THIRD CONFERENCE ON AVIATION AND ALTERNATIVE FUELS (CAAF/3)

Dubai, United Arab Emirates, 20 to 24 November 2023

Agenda Item 2: Supporting policies to promote the development and deployment of cleaner energy for aviation

Agenda Item 5: Reviewing the 2050 ICAO Vision for SAF, including LCAF and other cleaner energy for aviation, in order to define a global framework

VIEWS ON GLOBAL FRAMEWORK ON SAF, LCAF AND OTHER AVIATION CLEANER ENERGIES, RELATED ASSISTANCE AND FINANCE

(Presented by India)

SUMMARY

India supports the global framework on SAF with a robust pathway designed to support developing countries in means of implementation and finance towards the development and deployment of SAF, and to further negotiate constructively on any other outcomes. India also strongly supports the FINVEST Hub initiative of ICAO and proposes to expand its scope as a one-stop shop that supports States to develop their SAF industries. However, as the SAF production and deployment remains a challenge in emerging economies which requires upfront investment, capacity building, robust infrastructure and support from the developed economies, and therefore, India is not in support of any quantified vision for SAF, LCAF at this stage.

Action by the Conference is in paragraph 4.

1. INTRODUCTION

1.1 BACKGROUND

1.1.1 India's National Commitments

1.1.1.1 India is committed to be a leader in climate action, by making responsible development choices that move the economy along low GHG emissions pathways towards net zero by 2070. Recognizing that global warming is a global collective action problem, addressing the challenge with firm adherence to multilateralism, and, on the basis of equity and the Principle of Common but Differentiated Responsibilities and Respective Capabilities, as embodied in the United Nations Framework Convention on Climate Change (UNFCCC).

- 1.1.1.2 India has consistently made ambitious commitments at the UNFCCC and its Paris Agreement, the key multilateral forum for climate change, and has a strong track record of meeting these commitments, despite its minimal responsibility. Building upon Prime Minister's "Panchamrit Pledges" (five nectar elements) at the 26th Conference of Parties (COP 26) of the UNFCCC in Glasgow, including the target of net-zero emissions by 2070, India updated its NDCs in August 2022 as follows:
 - a) Meet 50% of India's cumulative electric power installed capacity from non-fossil sources by 2030.
 - b) Reduce the emission intensity of GDP by 45% below 2005 levels by 2030.
 - c) To put forward and further propagate a healthy and sustainable way of living based on traditions and values of conservation and moderation, including through a mass movement for L.I.F.E. – Lifestyle for Environment as a key to combating climate change.

1.1.2 Importance of Sustainable Aviation Fuel, LCAF and other Cleaner Energies

- 1.1.2.1 Aviation industry plays a key role in the economic prosperity of a country, besides providing a worldwide rapid transportation network. It also contributes significantly to world trade. Sustainable aviation fuels are the cornerstone of carbon reduction in the field of aviation, which cannot be achieved in totality by non-biofuel measures like efficient air traffic management and new aircraft having better fuel economy.
- 1.1.2.2 In continuation to CORSIA, the 41st ICAO Assembly resolved that "ICAO and States are encouraged to work together to strive to achieve a collective long-term global aspirational goal for international aviation (LTAG) of net-zero carbon emissions by 2050, in support of the Paris Agreement's temperature goal, recognizing that each State's special circumstances and respective capabilities (e.g. the level of development, maturity of aviation markets, sustainable growth of its international aviation, just transition, and national priorities of air transport development) will inform the ability of each State to contribute to the LTAG within its own national timeframe".
- 1.1.2.3 Achieving the LTAG requires a comprehensive approach consisting of a basket of measures, including technology, sustainable fuels, operational improvements, and market-based measures. Sustainable Aviation Fuels (SAF), Lower Carbon Aviation Fuels (LCAF) and other aviation cleaner energies are expected to have the largest contribution to aviation CO_2 emissions reduction by 2050 and, whilst there are increasing initiatives to develop and deploy these fuels, current production levels of these fuels is only 0.2 per cent of all aviation fuel use.

2. **DISCUSSION**

2.1 International Scenario on Presence of Sustainable Aviation Fuel, LCAF and other Cleaner Energies

- 2.1.1 The recent IATA report highlights the issue of availability of SAF as the net output in 2022 was only 0.1% of the overall volume of jet fuel required in the world.
- 2.1.2 There are only two Sustainability Certification Schemes eligible for certifying CORSIA Eligible fuel producers viz the International Sustainability and Carbon Certification (ISCC); and the Roundtable of Sustainable Materials (RSB).

2.1.3 As per the ICAO report, when analyzing the results by region of production, it is found that across all scenarios more than 58% percent of fuel is produced in North America, with estimated production shares in Europe and Asia ranging from 16% to 27% in Europe and only 2% to 4% in Asia region and Nil in Africa.2.1.4 It is a well established fact that global development and deployment of SAF and LCAF in all the regions of the world is essential for carbon reduction from aviation.

2.2 India's Efforts in SAF deployment and Usage

2.2.1 India has taken many policy and technology-led initiatives to limit aviation emissions. Further, use of SAF, as a short term measure, is expected to be the main measure driving the overall emissions reductions needed to achieve this ambitious goal, as identified in ICAO's analysis developed by its Council's Committee on Aviation Environment Protection (CAEP). The gap between the 2050 net-zero CO2 emissions goal after technology, operations and infrastructure improvements will need to be mainly fulfilled through SAF, requiring significant amounts to be supplied to replace most of the conventional fuel. During the recent G20 Summit, India, the United States and Brazil launched Global Biofuel Alliance in order to boost the use of cleaner fuels. The alliance is aimed at facilitating cooperation and intensifying the use of sustainable biofuels, including in the transportation sector. The efforts and India's presence in SAF is explicitly given in the Appendix.

2.3 Challenges in SAF Commercialization in India

- With rapidly maturing technologies, cost of SAF production is declining. However, currently the
 cost of SAF is almost 3 to 5 times the cost of fossil ATF, depending on the feedstock and pathway
 used for production of SAF. Lack of infrastructure and ecosystem is also adding to the cost of SAF.
- Establishing SAF production facilities requires substantial upfront investment. Access to financing, especially in the early stages of development, can be a barrier.
- SAF is a relatively new concept, and public awareness and acceptance are crucial. Adoption of SAF is lower than expected.
- Limited potential for HEFA based SAF (lowest cost pathway currently) in India compared to world, keeping India's cost competitiveness at risk.
- Establishing rigorous certification and sustainability standards for SAF production is important to ensure that the fuel meets environmental and social criteria. This can involve complex challenges related to traceability and lifecycle assessment.
- Issue of fragmented supply chains and limited feedstock access, while they are plentiful in India, the infrastructure needed to collect, sort, transport and store these materials in a cost-effective way remains underdeveloped.
- 2.3.1 Despite the efforts for rapid development, SAF is not forecast to scale at a rate and magnitude to fully replace petroleum jet fuel in the near term. In addition, biomass-based SAF have raised questions about feedstock availability, land availability, conversion efficiency, and competition with other sectors (e.g., road transport and chemical market). The spatial variation of jet fuel consumption and supply chain emissions among different regions further complicates this challenge and calls for a clearer understanding of how SAF can be best deployed in different regions to maximize emissions reductions.
- 2.3.2 The developing countries in all the regions of the world have similar challenges. Availability, Accessibility and Affordability of SAF at global level is a very intense challenge that developing countries are facing.

3. INDIA'S POSITION ON GLOBAL FRAMEWORK FOR SAF, LCAF AND OTHER AVIATION CLEANER ENERGIES

- 3.1 India supports the global policy framework as published on the event website with its four building blocks of Policy and Planning, Regulatory Framework, Implementation Support, and Financing.
- 3.2 India is particularly supportive of the 'ICAO Finvest Hub' initiative. The initiative has the potential to be developed as a one-stop solution for supporting States and the Industry in their efforts to develop and implement SAF, LCAF, and other aviation cleaner energy projects. India proposes that the initiative be developed to assure the States and Industry of handholding and support from the first to last step of the clean energy projects.
- 3.3 India has submitted its views on the document titled "ICAO Global Framework for SAF, LCAF other Aviation Cleaner Energies" which was discussed broadly during Pre-CAAF/3 consultations on 25 to 26 September 2023 at ICAO Headquarters in Montreal, Canada.
- 3.4 ICAO Assembly Resolution A41-21, 17th preamble "recalls the UNFCCC and the Paris Agreement and acknowledges its principle of common but differentiated responsibilities and respective capabilities, in light of different national circumstances". India in line with its consistent stand on the issue so far stated that the UNFCCC principles based on CBDR-RC (Common but Differential Responsibilities Respective Capabilities) should be the starting point, duly covered in the framework of Long Term Aspirational Goal (LTAG) Net Zero by 2050 adopted by ICAO's 41st Assembly to work on the way forward.
- 3.5 It is stated that the quantification of any vision at this stage would be at variance with the above stated framework and would potentially derail the consensus achieved by all Member States during the last ICAO's 41st Assembly in the year 2022. Any quantified vision would lead to market distortions, inequities by geographical distributions and would lead to regional policies that would not be legitimised.
- 3.6 In view of detailed diligence and scientific studies required on various aspects on Sustainable Aviation Fuel (SAF) legislation, regulation, production, and deployment, a quantified vision would be rushed and incomplete if the above aspects are not fully examined and evaluated by CAEP and other expert groups. It is opined that quantification would also dilute the ICAO's generic principle of "No Country left Behind".
- 3.7 It is also stated that Developing States and States having special needs must be the main recipients of the financial flows to be fostered within a climate finance initiative or funding mechanism, which are to take into account their priorities, needs and country-driven strategies.
- 3.8 It is concluded that India does not support a quantified vision on SAF at this point of stage, importance to capacity building and financing, UNFCCC principles on CBDR and Equity, issues related to price and production challenges for SAF should be given and a delicate balance should be maintained which was achieved during the last ICAO 41st Assembly while adopting LTAG.

4. **ACTION BY THE CAAF/3**

- 4.1 The CAAF/3 is invited to:
 - a) note the developments made by India towards its commitments at UNFCCC and its Paris Agreement;
 - b) note the developments made by India in the field of Sustainable Aviation Fuel;
 - c) note that India supports the global framework on SAF with a robust pathway designed
 to support developing countries in means of implementation and finance towards
 development and deployment of SAF, and to further negotiate constructively on any
 other outcomes;
 - d) consider the challenges for commercial SAF deployment in developing countries; and
 - e) take into consideration that any quantified vision in respect of cleaner energies be further analysed and be taken in the next ICAO Assembly in the year 2025 keeping in view the availability and production challenges highlighted in paragraphs 2 and 3.

APPENDIX

SAF DEPLOYMENT IN INDIA

- 1. **SAF Key Technologies & Pathways in India** Out of 11 approved pathways by ASTM, following three pathways have high technology readiness level and shows enormous potential for commercialization, particularly in India.
 - Hydro processed Esters and Fatty Acids (HEFA): This pathway is technologically mature and is
 already commercialized in USA and Europe. This pathway was approved by ASTM in 2011 and
 most of the demonstration flights using SAF blend are based on SAF produced from HEFA
 pathway. HEFA refines lipids such as vegetable oils, waste oils, or fats into SAF and other valuable
 co-product such as Renewable Diesel. This process consists of hydro treatment and isomerization
 to convert triglycerides into hydrocarbons in the ATF range.
 - Alcohol-to-Jet (ATJ): This pathway utilizes alcohol as a source (either Iso-butanol or Ethanol) for
 production of SAF. The Alcohol can be produced from Sugary, Starchy and Biomass feedstock.
 ATJ converts Alcohols into SAF by removing the oxygen (Dehydration) and linking the molecules
 together to get the desired carbon chain length (i.e., Oligomerization). Further processing includes
 Hydrogenation and Fractionation to get the SAF and co-products such as Renewable Gasoline
 (Isooctane), Green Diesel etc. The technology of this pathway is rapidly maturing and many
 commercial scale plants based on ATJ pathway are already announced across the globe.
 - Fischer Tropsch (FT): In this process, the Syngas, produced from biomass gasification, is synthesized and catalytically cracked to produce SAF. Two different FT processes have been certified by ASTM to date, one that produces a straight paraffinic jet fuel (SPK) and one that also produces additional aromatic compounds (SAK).

Apart from above technologies, 'Power to Liquid' technology for SAF production is rapidly emerging as the more sustainable alternative to other technology pathways. Although, this technology pathway has high environmental sustainability, it may take at-least couple of decades for this pathway to become commercially viable.

2. Efforts of SAF technology development in India

While SAF technology development in initial phase is primarily conducted in USA and Europe, some Indian organizations and research labs are also leading the efforts in developing technological solutions for production of SAF based on feedstock available in India.

- CSIR-IIP: The Indian Institute of Petroleum (IIP), one of the constituent laboratories under the umbrella of Council of Scientific & Industrial Research (CSIR), has developed an indigenous single step catalytic technology based on hydro-processing of waste lipids, such as Used Cooking Oil & Tree borne oils to produce SAF. CSIR-IIP has also established pilot scale testing facility with the capacity to process feed up to 50 kg per day.
- Praj Industries Ltd.: The technology is based on ASTM approved ATJ pathway, in which the commonly available feedstock in India such as Cane Molasses, Cane Syrup, Agricultural Residues etc. are first converted into Isobutanol, which is further processed into SAF.

• Lanzajet: The technology is based on ASTM approved ATJ pathway, in which the commonly available feedstock in India are produced from a low-carbon, sustainable ethanol sourced from a diverse and flexible set of feedstocks including off-gasses, ag-waste, and MSW.

3. Feedstock Availability

The successful commercialization of SAF largely depend on availability of low-cost sustainable feedstock. Currently, most of the SAF produced in the world is based on lipid feedstock such as Used Cooking Oil, Animal Tallow etc. However, SAF plant facilities based on Corn, Sugarcane & Second Generation (2G) Lignocellulosic Biomass (such as Agricultural or Forest Residues) are either in planning stage or under construction in various parts of the world.

Here is the overview of various prominent feedstock available in India for SAF production.

Agricultural Residues / Second Generation (2G) Feedstock (for SAF production based on ATJ pathway)

Every year, around 500 million tons of Agricultural Residues are produced in India and around 100 million tons of these residues are burnt on the field causing widespread pollution. In order to mitigate the pollution caused by burning of residues, Govt. of India launched an ambitious program of setting up 12 number ethanol plants operating on Agricultural Residues as feedstock.

India's first Second Generation (2G) Ethanol plant was inaugurated by Hon. Prime Minister in August 2022 in Haryana and the same plant is now producing 100,000 litres of Bioethanol per day from Rice Straw.

Ethanol produced using Agricultural Residues can be converted into SAF using ASTM approved ATJ pathway. Even converting 50 million tons of Agricultural Residues, which is just 10% of total agricultural residues available in India, would yield around 4 to 5 million tons of SAF per year, and thereby saving around 10 to 15 million tons of GHG emissions per year. Further carbon emission savings could also be derived from high-value low carbon renewable fuels produced as co-products during the refining process.

• First Generation (1G) Feedstock for Alcohol production (for SAF production based on ATJ pathway)

Despite 20% blending of Ethanol in the gasoline pool in India, there is likely to be availability of either surplus Ethanol or feedstock for production of Alcohols (Isobutanol or Ethanol) such as Sugary Streams (Cane Syrup, Cane Molasses etc.) and grains unfit for human consumption. The supply chain for production of Alcohols based on 1G feedstock is already established and surplus Ethanol or Isobutanol produced from 1G feedstock can be converted into SAF through setting up plants based on ATJ pathway.

Currently, Cane Molasses, which is widely available in India and is in surplus quantity, is classified as 'Byproduct' of sugar manufacturing process, whereas Cane Molasses is the 'waste' product of the sugar manufacturing process.

Lipids (Used Cooking Oil or Tree Borne Oil) for SAF production based on HEFA pathway

Considering that India consumes almost 22 to 27 million tons of vegetable oil every year, there is significant quantity of Used Cooking Oil (UCO) produced in India. Tree Borne Oil (TBO) from plants such as Jatropha and Pongamia cultivated on degraded land is another potential feedstock in India for production of SAF.

4. **Policy Support**

While there is the policy of CORSIA catering for use of SAF for international aviation, the commercial use of SAF in India will also require policy interventions by the government, with regulations and incentives throughout the value chain.

Various policies to promote Biofuels have already been established by the Government of India which include the National Policy on Biofuels 2018, Ethanol Blending Mandate, PM-JiVan Yojana, the Sustainable Alternative towards Affordable Transportation (SATAT) and national solar and hydrogen missions.

5. **SAF Flights**

- Biofuel produced from Jatropha seeds by Indian Institute of Petroleum, CSIR lab 25% SAF with ATF was blended and used in one engine of Bombardier Q 400 aircraft for 01 hour flight from Dehradun to Delhi in August, 2018. The fuel is still under process of ASTM approval.
- M/s Indigo carried out its first international ferry flight with 10% blended fuel from Toulouse to Delhi on 17 February 2022.
- M/s Vistara conducted its ferry flight of B-787 from USA to India using 28% of SAF blended fuel on 29 March 2023.
- M/s Air Asia carried out its first commercial domestic flight (Pune to Delhi) with 0.75% SAF blended fuel on 19 May 2023.
- Airlines will carry out all their ferry flights with 5% SAF blended fuel provided by M/s Airbus originating from Toulouse and Hamburg.