

Session: What is UTM and why is it separate from, but interoperable with, ATM?

Air Traffic Management Research Institute

Alignment of UTM to ATM on Safe Drone Operations

DE

Dr. Kin Huat LOW (罗锦发)

Professor, School of Mechanical and Aerospace Engineering Nanyang Technological University (NTU), Singapore (Principal Investigator: UAS Programme, **ATMRI**, NTU)

Thursday, 13 September 2018; 11:00-12:30; Chengdu, China

DRONE ENABLE ICAO's Unmanned Aircraft Systems (UAS) Industry Symposium

ICAO Headquarters, Montréal, Canada, 22 - 23 September 2017

Since Drone Enable/1 launched one year ago, we have seen many initiatives by various aviation bodies and companies!

Growth of Drone Applications

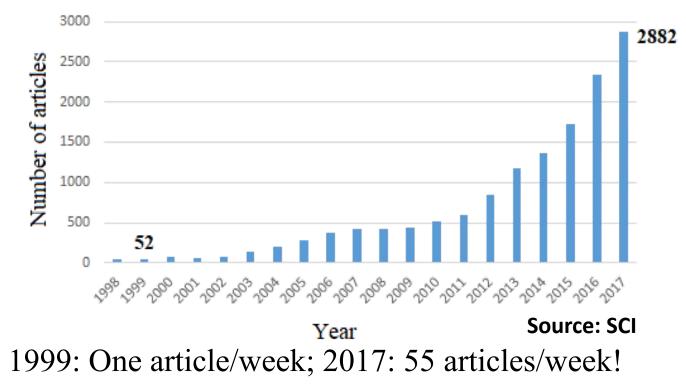
U.S. Department of Transportation

Our Activities
 Areas of Focus

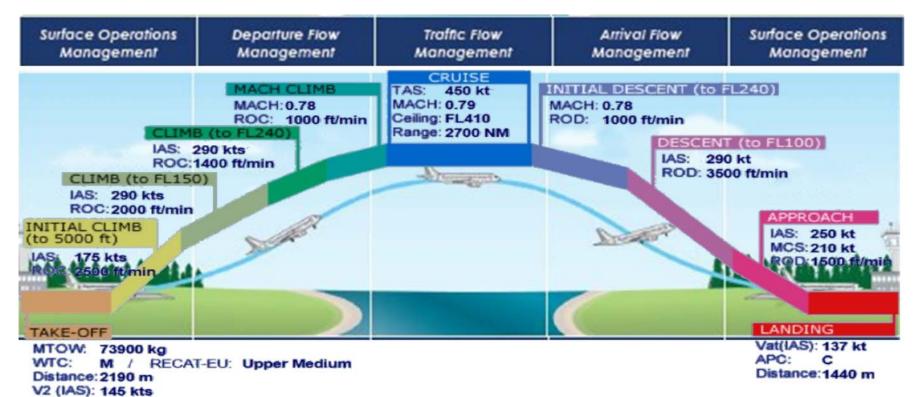
FAA Drone Registry Tops One Million

WASHINGTON - U.S. Department of Transportation Secretary Elaine L. Chao today announced at the Consumer Electronics Show that the total number of drones now registered with the Federal Aviation Administration (FAA) has eclipsed one million.

The 1,000,000 total registration figure includes 878,000 hobbyists, who receive one identification number for all the drones they own, and 122,000 commercial, public and other drones, which are individually registered.


- Jan 10, 2018

About 88% of drones registered are for the recreational use!



A fast-growing R&D area, too!

Articles Published on UAVs (or Drones)

ATM: Phases of Flights

Source: https://www.airport-

technology.com/contractors/traffic/airbusprosky/attachment/airbusprosky2/

https://contentzone.eurocontrol.int/aircraftperformance/details.aspx?ICAO=A320&ICAOFilter=a320

Safety: Approaches and Procedures (Manned Aviation)

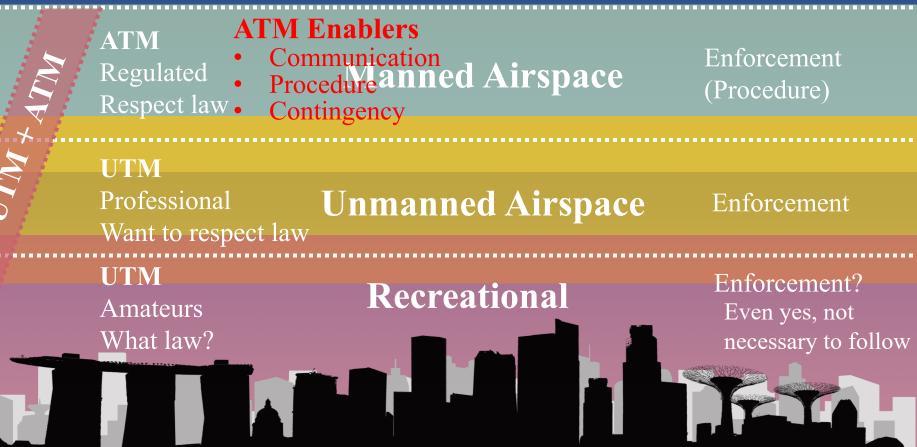
Collision-free Approaches

Different departure time

Route: Waypoints; STAR (Standard Terminal Arrival Route) SID (Standard Instrument Departure)

Height: FL360; Speed: 290 knots

Safety separation/Well Clear (1000ft; lateral 3 miles etc.)


Procedure to follow

Enabling systems/technology (CNS) tested/applied for decades Certificate to follow (RTCA DO-178B, DO-254, etc.); Redundancy

Pilot and ATCO (professional and skillful) Stringent certification/assessment; suspended for mistakes/errors

Manned and Unmanned Airspace

Unmanned (low altitude; sUAVs) vs. Manned aircraft

Same utmost priority: Safety (Manned Aviation: highly regulated industry, procedures & operations)

Differences:

Neither pilot nor passenger on board (different considerations)
Dealing with different scales (weight/size/cost), flight duration/range, operation complexity, level of redundancy

sUAVs: Unknowns/unpredicted; Life cycle of systems and components is rather short (unlike man aircraft/RPAS)

Drone Operations (towards BVLOS)

BVLOS: Beyond visual line of sight

To maximize commercial benefits, **multiple-drone operations** over the same airspace are targeted by industry, together with other users.

Matrix of UAS Growth (Performance-based)

	Crucial Areas					
Operations	BVLOS (beyond visual line of sight) Operation					
	Autonomous flight					
	Altitude restriction; safe separation					
	Flight above people (if necessary)					
	Airspace integration (ultimately)					
	On-Ground Operation – Take-off and Landing (seamless mobility)					
	Crucial Areas					
Vehicle (UAV)	Identification					
	Propulsion					
	Airworthiness					
	Weight/Height/Speed restriction					
	Technology capabilities (DAA, connectivity, safe separation, etc.)					

Matrix of UAS Growth (Risk-based)

	Crucial Areas		
Risk- & Performance- Based	Data/Evidences of System Performances		
Assessments			
	Social Effects (privacy, noise, etc.)		
Multiple-Drone Operations	Capacity, Scheduling, and Efficiency		
	Vehicle to fixed/moving objects; Vehicle to		
	vehicle; Technology capabilities (DAA,		
	connectivity, safe separation, etc.)		

- Situational Awareness
- Environmental Awareness
- Social Awareness (crucial for urban environments)

SKYWAYS

Solution de livraison urbaine

Le projet Skyways d'Airbus prévoit de livrer de petits colis aux étudiants et facultés sur le campus de la National University of Singapore à l'aide de drones.

Cas pilote A

Livraison de colis sur le campus de la National University of Singapore (NUS) via le réseau Skyways.

Campus

NUS

Bibliothèque centrale

Faculté des

sciences

École de commerce NUS

Le drone Skyways est un

octocoptère

qui transporte

dans sa partie

inférieure.

des conteneurs

aériens chargés

3 Après l'atterrissage, le drone se

automatiquement.

recharge

2 Le drone suit une trajectoire entièrement automatisée et atterrit sur une plate-forme définie.

Cas pilote B

Station

de retrait

Livraison de la station aux navires. Cette utilisation sera examinée après complétion du cas pilote A.

Les drones utiliseront des « couloirs aérien » définis

> Les clients finaux recoivent une notification de livraison sur leur téléphone mobile et vont chercher leur colis à la station de retrait.

Paquet

Hôpital

Les drones voleront

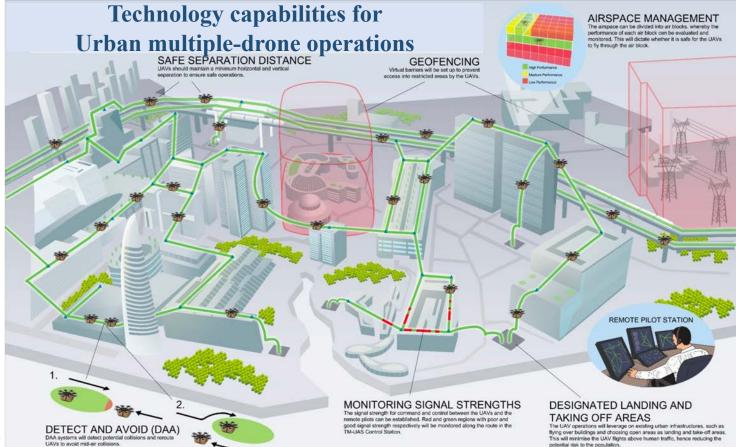
Singapour

simultanément

au-dessus du

campus

Source : Airbus Group

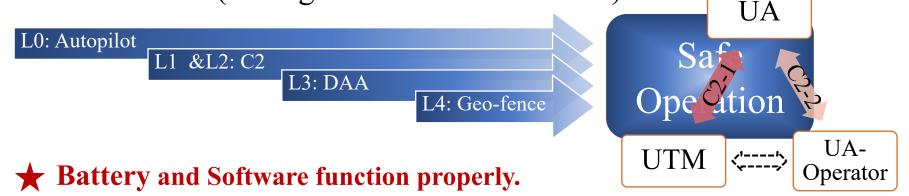

Infographie : C Beatriz Santacruz

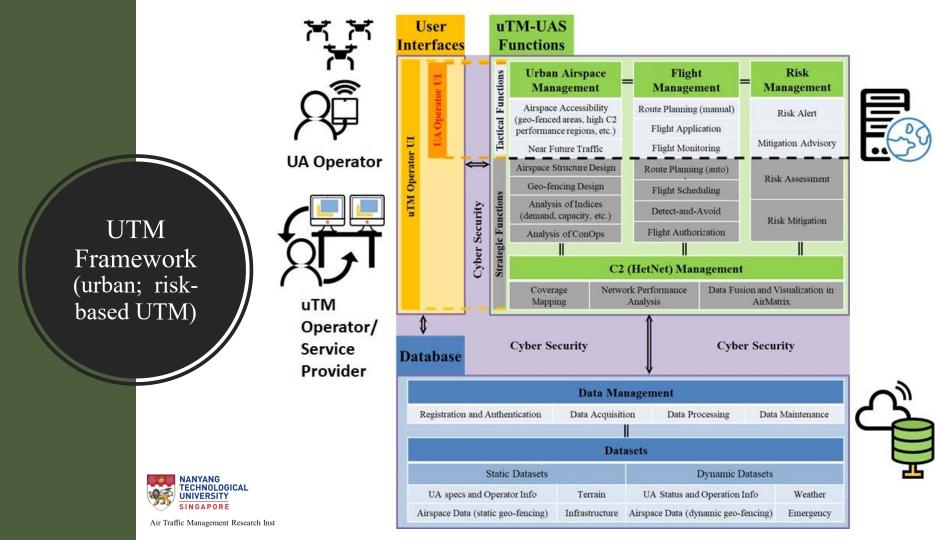
Port de Singapour

Cité universitaire

Faculté d'ingénierie

NTU's Traffic Management of Unmanned Aircraft Systems (TM-UAS) Programme





Air Traffic Management Research Institute

UAS Performance-based Redundancy Level

- L0: Basic Autopilot + DAA (*open field* and *clear sky*)
- L1: C2 UA UA-Operator datalink (RTL/land at a specific place)
- L2: C2 UA UTM datalink
- L3: DAA + Auto Navigation (avoid collision damage in auto mode)
- L4: Geo-fence (extra gate to critical situations)

AC UAS-2(0) 1 August 2018

Advisory Circular

ASSESSMENT METHODOLOGY FOR BEYOND VISUAL LINE OF SIGHT (BVLOS) OPERATIONS FOR UNMANNED AIRCRAFT

First Comprehensive Circular on BVLOS!

General	1
Purpose	1
Applicability.	
Cancellation	
Effective Date	1
References	1
Introduction	2
Definitions	2
Assessment Methodology for BVLOS Operations	4
Application for BVLOS Operations in Singapore	7
Appendix 1 Requirements for BVLOS Operations	10
Appendix 2 Roles and Responsibilities of the Operator	
Appendix 3 Guidance on Design of UAS Technical Systems	
Appendix 4 Detect and Avoid System	
Appendix 5 Software Life Cycle	
Appendix 6 Navigation Systems	

 GENERAL. Pursuant to paragraph 88B of the Air Navigation Order, the Director-General of Civil Aviation (DGCA) may, from time to time, issue advisory circulars (ACs) on any aspect of safety in civil aviation. This AC contains information about standards, practices and procedures acceptable to CAAS. The revision number of the AC is indicated in parenthesis in the suffix of the AC number.

Source: CAAS, Singapore

Overview of Assessment Methodology for BVLOS Operations

Risk category	Intended scope of		Requirement (Requirement Code)			
	BVLOS Operations	Basic	Level 1	Level 2	Level 3	
мот	 No overflying <i>uninvolved persons</i> Operate away from people and in an area where it is reasonably expected that no <i>uninvolved person</i> will be present 	• General (BG)	 Operational (LF) Software (BW) Others (BT) Interlegement (LF) Navigation (LN) Communication (LC) Structural (MS) Software (MW) Avoid (LD) Navigation (MN) Communication 			
MEDIUM	 Flying in close proximity to <i>uninvolved persons</i>. Flying over <i>uninvolved persons</i>, with flight duration not exceeding 30% of the overall flight. 	(BO) • Software (BW)		 General (MG) Structural (MS) Software (MW) Navigation (MN) Communication (MC) Detect and Avoid (MD) Propulsion (MP) 		
нын	 Flying over <i>uninvolved</i> persons High risk and complex operations 				 General (HG) Software (HW) Navigation (HN) Detect and Avoid (HD) 	

* Incorporated into UTM for Low/Medium/High Risks

(Source: CAAS AC UAS2(0))

Your Thoughts?

- To cover all drones (sUAVs, not RPAS) in UTM consideration?
- If no, what are the criteria/means for drones to be excluded for UTM? By weight? By Flying Height? By kinetic energy? By Operation?
 If no, what are the criteria/means for buses
 Buses
 Trucks
 Trucks
 Mo license required

• Motorbikes

• Cars

Outcomes of Drone Enable

- DE1: Framework of UTM (Sep 2017)
- DE2: Identify the needs to align UTM to ATM (Sep 2018)
- Next: What are crucial and necessary needs?
 - How and to what levels/extent of achieving them?

Concluding Remarks

Fast-evolving & game-changing fields: Industry/Commercial Push

Existing and new technologies for sUAVs are to be tested and validated as a whole eco-system

Before it is tested to be stable and reliable, we need to have a set of rules (or guidelines) to "facilitate" the drone operations by incorporated with comprehensive UTM, by learning from good practices developed and tested by ATM, while recognizing their differences with RPAS and manned aircraft

e-mail: mkhlow@ntu.edu.sg

Looking forward to work with you to identify needs and predict unknowns © © © © © ©