

NASA's Environmentally Responsible Aviation Focus

Dr. Edgar G. Waggoner Director, Integrated Systems Research Program NASA Headquarters

9 - 10 SEPTEMBER 2014

NASA Aeronautics - Six Strategic Thrusts

Safe, Efficient Growth in Global Operations

• Enable full NextGen and develop technologies to substantially reduce aircraft safety risks

Innovation in Commercial Supersonic Aircraft

• Achieve a low-boom standard

Ultra-Efficient Commercial Vehicles

• Pioneer technologies for big leaps in efficiency and environmental performance

Transition to Low-Carbon Propulsion

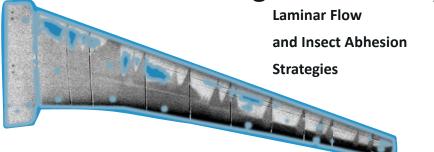
• Characterize drop-in alternative fuels and pioneer low-carbon propulsion technology

Real-Time System-Wide Safety Assurance

 Develop an integrated prototype of a real-time safety monitoring and assurance system

Assured Autonomy for Aviation

- Transformation
- Develop high impact aviation autonomy applications

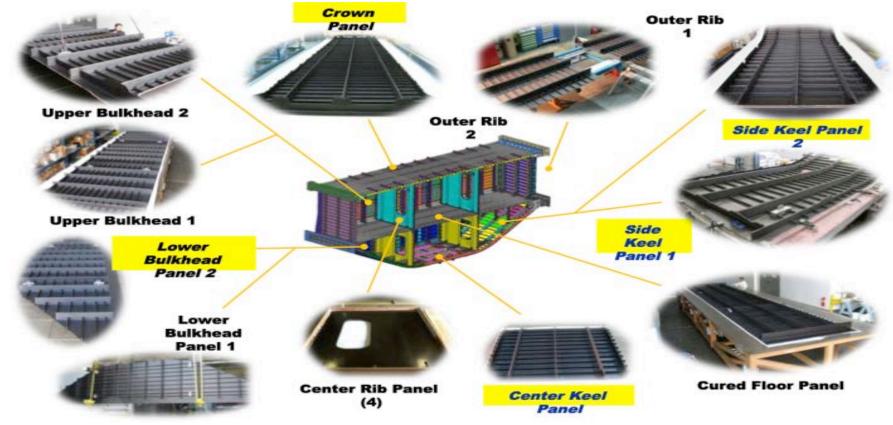


NASA's Environmentally Responsible Aviation Focus

- Vision
 - expand the viable and well-informed trade space for commercial transport design decisions
 - enable simultaneous realization of national noise, emissions, and performance goals by 2025
- Mission
 - Execute integrated technology demonstrations
 - Partner w/Industry and transfer knowledge
- Scope
 - Mature technology for application in the 2020+ time frame
 - Advance the state-of-the-art, reduce risk of application
 - Perform System/subsystem research in relevant environments

Technology for Green Commercial Aviation

Reduce Fuel Burn – Drag Reduction by 8 Percent

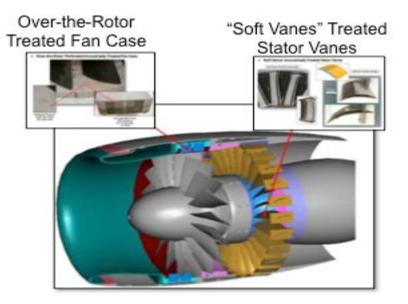


Active Flow Control on B757 Tail

Technology for Green Commercial Aviation

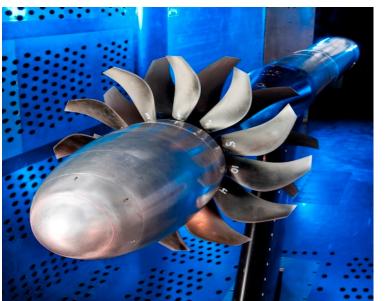
Reduce Fuel Burn – Weight Reduction by 10+ Percent

Pultruded Rod Stitched Efficient Unitized Structure (PRSEUS)


Technology for Green Commercial Aviation Reduce Fuel Burn – Reduce SFC by 15+ Percent

Pratt & Whitney and NASA Demonstrate Benefits of Geared TurboFan[™] System in Environmentally Responsible Aviation Project

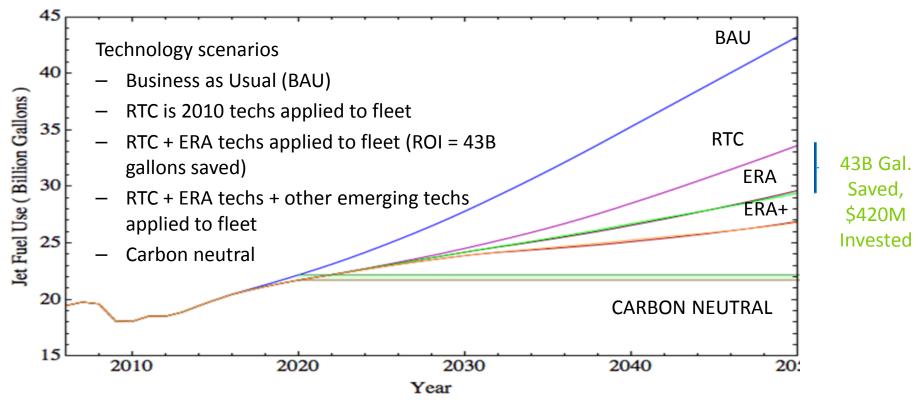
PARIS AIR SHOW, Wednesday, June 19, 2013


Pratt & Whitney, a United Technologies Corp. (NYSE:UTX) company, recently reached a milestone in the National Aeronautics and Space Administration's (NASA) Environmentally Responsible Aviation (ERA) Project by demonstrating unprecedented performance and efficiency of a Geared TurboFan[™] ultra-high bypass system, successfully completing 275 hours of fan rig testing in the NASA Low Speed Wind Tunnel. *This ultra-high bypass technology will be used to create the next generation* of Pratt & Whitney's PurePower[®] Geared Turbofan engines.

SFC = Specific Fuel Consumption FEGV = Fan Exit Guide Vane

Ultra High Bypass Propulsor Testing Modern Fan Acoustic Treatments Low Loss FEGV & Short Nacelle

Technology for Green Commercial Aviation Reduce Fuel Burn – Reduce SFC by 15+ Percent



Open Rotor Propulsion Rig installed in GRC's 8x6 and 9x15 Wind Tunnels (GE)

This technology applied to advanced 2025 EIS single aisle A/C showed 36 percent block fuel reduction & 15 EPNdB cum. noise margin below Stage 4 (compared to 1998)

SFC = Specific Fuel Consumption

What may be the impact?

Terminal Area Forecast 2011

Saved,

Advanced Transports for Green Commercial Aviation – 2025+ EIS - 2 examples

