

Airport GHG and Other Environmental Management

ICAO International Aviation and Environment Seminar and State Action Plan Workshop 28-29 October 2014 Kuala Lumpur, Malaysia

Ir Khairiah Salleh MAHB

- 1. Airport Greenhouse Gas Emissions and State Action Plans
- 2. Noise
- 3. Local Air Quality
- 4. Water
- 5. Solid Waste
- 6. Other Issues

1 Airport Greenhouse Gas Emissions Management

- 1. ACI Guidance Manual
- 2. Inventory Tool ACERT
- 3. Mitigation of Emissions Sources
- 4. Certification of Achievements Airport Carbon Accreditation

1.1 ACI Guidance Manual

- Structure Scopes 1, 2, and 3
- Inventory
- Goal Setting
- Reducing emissions
- Carbon Neutrality
- Reporting and Certification

(Also in Français and Español)

Guidance Manual: Airport Greenhouse Gas Emissions Management

1.1 Categorizing Emissions based on Ownership

Scope 1 Airport owned emissions

- Power plant
- Emergency generators
- Airport fleet vehicles
- Airport maintenance/landscaping
- Fire training

Scope 2 Electricity emissions

 From the off-site generation of electricity (and heat) purchased by the airport

1.1 Categorizing Emissions based on Ownership

Scope 3 Airport-related emissions

- Aircraft engines (LTO, taxiing and cruise)
- Aircraft Auxiliary Power Units (APU)
- Airline/contractor GSE and airside vehicles
- Ground access vehicles (incl bus and rail)
- Corporate travel
- Construction
- Aircraft maintenance
- Off-site waste disposal
- and others...

1.2 Inventory – ACERT v2.0 – Do-It-Yourself

- Inventory the first step to emissions management
- Airport Carbon and Emissions Reporting Tool ACERT
- Developed by ACI and Transport Canada

Transpor Canada Transports Canada

- No purchase cost
- No expertise required
- Operational inputs fuel used, electricity purchased, aircraft activity, estimates of ground transport
- Report generated automatically

Airport Operator

Tenants

(including

airlines.

government.

shops etc.) and

Employees

Public

(including

Passengers)

TOTAL

Airport Scope 1

Airport Scope 2

Airport Scope 3

Summary

Airport Fire Training

Airport Heat Purchase

Tenant Aircraft APU

Tenant Aircraft De-icing

Tenant Airside Vehicles

Tenant Heat Purchase

Tenant Fire Training

Rail

Total emissions (tonne)

Ground

Access

Vehicles

t CO2e 15,701

4.537

568,942

Airport Glycol

Airport Emergency Generator

Airport Electricity Purchase

Tenant Aircraft (LTO & taxi)

Tenant Aircraft Engine Run-ups

Tenant Buildings (gas/oil/coal)

Tenant Electricity Purchase

Tenant Emergency Generator

Tenant Landside Vehicles

Cars, taxi

Airport Employee Vehicles

Bus, shuttles

CO_{2e} %

2.66%

0.77%

96.57%

0 16

0

4.537

307.489

42.149

8.947

2,827

48,411

126,643

12,181

572,502

22

3.142

456

0

48

0.0008

9.6639

1.3247

0.0144

1.7332

0.0276

0.0758

17.2212

1 1442

40.71 1.05

73.47

A more detailed separate GHG inventory is also available for Year: 2011

Total CO_{2e} Emissions (t)

The aircraft emissions calculations were

Airport Operator Sub-total

0.0025

27.8204

3.8135

0.0414

0.7355

0.0314

0.3884

4.0374

0.2600

10.57

0.99

48.82

The landside traffic calculations were based on estimated traffic data.

Tenant Sub-total

Public Sub-total

	AIRPORTS COUNC NTERNATIONAL	և Outpi	ut – E	miss	ions	table
Airport Ca	rbon and Emissic 0 (2012)	ons Reporting To	ool	SEA	2011	ZÖR
Airport:	Seattle-Tacoma International Airport			Country:	United State	es
Report Date:	18/6/2012		Default	Ems Factor:	572.9	g CO2/kWh
Operator:	Ports of Seattle			EF Used:	31.3	g CO2/kWh
					Greenho	use Gases (
Entity	Source		Scope	CO ₂	CH ₄	N ₂ O
	Airport Airside Vehicles		1	1,212	0.2468	0.1011
	Airport Buildir	ngs (gas/oil/coal)	1	14,421	0.2571	0.0257

1

1

2

2

3

3

3

3

3

3

3

3

3

3

3

3

3

3

3

ZÜRIC	HAIRPORT	Toronto Pearson		
		Transport Canada	Transpor Canada	
		Airc	raft mvn	
CO2/kWh		P	assenge	

CO_{2e}

1.249

17

14.435

4.537

20,238

316,316

43.359

9.211

2.837

170

50.024

425,634

130,776

143,308

589,180

589,180

12,510

22

based on detailed aircraft data.

3.246

469

0

	2000	
ansports		
mvm	ts:	

# 11784 TICH CI	A
ts	
nts:	
ers:	3
nits:	3

on	# 1978A 780H C	- Contract
t Transport Canada	s	
rcraft mvn	nts:	314,947
Passenge	ers:	32,819,796
Traffic un	its:	35,142,986
CO _{2e} 9	6	

0.21%

2.45%

0.00%

0.00%

0.00%

0.77%

0.00%

53.69%

7.36%

0.08%

0.00%

1.56%

0.48%

0.00%

0.00%

0.03%

0.00%

8.49%

0.55%

72.2%

22.20%

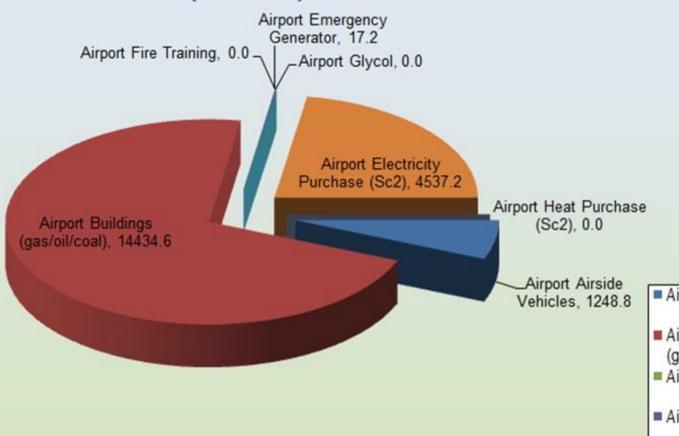
2.12%

0.00%

24.3%

100%

3.4%



voice world's airports

Figure 1: Airport GHG Inventory - Scopes 1 and 2 (t CO2 e)

Note: Scope 2 sources include only Airport Electricity and Heat Purchases (not on-sold to Tenants).

All others here are Scope 1.

Total Scope 1 + 2 = 20,238

Airport Airside Vehicles

 Airport Buildings (gas/oil/coal)

Airport Fire Training

Airport Emergency Generator

■ Airport Glycol

 Airport Electricity Purchase (Sc2)

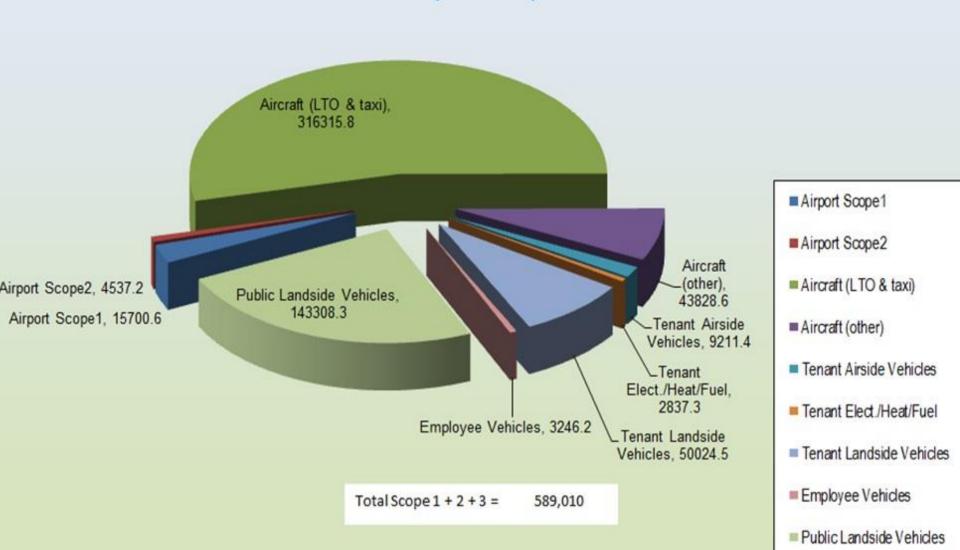

Airport Heat Purchase (Sc2)

Figure 2: Airport GHG Inventory - Scopes 1, 2 and 3 (t CO2 e)

1.3 Mitigating GHG (and LAQ) Emissions

Airport Scope 1 and 2 - Airport Operator Emissions

- Airport power plant, generating electricity and heat/cooling
- Airport fleet vehicles, including transfer buses and site machinery
- Building energy use lighting, HVAC, machinery

Airport Scope 3 - Aircraft Emissions

- Aircraft engine emissions during LTO, taxiing and cruise
- APU emissions

Airport Scope 3 - Other Airport-Related Emissions

- Most Ground Support and Ground Handling equipment
- Landside (off site) ground access vehicles, trains

1.3 Mitigating Emissions

Airport Scope 1 and 2 - Airport Operator Emissions

- Airport power plant, generating electricity and heat/cooling
- Airport fleet vehicles, including transfer buses and site machinery
- Building energy use lighting, HVAC, machinery

Airport Scope 3 - Aircraft Emissions

- Aircraft engine emissions during LTO, taxiing and cruise
- APU emissions

Focus of State Action Plans

Airport Scope 3 - Other Airport-Related Emissions

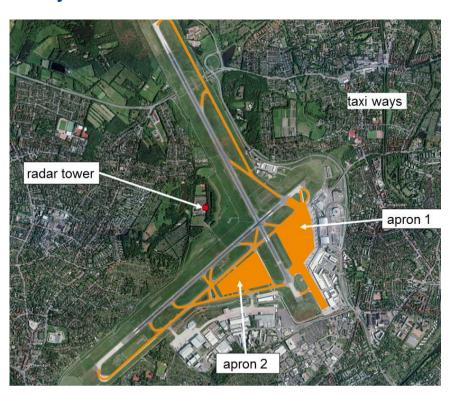
- Most Ground Support and Ground Handling equipment
- Landside (off site) ground access vehicles, trains

1.3 Mitigating Aircraft Emissions at Airports

Approach, Landing and Departure

- Sufficient airport and terminal capacity to minimise holding and queuing
- Air Traffic Management (ATM) efficiencies
- Continuous Descent and Continuous Climb Operations
- Slot management
- Departure management
- Arrival management maximising gate availability

1.3 Mitigating Aircraft Taxiing Emissions


Provide efficient taxiway and airport layout

Single-engine taxiing

Aircraft towing

Advanced Surface Movement Guidance and Control System (A-SMGCS)

- New ground radar system for taxiways and aprons
- Improved guidance for taxiing aircraft.
- Up to 10% reduction in taxiing fuel usage

1.3 Mitigating Aircraft Auxiliary Power Unit Emissions

Provide fixed electrical ground power (FEGP) and preconditioned air (PCA) at terminal gates

Enforce APU restrictions

Ducting for Pre-Conditioned Air (PCA)

– widely used many countries

1.3 Mitigating Emission

Co-Benefits of State Action Plans

Airport Scope 1 and 2 - Airport Operator Emissions

- Airport power plant, generating electricity and heat/cooling
- Airport fleet vehicles, including transfer buses and site machinery
- Building energy use lighting, HVAC, machinery

Airport Scope 3 Aircraft Emissions

- Aircraft engine emissions during LTO, taxiing and queuing
- APU emissions

Airport Scope 3 - Other Airport-Related Emissions

- Most Ground Support and Ground Handling equipment
- Landside (off site) ground access vehicles, trains

Co-Benefits of State Action Plans

1.3 Mitigating Airport Scope 1 and 2 Emissions

Reduce Electricity Use

- Energy efficient buildings and lighting
- Energy efficient operations

Reduce Fuel Use

- Modernize power/heating plants
- Fleet vehicle modernization and use of alternative fuels/hybrid/electric

1.3 Mitigating Airport Scope 1 and 2 Emissions

Generate or purchase electricity and fuel from renewable sources - solar, wind, hydroelectric, biomass

1.3 Mitigating Airside Vehicle Emissions

Electric aircraft tug

Electric baggage tractor

A DELTA

1.3 Mitigating Other Airport Scope 3 Emissions

- Enhance public transport services buses and trains
- Hotel and car rental shuttle bus consolidation.

Zurich public transit

Shuttle bus consolidation

1.4 Airport Carbon Accreditation

Scope 1&2

Level 3+ Offsetting own Scope 1&2 Level 3 Engaging others and measuring Managing and reducing

Scope 3

- Voluntary programme for active carbon management with measurable goals and reporting.
- Covers on-site airport operational activities that contribute the most to carbon emissions
- Enables airports to implement best practice carbon management processes and gain public recognition of their achievements
- 4 ascending levels of performance

1.4 Airport Carbon Accreditation

- ACI Europe, Africa and Asia-Pacific Regions
- 99 Participating Airports

Reported Benefits

- Raised sustainability profile & external credibility
- Reduction in exposure to climate change regulatory risks
- Efficiency improvements
- Knowledge transfer

1.4 ACERT and Airport Carbon Accreditation

 ACERT v2.0 approved for Airport Carbon Accreditation Level 1 (Mapping) and Level 2 (Reduction)

2 Noise - Overview

Aircraft Noise Management

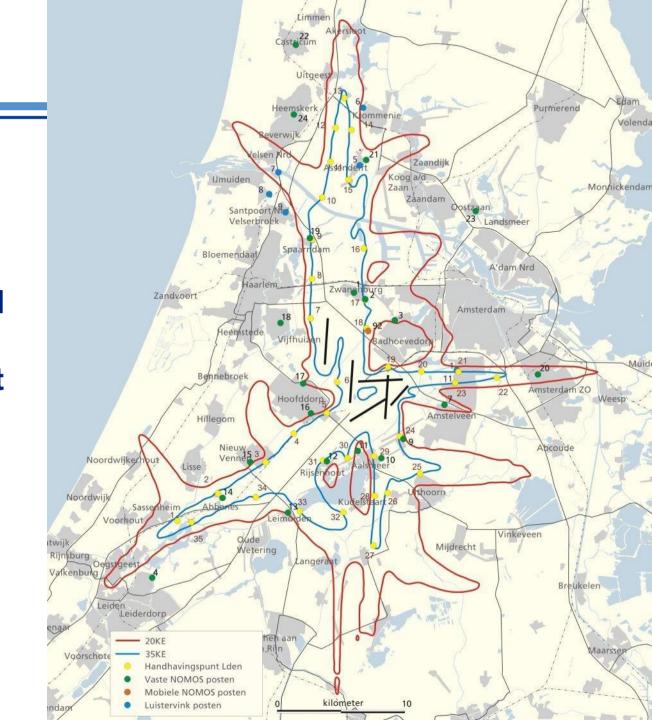
 Reducing actual noise levels using aircraft modernization and flight track management

Land Use Planning

 Reducing the number of people subject to high noise levels

Community and Communications

 Improving community understanding, attitudes and acceptance of airport activity

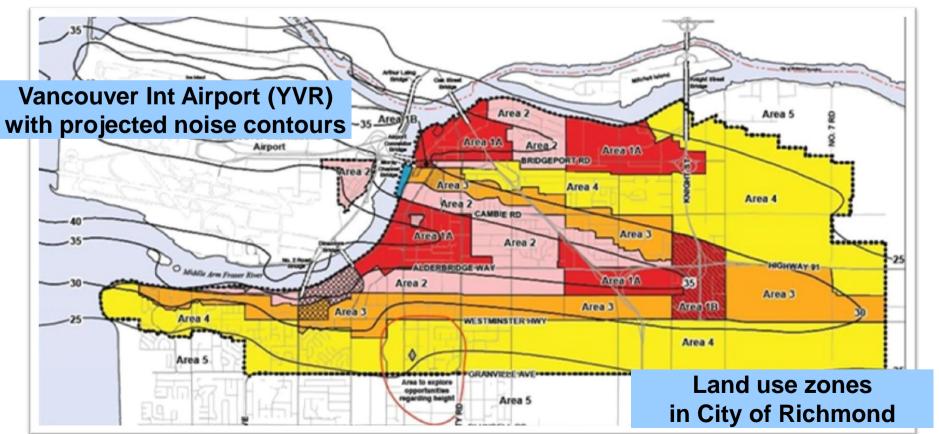


2 Noise

Managing noise

- Runway use
- Tracks to avoid urban areas
- Modern aircraft fleet

(Schiphol AMS)



2 Noise - Land Use Planning

- Local government authorities zone the land.
- Need to avoid residences, schools and hospitals in noise affected areas.

2 Noise - Community and Communications

- Informing and interacting with communities
- Airport website
- Managing complaints and noise forums
- Focus on Sustainability elements Impacts and Benefits on Environment, Society and Economics
- Noise-tracking web sites
- Clear, transparent and up to date information

2 Noise Tracking Websites

WebTrak

Airports are increasingly realizing that community engagement is more and more important to the operations of the airport. The growing challenge is how to manage this continuous engagement to realize the best results for both the general public and the airport.

Lochard has launched the first in a series of low-risk subscription services aimed at improving and maintaining valuable dialogue with the airport's external stakeholders. This takes the pressure off your operations team and eases the pressure for your management team.

WebTrak provides live aircraft movements. It gives the community access to flight and noise data and reduces the need and time for airport employees to explain where aircraft actually fly, how often, who they are and where they go.

Read more ...

PRINT

3 Local Air Quality (LAQ) - Overview

Regulations/Guidance

- Permitted air quality pollutant levels
 Inventory
- Identify sources and quantities of emissions
 LAQ Assessment
 - Monitoring pollutant concentrations
- Modelling dispersion source to receptor
 Mitigation of Sources
 - Actions to reduce emissions

3 LAQ - Regional Regulation

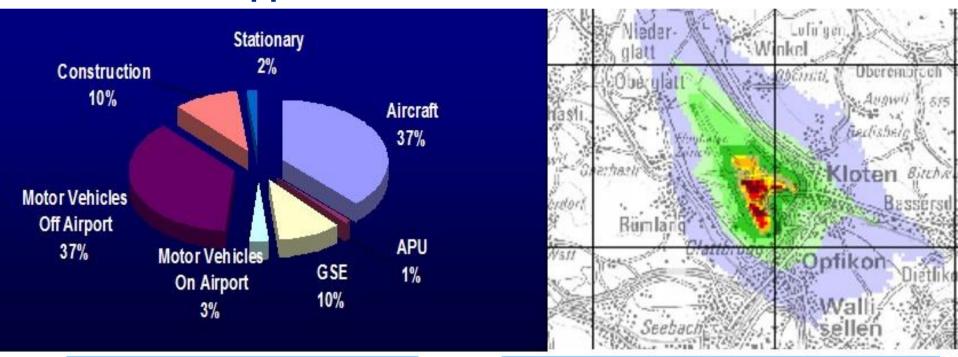
Example limits on local pollutant concentrations – µg/m3

	S	D_2	NO ₂		CO		PM10	
	1 hr	1 yr	1 hr	1yr	1 hr	8 hr	1 d	1 yr
WHO	125	-	200	40	30	10	-	-
EU	350	20	200	40	-	10	50	40
Australia	520	50	220	50	-	10	50	-
Brazil	-	90	320	100	40	10	150	-
Canada	900	60	400	100	35	15	-	-

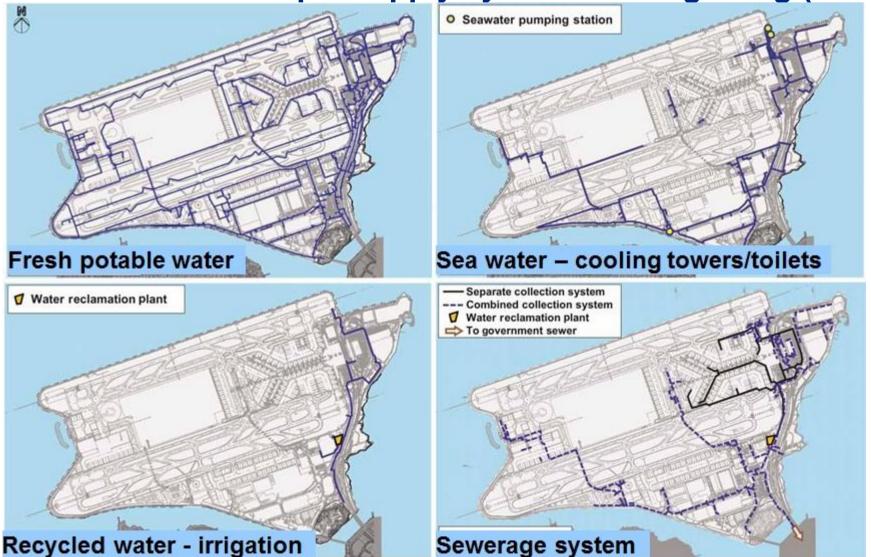
3 LAQ - Assessment - Measurement for Compliance

Monitoring (measuring) pollutant concentrations

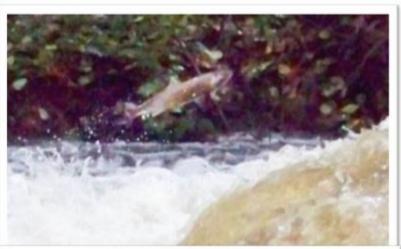
Compliance with regulated limits


Red = points of non-compliance

3 LAQ – Modelling and Source Apportionment Modelling (calculating) pollutant concentrations


- Inventory of emissions sources
- Calculating physical and chemical dispersion
- Source apportionment

4 Water - Use - Triple supply system at Hong Kong (HKG)



4 Water - Storm Water Management - SeaTac (SEA)

- Capture
- Storage
- Treatment
- Outflow control

5 Waste Management

Identifying waste streams

- Terminal, deplaned, office, maintenance
- Hazardous materials

Reducing waste production

Awareness

5 Waste Management

Waste Hierarchy Reuse Recycling

 Paper, cardboard, aluminium, composting

6 Other Environmental Matters

Planning and Development

- Wildlife and habitat
- Historical and archeological issues

Emergency Planning and Response

- Hazardous Materials
- Spill Management
- Soil and water contamination

Proactive Environmental Initiatives

- Operating and life-cycle costs
- Occupational Health and Safety

Terima Kasih

Xavier Oh, ACI, Montréal xoh@aci.aero