

Understanding Variability in Life Cycle GHG Inventories of Alternative Jet Fuels

Russell Stratton and James Hileman

Massachusetts Institute of Technology

October 20, 2011

This work is funded by the FAA and the U.S. Air Force Research Lab, under FAA Award No.: 06-C-NE-MIT, Amendment Nos. 012, 021, 023, and 027 09-C-NE-MIT, Amendment Nos. 002 and 004.

Project Mangers: Warren Gillette (FAA), Bill Harrison and Tim Edwards (AFRL)

Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the FAA, NASA, DoD or Transport Canada

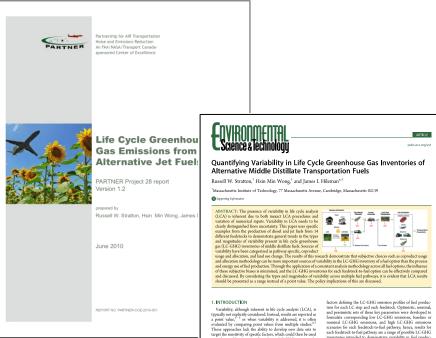
Motivation

- Variability, although inherent in LCA, is often not explicitly considered
- Results are typically reported as a point value

WORKSHOP

- These approaches cannot develop new data sets to target the sensitivity of specific factors, which could help understand best practices for reducing LC-GHG emissions
- A new methodological approach was developed using screening level LCAs to understand how variability impacts LC-GHG inventories of transportation fuels
- Screening level analyses provide preliminary assessments of technology alternatives with the intent of informing research funding and decision makers
 - Identify pivotal factors defining the LC-GHG emission profiles of fuel production for each LC step and each feedstock

PARTNER


Project 28 Study

PARTNER Project 28 Report and ES&T Article

WORKSHO

- PARTNER Jet Fuel Study
 - Screening level study of next generation alternative jet fuels
 - Examine low, baseline, and high emissions scenarios
 - Emphasize influential aspects of fuel production on GHG emissions
- Results are a range of possible LC-GHG inventories intended to demonstrate variability in fuel production processes.
- Other issues considered: land, water, invasiveness
- Developed analysis into a diesel fuel article for ES&T

http://web.mit.edu/aeroastro/partner/projects/project28.html

Variability, aithough inherent in life cycle analysis (LCA), is pipelally not epightly considered. Instant, results are operted as a point value, ⁻¹ or when variability is addressed, it is offer a point value, ⁻¹ and the second second second second second These approaches line, the ability to develop new data sets to target the sensitivity of specific factors, which could then be used to understand best practices for reducing L-CcHG emissions. In one notable exception, Earnell examined variability in life cycle generihous gap curves from come stands by eating the results of other studies and rectifying inconsister in metric choice and system boundaries. Such analyses have potential to identify areas where improvement could reduc C-GHG emissions for emerging fuels where facilities do not

Deluochi⁹ argue that LCA is a limited input-output represe d emissions that lacks the policy para ons needed to relate the results to policy c. intercet, an attributional ECAP is a simplification of a ex-system that is intimately linked to market effects. As a quence of these simplifying assumptions, variability is aced to LCA results that hinder comparisons of different

soybeans, palm, rapeseed, algae, jatropha, and salicornia). sportation fuels, a new methodological approach was ped using screening level LCAs. Screening level analyses Received: August 19, 2010 ments of technology alternatives with Accepted: research funding and de e level LCAs is to identify the pixot-

This new methodological approach was used to develop L GHG inventories for a range of Synthetic Paraffinic Diesel (SPI

mal crude oil and Canadian oil sands. SPD is defined

the gasification and Fischer-Tropsch synthesi natural gas, or biomass (switchgrass, corn stover, and for residues) and the hydroprocessing of renewable oils (fi

fuel pathways as well as conventional diesel fuel fro

snal diesel fiiel hut con

April 6, 2011 March 29, 2011

ICAO AVIATION AND SUSTAINABLE

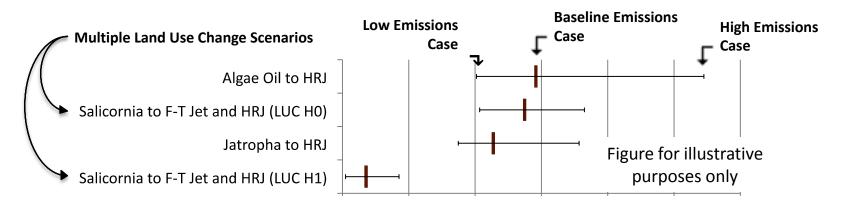
WORKSHOP

ALTERNATIVE FUELS

<u>Source</u>	Feedstock	<u>Recovery</u>	Processing	Final Product
Petroleum	Conventional crude	Crude extraction	Crude refining	Jet A
	Conventional crude	Crude extraction	Crude refining	ULS jet fuel
	Canadian oil sands	Bitumen mining/ extraction and upgrading	Syncrude refining	Jet A
	Oil shale	In-situ conversion	Shale oil refining	Jet A
Natural gas	Natural gas	Natural gas extraction and processing	Gasification, F-T reaction and upgrading (with and without carbon capture)	SPK Jet Fuel (F-T)
Coal	Coal	Coal mining	Gasification, F-T reaction and upgrading (with and without carbon capture)	SPK Jet Fuel (F-T)
Coal and Biomass	Coal and Biomass	Coal mining and biomass cultivation	Gasification, F-T reaction and upgrading (with and without carbon capture)	SPK Jet Fuel (F-T)
Biomass	Biomass – switchgrass – corn stover – forest waste	Biomass cultivation	Gasification, F-T reaction and upgrading	SPK Jet Fuel (F-T)
	Renewable oil – soybeans – palm – algae – jatropha – rapeseed – salicornia	Biomass cultivation and extraction of plant oils	Hydroprocessing	SPK Jet Fuel (HRJ)

Variability in LC-GHG

Inventories

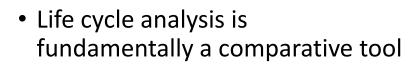

LCA is a limited input-output representation of energy use and emissions

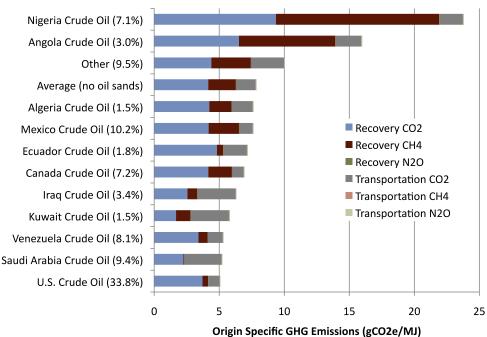
WORKSHOP

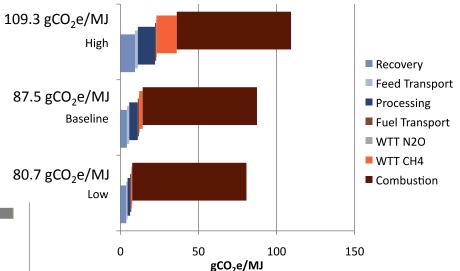
- Attributional LCA is a simplification of a complex system that is intimately linked to market effects.
- The necessity for simplifying assumptions introduces variability into LCA results that hinder comparisons of different fuel pathways.

Types of variability:

Pathway Specific • Co-product Usage and Allocation • Land Use Change Emissions


Results for each pathway presented as a range


ICAO AVIATION AND SUSTAINABLE ALTERNATIVE FUELS WORKSHOP

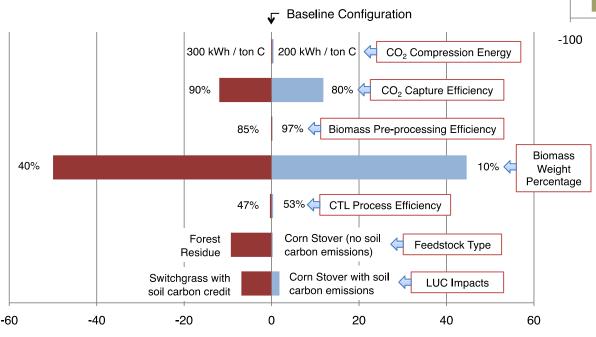

Pathway Specific Variability

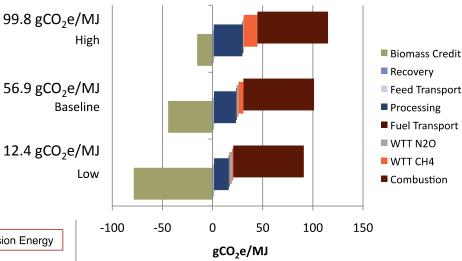
Conventional Jet Fuel

 Jet from conventional crude is the benchmark for alternative fuels

 Consistency between analysis methodologies is essential for comparisons

Average versus Marginal


Source: Stratton et al. (2010)


Pathway Specific Variability

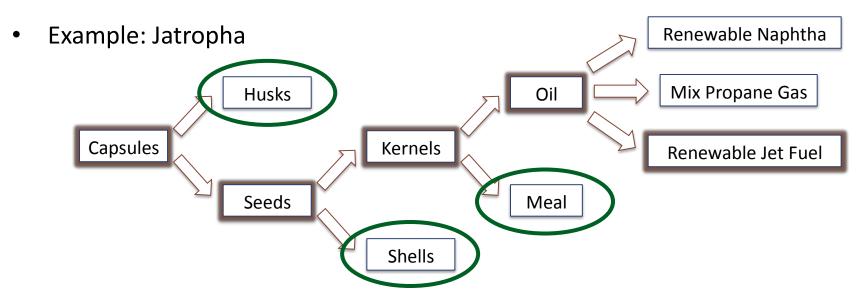
Coal and Biomass FT Fuel

- Majority of disparity between cases comes from biomass weight percent and CCS efficiency
- Switchgrass assumed as feedstock

WORKSHOP

- Feedstock type, biomass weight percent and CCS efficiency →
 Very Important for GHG
- Process Efficiency and energy inputs →
 Less important for GHG

Percent Change from CBTL Baseline GHG Emissions


Co-product Usage and

Allocation

Jatropha to HRJ (1)

- Allocation methodology between co-products
 - Jet fuel IS the primary product of interest
 - Jet fuel often IS NOT the dominant product created

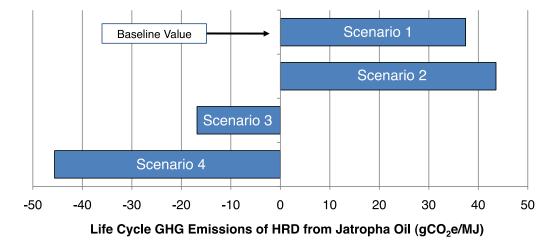
WORKSHOP

Trade studies were conducted to examine the impacts of different co-product usage assumptions and allocation methodologies

Co-product Usage and

Allocation

Jatropha to HRJ (2)


Emissions can be allocated between products using four methods:

• Mass

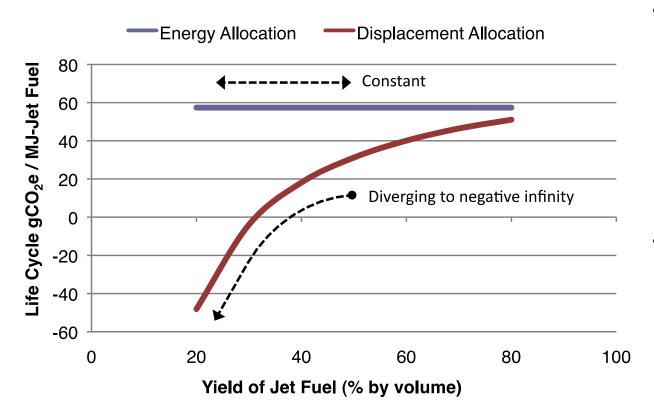
• Economic value

• Energy

• Displacement (system expansion)

1	Co-product use:	Electricity
	Allocation:	Energy
2	Co-product use:	Fertilizer
	Allocation:	Displacement
3	Co-product use:	Animal feed, Electricity
	Allocation:	Economic value, Displacement
4	Co-product use:	Electricity
	Allocation:	Displacement

Subjective allocation and co-product usage choices made by life cycle analyst can be more significant than numerical inputs


Co-product Usage and

Allocation

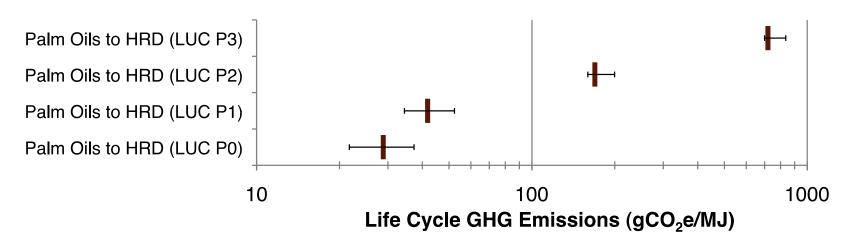
Coal and Biomass FT Fuel

 An F-T facility operator has some control over the product slate of diesel, jet, and naphtha

- Displacement allocation makes the LC-GHG inventory of the FT jet fuel VERY sensitive to product slate distribution
- Only meaningful when product of interest IS NOT the primary product (i.e. jet fuel)

Land Use Change Emissions

Palm Oil to HRJ

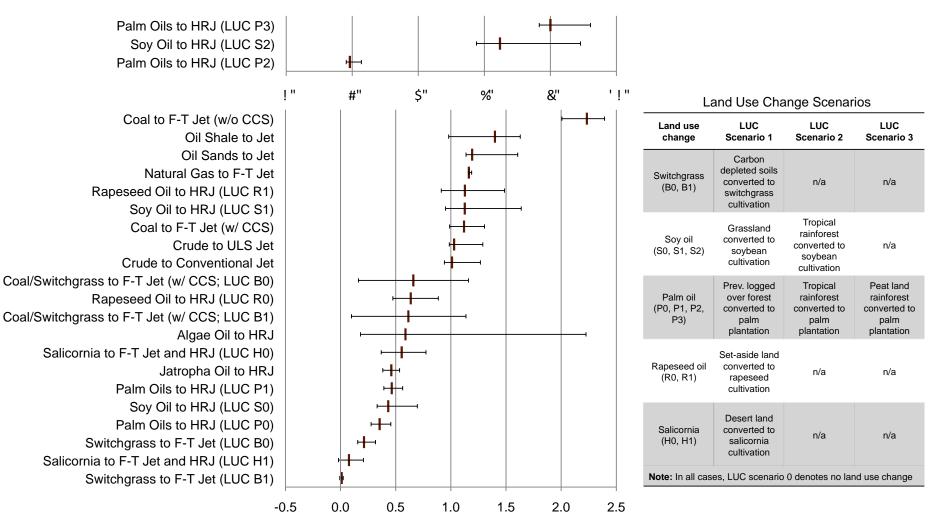


• GHG emissions from LUC can dominate a LC-GHG inventory

WORKSHOP

- Any given feedstock (i.e. palm oil) could be subject to different types of LUC
- Independent sets of results under select LUC scenarios used to account for the variability of if and when a fuel pathway may be subject to a particular type of LUC

LUC P0: No land use change **LUC P1**: Conversion of logged forest **LUC P2:** Conversion of tropical rainforest **LUC P3:** Conversion of peat land rainforest



Comparison of LC-GHG

Inventories

WORKSHOP

Life Cycle GHG Emissions Normalized by Conventional Jet Fuel

- Life cycle GHG emissions are only one of many considerations that must be examined when evaluating feasibility and sustainability of alternative fuel options
 - Environmental impacts on global climate change and air quality
 - Efficient usage of fresh water and land resources
 - Invasive characteristics
 - Technical feasibility
 - Economic cost of fuel production.
- While quantifiable comparisons that incorporate these other attributes is ideal, this research has demonstrated the challenges of assessing and comparing different fuel options using only a single attribute, LC-GHG emissions.

Challenges in Conducting

LCA

Key Conclusions

- Three key conclusions derive from the potentially dominating influence of variability from co-product usage and allocation and LUC assumptions
 - 1. Minimizing variability across LCA results by maximizing methodological consistency is essential to making useful comparisons between fuel options
 - 2. The absolute result from attributional LCA's may have a diluted physical meaning and are therefore most effective as a comparative tool, given the above condition
 - 3. Decision makers and the general public should be presented LC-GHG inventories as a range
 - Such an approach emphasizes the importance of understanding the key aspects that determine the LC-GHG emissions from fuel production and use.

All results discussed herein are presented in more detail in:

Stratton, R.W.; Wong, H.M.; Hileman, J.I. Quantifying Variability in Life Cycle GHG Inventories of Alternative Middle Distillate Transportation Fuels, *Environ. Sci. Technol.* **2011**, 45 (10), 4637-4644

http://pubs.acs.org/doi/abs/10.1021/es102597f

WORKSHOP