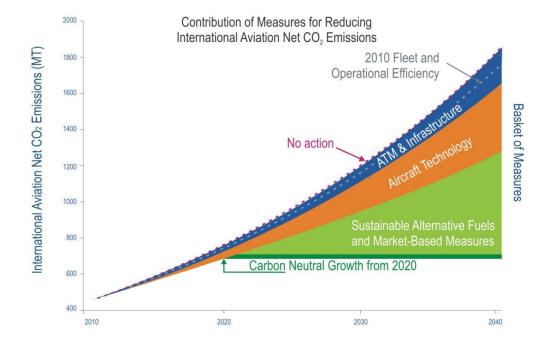
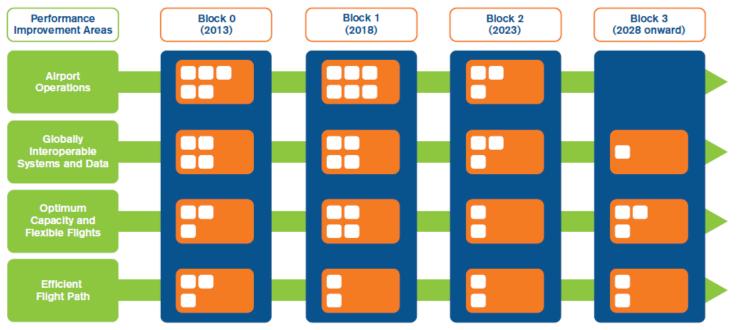


Fuel and CO₂ Benefits Delivered through ASBU Ted Thrasher ICAO Environmental Modelling Unit

Last year, by the Numbers

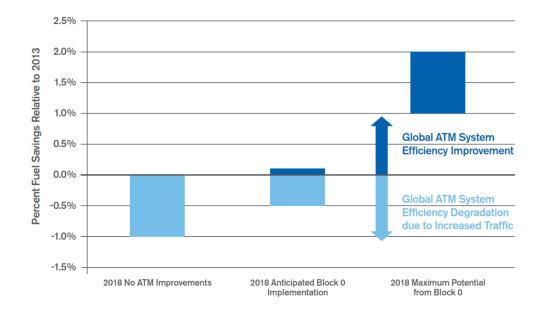

- 32 Million scheduled departures
- 42 Million kilometres flown
- 3 Billion passengers
- 35% of world trade value in freight
- 88% efficient

CAEP International Aviation Net CO₂ Emissions Trends



Operational Efficiency in a Static ATM System up to 2040 If no ATM improvements are made, system efficiency will degrade by 2% every decade. 2030 2020 2040 Inefficiency, Inefficiency, Inefficiency, 15% 17% 19% Necessary Necessary Necessary fuel burn, fuel burn, fuel burn, 85% 83% 81% 1.7x 2010 Operations 2.7x 2010 Operations 4.0x 2010 Operations Source: IEOGG 2013 and CAEP/9 Forecast

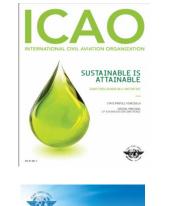
Aviation System Block Upgrades


Types of Benefits

Module	Title	Benefits
B0-CDO	Continuous Descent Operations	Reduced fuel burn on arrival
B0-FRTO	Free Route Operations	Reduced in-flight fuel burn
BO-RSEQ	Runway Sequencing	Reduced airborne holding and taxi-out time
B0-CCO	Continuous Climb Operations	Reduced fuel burn during climb
BO-NOPS	Network Operations	Reduced fuel burn in all phases of flight, including taxi
B0-TBO	Trajectory Based Operations	Reduced in-flight fuel burn
BO-WAKE	Wake Turbulence Separation	Reduced taxi-out time and reduced in-flight fuel burn
B0-ACDM	Airport Collaborative Decision Making	Reduced taxi-out time
BO-ASUR	Alternative Surveillance	Reduced in-flight fuel burn
B0-OPFL	Optimum Flight Levels	Reduced in-flight fuel burn
BO-APTA	Approach procedures including vertical guidance	Reduced fuel burn during arrival, fewer missed approaches
BO-SURF	A-SMGCS, ASDE-X	Reduced taxi and airborne holding time
BO-FICE	Increased efficiency through ground - ground integration	Reduced in-flight fuel burn
B0-DAIM	Digital AIM	Reduced in-flight fuel burn
BO-AMET	Met information supporting enhanced operational efficiency	Reduced fuel burn in all phases

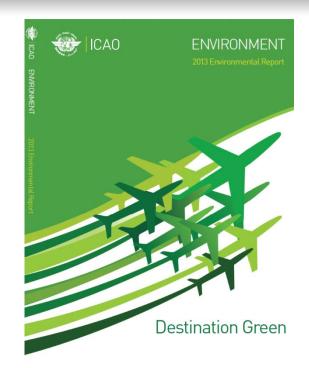


Preliminary Results


Air Navigation Report

- Status of implementation of the air navigation infrastructure
- Success stories and associated best practices
- Benefits associated with the implementation of operational measures
- Assessment of the potential fuel savings from planned Aviation System Block Upgrade (ASBU) Block 0 implementation





lobal Aviation and

22 ------

For more information on our activities, please visit www.icao.int/env