

Solar Fuels – A Sustainable Drop-in Solution for the Future of Aviation

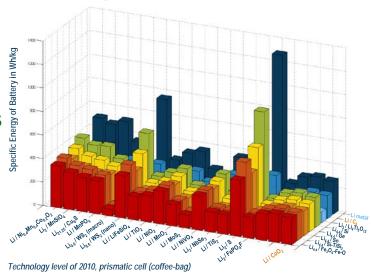
Christoph Falter, Valentin Batteiger, Andreas Sizmann Future Technologies and Ecology of Aviation Bauhaus Luftfahrt, Munich, Germany

Content

- The Bauhaus Luftfahrt approach
- Solar thermochemical fuels
- Solar resource and land use
- Solar fuel economics and impact

The Bauhaus Luftfahrt approach

- A non-profit research institution with long-term time horizon
 - Strengthening the cooperation between industry, science and politics
 - Developing new approaches for the future of aviation with a high level of technical creativity
 - Optimizing through a holistic approach in science, economics, engineering and design

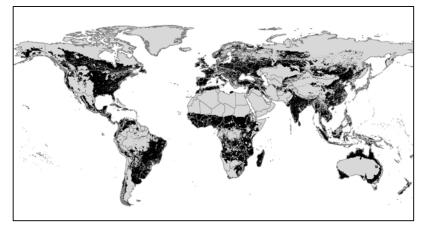


Renewable energy in aviation: Long-term view

- Basic energy options:
 - Lowest entry threshold: drop-in fuels
 - Adaption to novel fuels: non-drop-in fuels
 - Most radical approach: electric aviation
- Long-term strategy:
 - Sustainable feedstock availability:
 - → Look beyond conventional biofuels

→ Look beyond conventional power systems: eAviation, hybrid systems

Renewable energy in aviation: Long-term focus

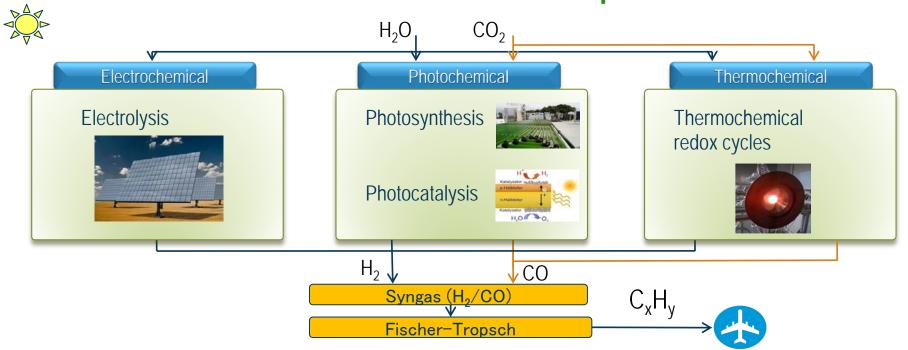

Renewable energy focus:

eAviation innovation potential: key technologies,

e.g. battery performance

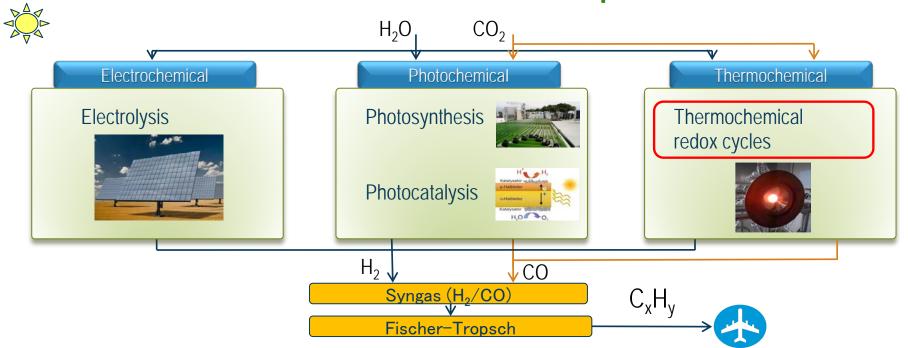
 Fuel-battery hybrid approaches: extend eAviation range

- Renewable drop-in fuels:
 - Global bio-energy potential
 - Novel fuel production paths:
 e.g. solar fuels

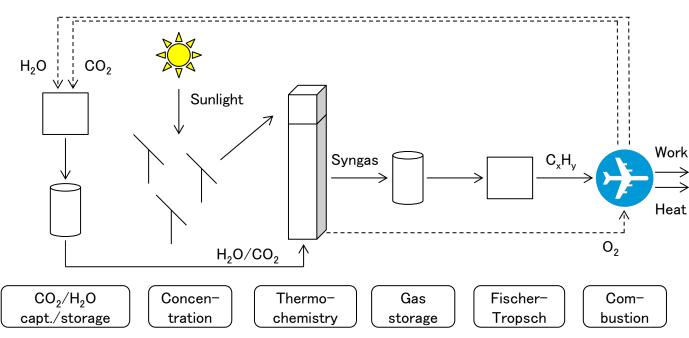


Jet fuel alternatives—long-term perspectives

Energy carrier	Suitability	Sustainability	Scalability
GTL, CTL	Drop-in capable blend	Fossil carbon release	Commercial scale implementation
BTL		Potentially low carbon emission	Feedstock development, logistics and competition for bio-mass
HEFA			
New bio-fuels			
SOLAR-JET (STL)			Large-scale production less restrictive than for biofuels
LNG	Non-drop-in solution Non-fuel energy carrier, low specific energy	Fossil carbon release	Existing infrastructure
LH ₂		Potentially zero carbon emission	Distribution and storage
Electric power			Potentially scalable through diversity and large-scale plants



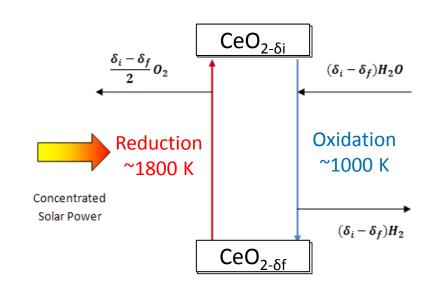
Paths to solar Fischer-Tropsch fuels


Paths to solar Fischer-Tropsch fuels

Fuel production cycle - overview

- Most process steps already proven on an industrial scale
- Lowest technology readiness level for thermochemical conversion and CO₂ capture

Solar thermochemical syngas production


- Two-step solar thermochemical process to produce syngas
- Reduction with oxygen depleted purge gas at high temperatures (~1800 K):

$$CeO_2 \rightarrow CeO_{2-x} + x/2 \cdot O_2$$

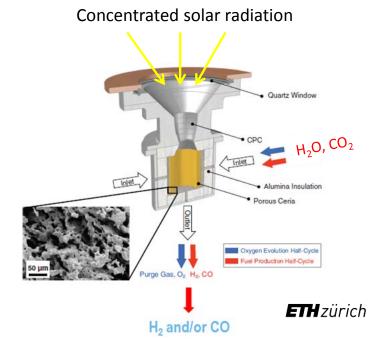
 Reoxidation with steam and/or carbon dioxide at lower temperatures (~1000 K):

$$CeO_{2-x} + x \cdot H_2O \rightarrow CeO_2 + x \cdot H_2$$

 $CeO_{2-x} + x \cdot CO2 \rightarrow CeO_2 + x \cdot CO$

Syngas is a precursor for solar kerosene

Solar thermochemical syngas production


- Two-step solar thermochemical process to produce syngas
- Reduction with oxygen depleted purge gas at high temperatures (~1800 K):

$$CeO_2 \rightarrow CeO_{2-x} + x/2 \cdot O_2$$

 Reoxidation with steam and/or carbon dioxide at lower temperatures (~1000 K):

$$CeO_{2-x} + x \cdot H_2O \rightarrow CeO_2 + x \cdot H_2$$

 $CeO_{2-x} + x \cdot CO2 \rightarrow CeO_2 + x \cdot CO$

Syngas is a precursor for solar kerosene

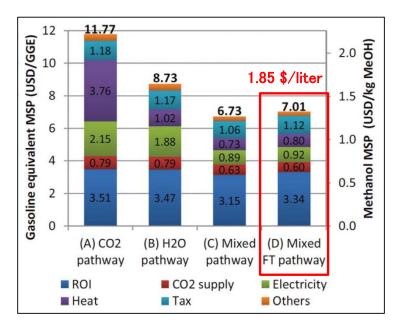
First-ever solar kerosene

Energy efficiency – STL vs. BTL

Future potential			
Sunlight-to-liquid (STL)			
Concentration	50-85%		
Thermochemistry	20-30%		
Fischer-Tropsch	50%		
Total:	≈4 -14%		
Biomass-to-liquid (BTL)			
Photosynthesis	5%		
Gasification	70%		
Fischer-Tropsch	50%		
Total	≈1.75%		
Today			
BTL, STL:	≤ 0.3%		

Land requirement, example Manchester Airport

- Fuel demand:
 - 3 Mio. liters per day
- Assumptions for productivity
 - Short rotation woody crops, BTL
 - (unconcentrated) solar-to-jet fuel conversion efficiency of 0.55 %
 - Solar thermochemical conversion, STL
 - (unconcentrated) solar-to-jet fuel conversion efficiency of 4.33%
- Required total ground area:
 - BTL: 3380 km² (58 x 58 km²)
 STL: 433 km² (21 x 21 km²)



Map of Manchester Airport 5 x 5 km2

STL - Economics

- Economics dominated by large investment cost and cost of capital
 - Mainly due to collection of solar energy and interest
 - =>Thermochemical efficiency decisive
- A path efficiency of ~10% is assumed to be required for economic viability
- Own calculations: Production costs of 1.3-2.9 \$/I (publicly owned facility)

Source: Kim et al., Energy and Environmental Science, 2012

Conclusions

Solar thermochemical fuels

 Solar fuels could provide suitability, scalability and sustainability

Solar resource and land use

 Smaller and complementary land use wrt biofuels

Solar fuel economics

 1.3-2.9 \$/I production costs estimated for publicly owned future facility

Contact and acknowledgement

- Christoph Falter
 ENERGY TECHNOLOGIES
 Bauhaus Luftfahrt e.V.
 Lyonel-Feininger-Straße 28
 80807 Munich
 Germany
- Tel.: +49 (0) 89 3 07 48 49 39
 Fax: +49 (0) 89 3 07 48 49 20
 christoph.falter@bauhaus-luftfahrt.net
- http://www.bauhaus-luftfahrt.net

 The research leading to these results has received funding from the European Union Seventh Framework Program (FP7/2007-2013) under grant agreement no. 285098 – Project SOLAR-JET

