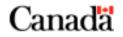


#### AVIATION OPERATIONAL MEASURES FOR FUEL AND EMISSIONS REDUCTION WORKSHOP










David Anderson Flight Operations Engineering Aircraft Panel Ottawa, 5-6 November 2002

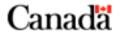


Fuel Conservation Airframe Maintenance for Environmental Performance

> Dave Anderson Flight Operations Engineer Boeing Commercial Airplanes



#### **Maintenance Personnel**

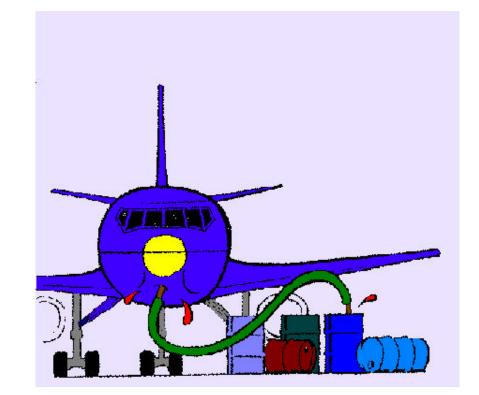





- Airframe maintenance
- Systems maintenance



David Anderson Flight Operations Engineering






# Excess Drag Means Wasted Fuel



- 737 ≈ 15,000
- 727  $\approx$  30,000
- 757 ≈ 25,000
- 767 ≈ 30,000
- 777 ≈ 70,000
- 747 ≈ 100,000





David Anderson Flight Operations Engineering





# Total Drag Is Composed Of:









Compressible Drag » Drag due to Mach
Shock waves, separated flow

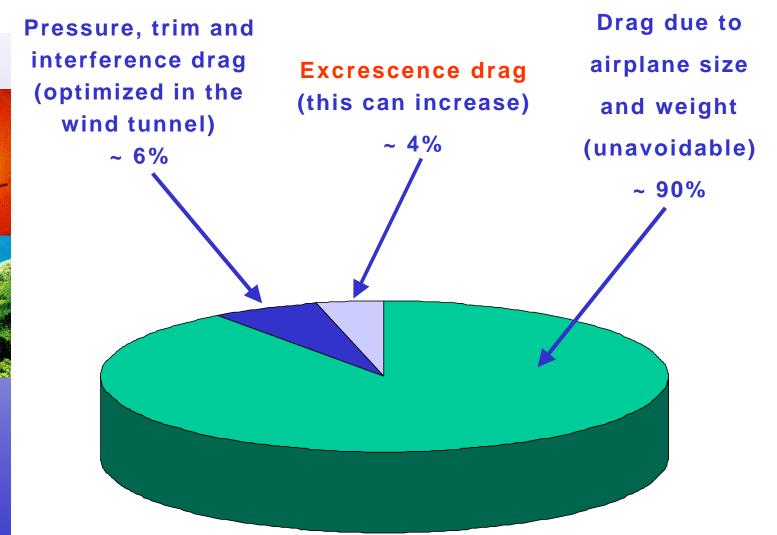
Induced (Vortex) Drag » Drag due to Lift

• Wing, trim drag

#### Parasite Drag » Drag NOT due to Lift

- Shape of the body, skin friction, leakage, interference between components
- Parasite Drag <u>Includes</u> EXCRESCENCE drag

David Anderson Flight Operations Engineering






Transports

Canada

## **Contributors to Total Airplane Drag**





David Anderson Flight Operations Engineering Ott





# What Is Excrescence Drag?



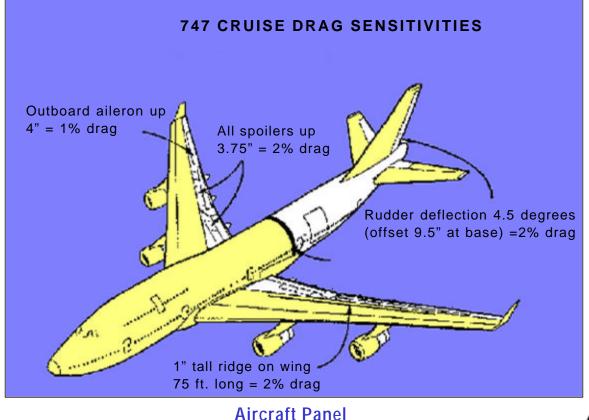




The additional drag on the airplane due to the sum of all deviations from a smooth sealed external surface

Proper maintenance can prevent an increase in excrescence drag

David Anderson Flight Operations Engineering






Transports Canada

Most Important in Critical Areas

- Forward portion of fuselage and nacelle
- Leading areas of wings and tail
- Local Coefficient of Pressure (Cp) is highest











David Anderson Flight Operations Engineering Ottawa, 5-6 November 2002





#### **Discrete Items**

• Antennas, masts, lights







David Anderson Flight Operations Engineering Aircraft Panel Ottawa, 5-6 November 2002

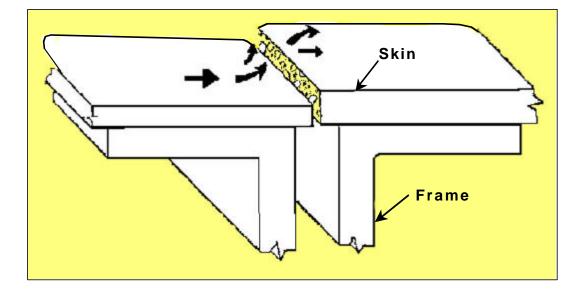
Drag is a function of design, size, position

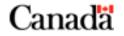




## Mismatched Surfaces

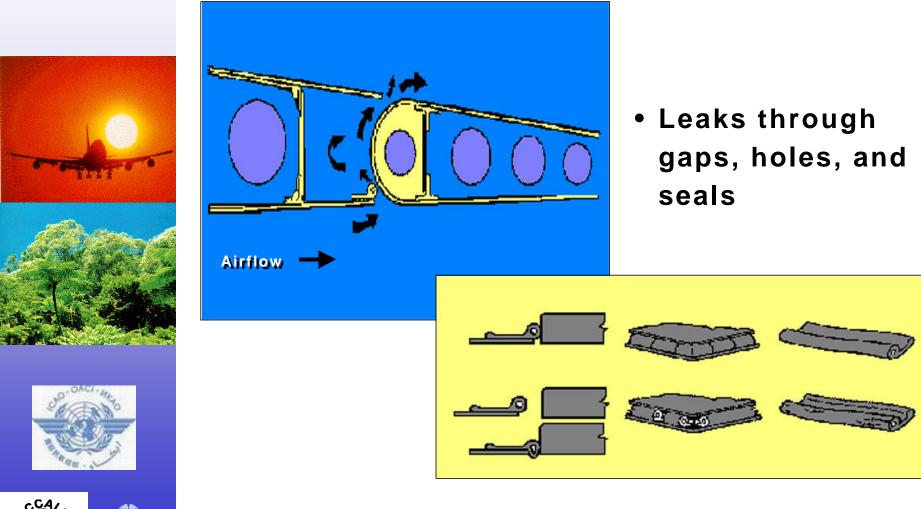





**David Anderson** 

Flight Operations Engineering


Steps at skin joints, around windows, doors, control surfaces, and access panels







#### **Internal Airflow**



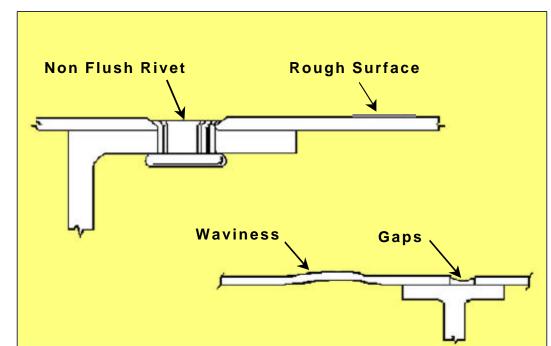


David Anderson Flight Operations Engineering





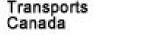
Transports


**David Anderson** 

Flight Operations Engineering

Canada

## Roughness (Particularly Bad Near Static Sources)


- Non-flush fasteners, rough surface
- Waviness, gaps
- Deteriorated paint and decals











**David Anderson** 

# Average Results of In-Service Drag Inspections

- Total Airframe Drag Deterioration ~ 0.65%
  - Control Surface Rigging » 0.25%
  - **Deteriorated Seals »** 0.20%
  - Misfairs » 0.1%
  - Roughness » 0.05%
  - Other » 0.05%

A well maintained airplane should never exceed 0.5% drag increase from its new airplane level



Aircraft Panel Ottawa, 5-6 November 2002 Flight Operations Engineering





# **Regular Maintenance Minimizes Deterioration**





- Misalignments and mismatches
- Maintain seals
- Maintain surface finish
- OEW control
- Instrument calibration



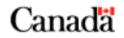




David Anderson Flight Operations Engineering












**David Anderson** Flight Operations Engineering

**Aircraft Panel** Ottawa, 5-6 November 2002



## **OEW Control**

- Operating empty weight grows on average 0.1 to 0.2% per year, leveling off at about 1% after 5 years
- Mainly due to moisture and dirt





# Instrument Calibration

- Speed measuring equipment has a large impact on fuel mileage
- If speed is not accurate the airplane may be flying faster or slower than intended
- Flying 0.01M faster can increase fuel burn by 1%





David Anderson Flight Operations Engineering





# Airspeed System Error Penalty

Calibrate airspeed system

About 2% drag penalty in a 747







David Anderson Flight Operations Engineering Aircraft Panel Ottawa, 5-6 November 2002

Airspeed reads 1% low, you fly 1% fast





Transports Canada

#### Conclusions It Takes the Whole Team to Win











- Large fuel (and emissions) savings can result from the accumulation of many smaller fuelsaving actions and policies
- Flight operations, flight crews, maintenance, and management all need to contribute
- Program should be tailored to your airline
- Boeing offers Fuel Conservation module as part of the "Performance Engineer Training – Operations Course"

David Anderson Flight Operations Engineering





# Conclusions

It Takes the Whole Team to Win









