

ICAO Colloquium on Aviation and Climate Change

Using Granular Resource Economics to Manage Aviation Emissions

Steve Burt

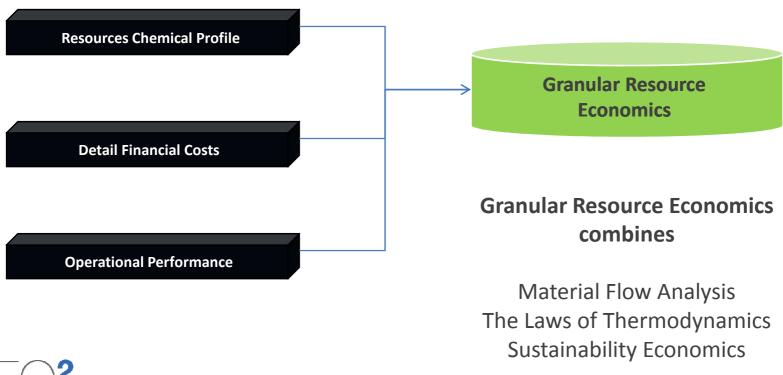
Chief Executive,

EQ²

Issue

Aviation industry needs...

Accurate ... Measurement


Actual ... Measurement

Absolute ... Measurement

Solution

A New Management Method that Optimizes Business and Ecological Performance Requirements

London

Outcome

A Sustainability Management System That Provides ...

Highly Accurate Measurement

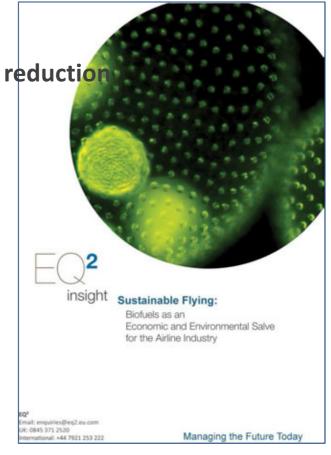
Detailed Real World Accounting

Total Impact Balance Sheet

Transparent Reporting

Future Risk Analysis

Aviation Biofuel


EQ² has applied GRE to the issue of biofuel...

Fuel cost impacts and price/supply uncertainty risk reduction

Direct GHG reductions

Direct reduction in emission credit regs

Supply chain emission impacts

Emission & Cost Accounting

Flight New York to London

Consumes 17,450 gallons Jet-A

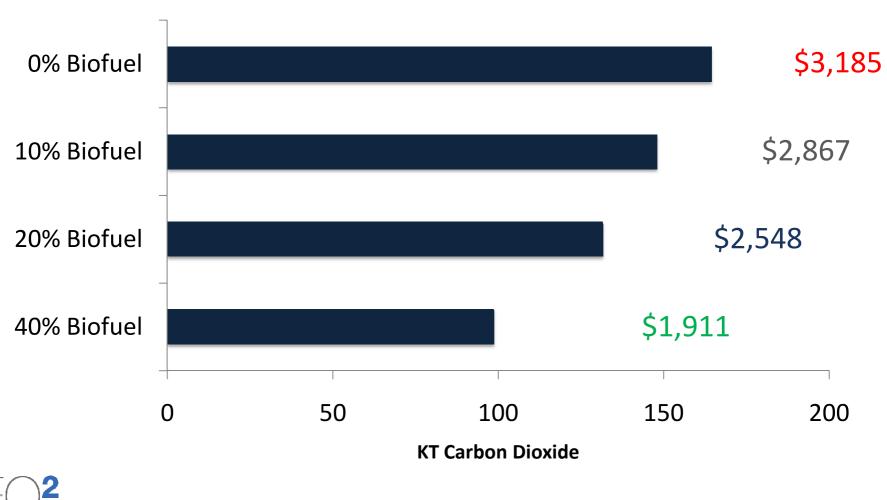
Emissions	LTO	Cruise	Total
CO ₂	2,897	161,482	164,379
CH ₄	0.07	0	0.07
N ₂ O	0.10	5.13	5.23
CO	4.82	79.18	84.00
SOx	0.90	51.26	52.16
NOx	7.97	427.79	435.76
VOCs	0.58	34.89	35.47
PM10	0.04	10.46	10.50
Metals	<0.01	0.01	0.01

Costs

EU ETS \$3,185

Fuel Cost

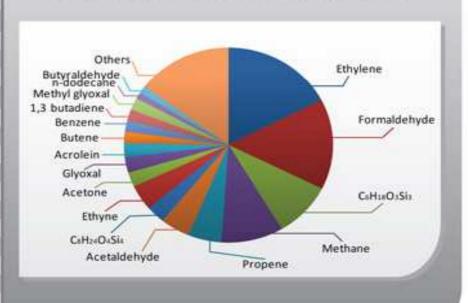
Future Costs


?

?

Biofuel CO₂ Emissions and Cost

GRE Reporting

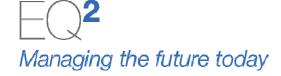

Fleet Total VOC Emissions from LTO

emissions to local environment

All emissions in kg

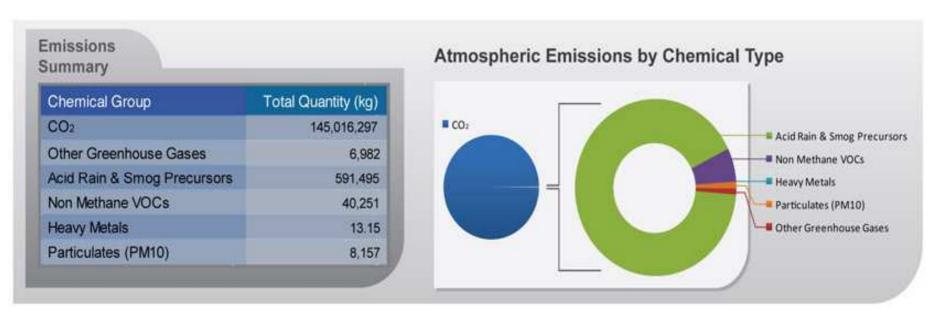
Chemical	Emissions from LTO		
Ethylene	1,953		
Formaldehyde	1,684		
C ₁ H ₁₈ O ₃ Si ₃	1,022		
Methane	1,078		
Propene	584		
Acetaldehyde	516		
C ₈ H ₂₄ O ₄ Si ₄	326		
Ethyne	472		
Acetone	269		
Glyoxal	281		
Acrolein	258		
Butene	225		
Benzene	213		
1,3-butadiene	202		
Methyl glyoxal	225		
n-dodecane	123		
Butyraldehyde	135		
Others	1,661		
Total VOCs from LTO	11,226		

VOC Emissions from LTO by Chemical



GRE Reporting

Total Fleet Atmospheric Emissions


All emissions in ka

Aircraft Type	Boeing 737	Bombardier CRJ 200	Sombardier Dash S	SAAB 340	Fleet tota
Number of Flights	1,325	917	441	713	3,396
Fuel Use (US gallons)	1,295,246	929,198	200,520	140,788	2,565,753
Greenhouse gases		1	Y.		
co,	73,207,295	52,518,277	11,333,410	7,957,315	145,016,297
CH ₄	375	534	234	132	1,274
N ₂ O	2,354	1,897	660	797	5,708
Acid Rain & Smog Precursors					
co	48,644	70,124	20,789	11,908	151,466
NO _x	195,059	127,399	47,233	24,213	393,904
sox	23,166	16,835	3,598	2,526	46,126
Particulates					
PM10	4,181	2,908	625	444	8,157
VOCs				- 3	
VOCs (non methane)	15,634	10,596	7,711	6,310	40,251
Heavy Metals					
Chromium	0.2324	0.1667	0,0360	0.0253	0.4604
Arsenic	0.0012	0.0008	0.0002	0.0001	0.0023
Cadmium	0.2324	0.1667	0.0360	0.0253	0.4604
Copper	0.5229	0.3751	0.0810	0.0568	1.0358
Mercury	0.0023	0.0017	0.0004	0.0003	0.0046
Nickel	0.8134	0.5835	0.1259	0.0884	1.6113
Lead	1.2782	0.9170	0.1979	0.1389	2.5320
Selenium	3.3234	2.3842	0.5145	0.3612	6.5833
Zinc	0.2324	0.1667	0.0360	0.0253	0.4604

GRE Reporting

RAA & Real-World Accounting

Industry first to take a group approach...

Measured quantity use and cost

- Fuel and energy
- Carbon dioxide emissions
- Water use
- Waste generation and treatment

ICAO Colloquium on Aviation and Climate Change

Using Granular Resource Economics to Manage Aviation Emissions

Thank You

