Team Assessment – Flight Operations

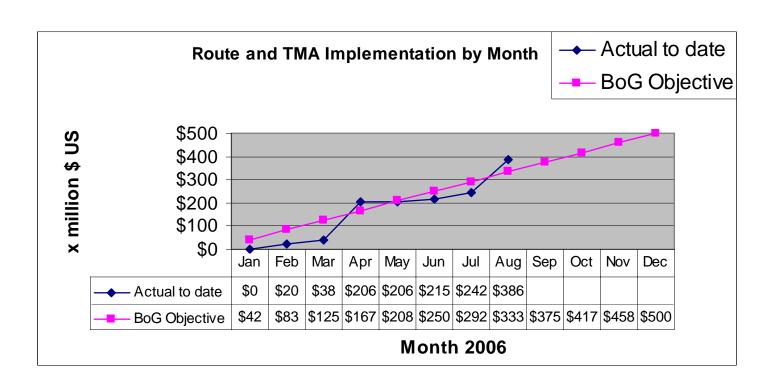
- Review of possible initiatives
 - APU and Air Conditioning Pack management
 - → Fuel additives (Pilots, Dispatch)
 - Pilot technique
 - Mission management (Tactical Cost Index)
 - Low Noise Low Drag approaches (decelerated)
 - Optimal flap settings
 - Idle reverse on landing
 - Engine out taxi
 - Training / fuel conservation awareness
 - Crew proficiency monitoring

GO Team Assessment – Flight Dispatch

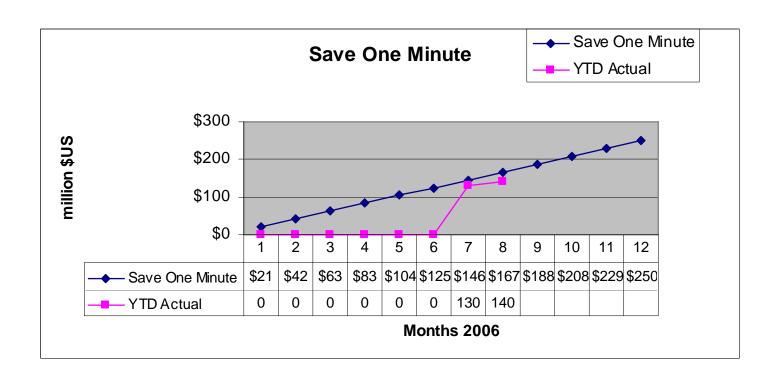
- Flight planning system
 - Optimization method (Min cost, Min Time, Min fuel)
 - → En-route Navigation Charges
 - Dynamic Use of Cost Index
- Re-dispatch technique
 - Reduce fuel and increase payload.
- Alternate airport selection
- Reserve fuel policy
- Zero Fuel Weight Accuracy
 - It is very inefficient to load fuel for non-existent payload.

GO Team Assessment – E & M

- Aircraft performance monitoring
 - Application of modern communication (Datalink)
 - Criteria for "underperformance" / alert levels
- Regular review with Flight Operations
- Maintenance program
- Engine overhaul planning
- Structural alignment (flaps, doors)
- Training on fuel conservation
- "Cross divisional " cost benefit analysis

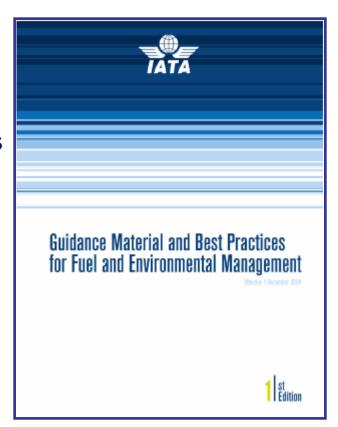

Implementation support

- Individual consultancy services
- Establish individual conservation program
- Support introduction of associated enhancements to organization and processes



Route and Infrastructure Improvements

"Save-One-Minute" Campaign

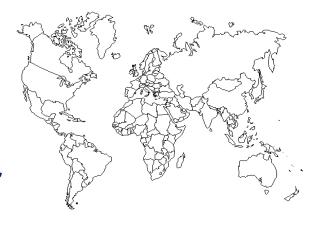


Operational Efficiency

The IATA "Fuel Book"

- Provides airlines with "best practices"
- Developed by IATA fuel conservation experts
- 2nd edition in preparation, reflecting experience from Go -Team visits
- Integrated with IATA fuel conservation training

Operational Efficiency – Go Teams


IATA FUEL ACTION CAMPAIGN - ACCUMULATIVE SAVINGS						
CUMULATIVE 2005	IDENTIFIED SAVINGS \$ US M	% OF FUEL BUDGET				
Americas	108.5	9.1%				
Europe	41.2	8.8%				
Africa - MEA	21.3	8.2%				
Asia Pacific	0	0.0%				
CUMULATIVE 2006						
Americas	67.5	5.8%				
Europe	80.7	3.6%				
Africa - MEA	51.1	6.6%				
Asia Pacific	251.2	4.5%				
TOTAL 2006	450.5	5.1%				
CUMULATIVE 2005-2006						
Americas	176	7.4%				
Europe	121.9	6.2%				
Africa - MEA	72.4	7.4%				
Asia Pacific	251.2	4.8%				
TOTAL 2005-2006	621.5	6.5%				

IATA Fuel Quality Pool

- One global fuel quality standard
- → 60+ airlines members
- → 2200+ inspected airports
- ~ 400 certified inspectors

> USD 20 million savings per year

Aviation Regulatory Framework

- ✓ ICAO Annex 6/JAR OPS and FAR 121 define requirements for a/c operations
- Many of them originally introduced in 1960
- Several changes in process for Annex 6 already
- ✓ IATA 's initiative now focuses on Fuel Management

Airline savings expected from less restrictive regulations reflecting modern aircraft capabilities

Alternative Fuel

- Jet Fuel still most efficient fuel
- Hydrogen may be an option in very long term
- Synthetic Fuel (CTL) more promising
- 50% blend already approved; approval for 100% in 2007?
- Need mix with Bio fuel to lower Co2

Emissions reduction more likely than cost savings