

Airport Sustainability Assessment

Dr. Azzam M. Qari

Presentation Outlines

- Background
- Introduction
- Aircraft Fueling Sustainability Projects
- Conclusion and Recommendations

Background

UN Sustainable Development Goals

KSA Vision 2030

KINGDOM OF SAUDI ARABIA

Background

The Saudi Green Initiative (SGI)

VISION C__M 2330 Sector that is a sector of the sector of

Home Ministry 🗸 Our Programs 🗸 E-Services Media Center 🗸 Digital Documents 🗸 Recruitment Portal Contact Us

The Saudi Green Initiative (SGI)

The Saudi Green Initiative (SGI) is an initiative whose details were announced by HRH Crown Prince Mohammed bin Salman in October 2021. SGI aims at promoting efforts to enhance quality of life and protect future generations in the Kingdom, through harmonizing all sustainability plans, maximizing renewable energy utilization, reducing emissions and fighting climate change.

Home Ministry 🗸 Our Programs 🗸 E-Services Media Center 🖌 Digital Documents 🗸 Recruitment Portal Contact Us

Energy efficiency and emissions reduction

The Kingdom leads the global efforts through developing the Circular Carbon Economy (CCE), in order to maximize sustainable benefit while ensuring sustainable economic growth. Rather than combating carbon, we always seek to reduce, reuse, recycle and remove carbon by adopting modern technologies and balanced policies.

2330 aldali õjijg

Home Ministry 🗸 Our Programs 🗸 E-Services Media Center 🗸 Digital Documents 🗸 Recruitment Portal Contact Us

Renewable Energy

The Kingdom of Saudi Arabia has the natural capabilities and potential to have a pivotal position and leadership role in the renewable energy market. It has the economic and environmental factors necessary to produce renewable energy in its various forms. This represents a major growth opportunity to preserve current resources, achieve balance, meet the demands of life for future generations and achieve sustainable economic development.

Home Ministry V Our Programs V E-Services Media Center V Digital Documents V Recruitment Portal Contact Us

Blue & Green Hydrogen

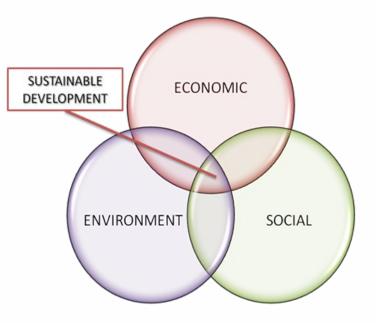
Hydrogen will play a pivotal role in global energy policies at the economic and sustainable levels in the coming years. The Kingdom harnesses its energy ecosystem and all its potential to support the development of the hydrogen industry in the Kingdom in order to achieve economic efficiency, raise the efficiency of consumption, and lead in global energy markets.

Background

Industry Targets

- At the 77th IATA Annual General Meeting in October 2021, IATA member airlines agreed to commit to netzero carbon emissions by 2050. The resolution aligns with the Paris agreement to limit global warming to 1.5-C.
- Many of Major oil companies have objective of at least 50% of Net Zero Emission reductions by 2050

Towards the Sustainable Development

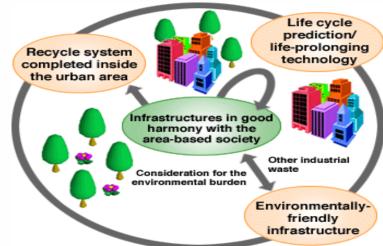


Introduction

Sustainability Development

Definitions and Background

- Scholars have stated that sustainability will be the great challenge of the 21st century
- The United Nations defined Sustainable Development as "Development that meets the needs of the present without compromising the ability of future generations to meet their own needs"
- Three sustainability dimensions: Economic, Environment and Social
 - Minimize the risk of environmental damage, environmental protection, and ecological sustainability
 - $\circ\,$ Socio/cultural sustainability recognizing the needs of all
 - Economic sustainability maintaining high and stable levels of economic growth


Introduction

Sustainability Development

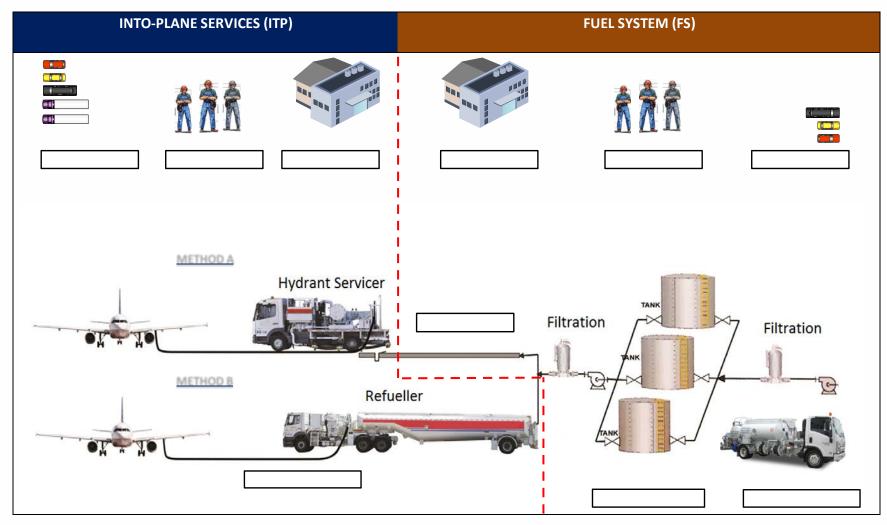
Definitions and Background

Therefore, the Airport Fueling System, across the overall life cycle (i.e. planning, design, construction, operation, maintenance) should:

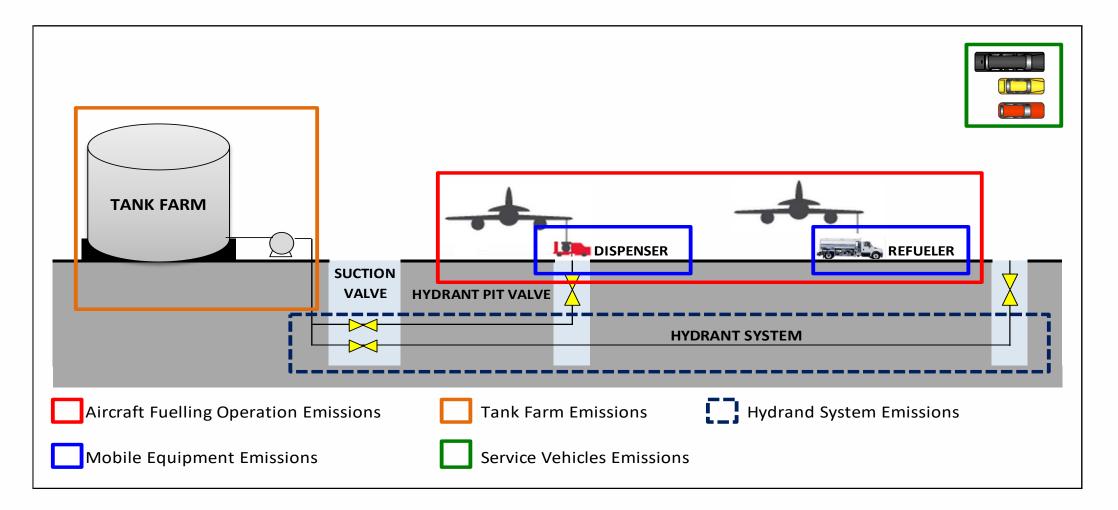
- Enhance living and working environments
- Consume minimum energy over their life-cycle
- Generate minimum waste over their life-cycle
- Use renewable resources wherever possible
- Reduce greenhouse gas emissions

(Source: Hokkaido University, 2013)

Introduction

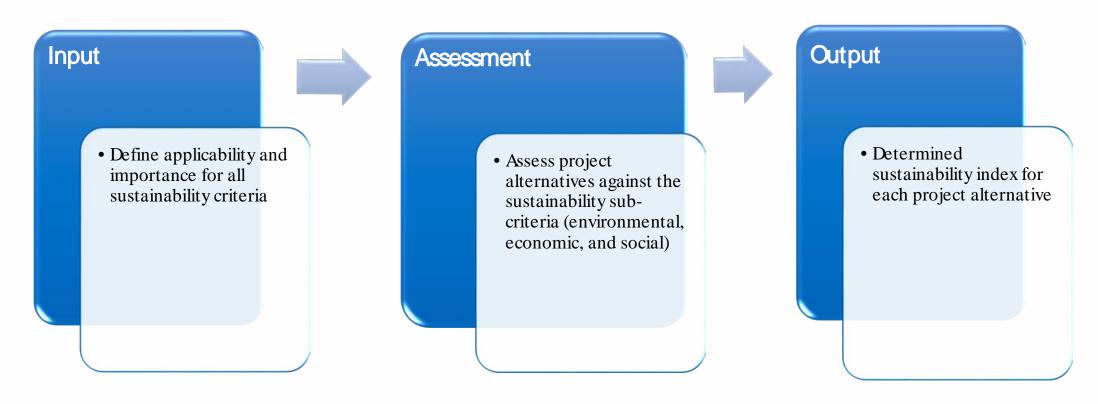

Aircraft Fueling Sustainability Project

Economic, environmental and social issues of sustainability should be considered as part of the overall airport fueling project life cycle (i.e. planning, design, construction, operation, maintenance, etc.).



Sustainability Assessment

Analysis

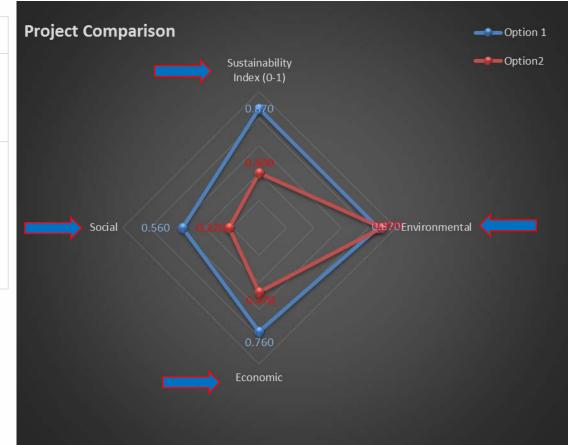

Model Objectives

- 1. Develop a mathematical sustainability assessment model for airport fueling projects and operations;
- 2. Develop a mathematical model for analyzing the emissions of airport fueling projects and operations;
- 3. Develop a mathematical model for analyzing the energy consumption of airport fueling projects and operations; and
- 4. Validate all three models using case studies

Sustainability Assessment Model

Model Objective #1: Development of a Sustainability Model for Airport Fueling Projects

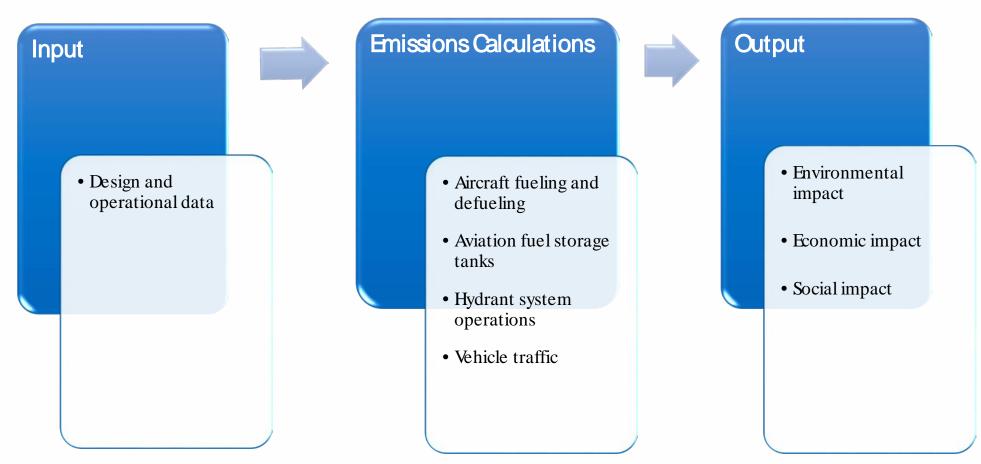
Model Structure



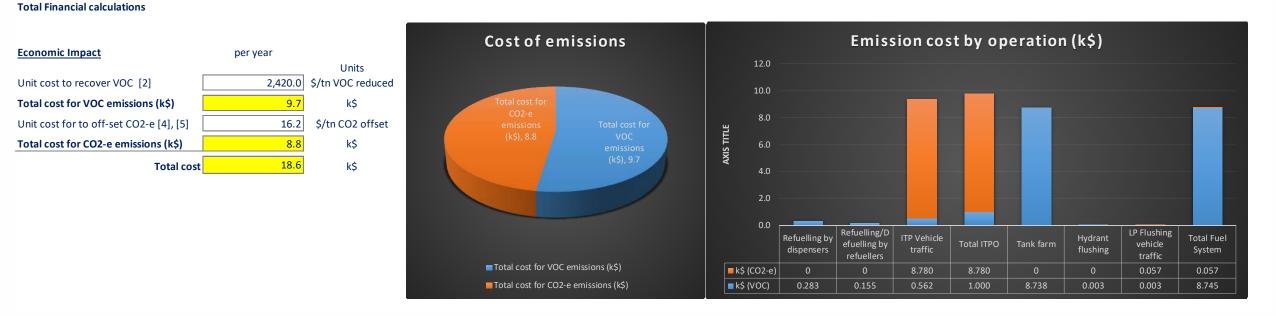
Model Output

Model Objective #1: Development of a Sustainability Model for Airport Fueling Projects

Α	Environmental	В	Economic	С	Social
A1	Administrative procedures	B1	Economic performance analysis	C1	Occupational health and safety
A1.1	Cooperative sustainability policy	B1.1	Life cycle cost	C1.1	Representation in Health, Safety, Security and Environment (HSSE) committees

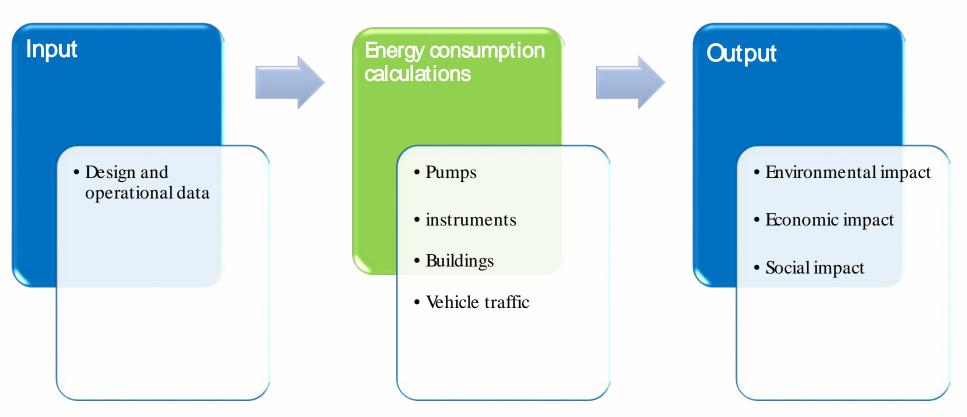

• The model output presents the aggregation and calculations of the sustainability index for each project alternative

Emission Model Structure


Model Objective #2: Development of Aircraft Fueling Emissions Analysis Model for Airport Projects

Economic Impact

Model Objective #2: Development of Aircraft Fueling Emissions Analysis Model for Airport Projects



		ITPO			Fuel System			
	Refuelling by dispensers	Refuelling/Defuelling b	ITP Vehicle traffic	Total ITPO	Tank farm	Hydrant flushing	LP Flushing vehicle trai	Total Fuel System
k\$ (VOC)	0.283	0.155	0.562	1.000	8.738	0.003	0.003	8.745
k\$ (CO2-e)	0	0	8.780	8.780	0	0	0.057	0.057
				9.780				8.801

Energy Model Structure

Model Objective #3: Development of Aircraft Fueling Energy Consumption Analysis Model for Airport Projects

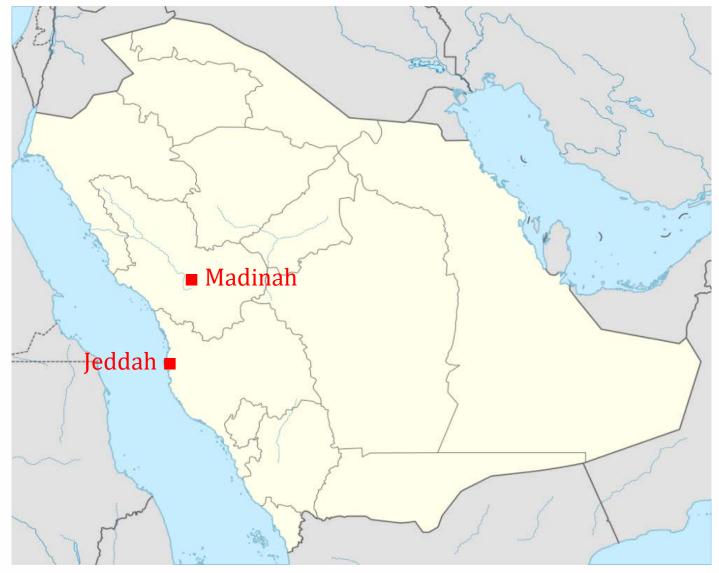
k\$ k\$

9,289.71

Economic Impact of Airport Fueling Energy

Model Objective #3: Development of Aircraft Fueling Energy Consumption Analysis Model for Airport Projects

Economic impact calculations											
							Cost (I	k\$)	Total cost	by operatior	n (k\$)
Pumps and Instruments	Energy Consumption		Cost of elect	ricity	Cost of CO ₂	offset		20.65		0.8	
		<u>Units</u>		<u>Units</u>		Units	82.62	20100			
Pumps-Tankfarm	43,209.5	kWh	3.69	k\$	0.56	k\$	82.02				
Instruments-Tankfarm	193,070.4	kWh	16.48	k\$	2.50	k\$					
Pumps-Hydrant	0.0	kWh	0.00	k\$	0.00	k\$			2,483.	5	
Instruments-Hydrant	5,742.2	kWh	0.49	k\$	0.07	k\$					
Total	242,022.1	kWh	20.65	k\$	3.13	k\$					
							7,948.3	35			
Buildings	Energy Consumption		Cost of elect	ricity	Cost of CO ₂	offset				6,805.3	
Tankfarm	69,015,660.0	kWh	5,889.31	k\$	<u>892.79</u>	k\$					
ITPO	24,129,420.0	kWh	2,059.04	k\$	312.14	k\$					
Hydrant	0.0	kWh	0.00	k\$	0.00	k\$					
Total	93,145,080.0	kWh	7,948.35	k\$	1,204.92	k\$					
							Pumps and Instruments	🛎 Buildings 🛛 📓 Vehicles	Tanki 🔤	farm 📲 ITPO 📓 Hydrani	
Vehicles	Fuel consumption		Cost of fuel		Cost of CO ₂	offset					
ITPO vehicles (Diesel engines)	686,835.0	lt	82.42	k\$	29.96	k\$					
Hydrant Vehicles (Diesel engines)	1,687.6	lt	0.20	k\$	0.07	k\$		Energy cost	Fuel cost	CO ₂ offset	Total
ITPO vehicles (Gasoline engines)	0.0	lt	0.00	k\$	0.00	k\$	Tankfarm	5,909.	5 0.0	895.8	6,805.3
Hydrant Vehicles (Gasoline engines)	0.0	lt	0.00	k\$	0.00	k\$	ITPO	2,059.	0 82.4	342.1	2,483.5
Total		lt	82.62	k\$	30.03	k\$	Hydrant	0.	5 0.2	0.1	0.8
Total Cost of Electricity	7,969.00	k\$									
Total Fuel cost	82.62	k\$									
Total cost to offset CO2 emissions	1,238.08	k\$									



TOTAL

Model Objectives Validation

Two case studies for two international airports projects:

- Prince Mohammed bin Abdulaziz International Airport (PMIA) in Madinah
- King Abdulaziz International Airport (KAIA) in Jeddah

Model Objectives Validation

Case Study 1: PMIA Project

- Total cost of approximately US\$1.5 billion
- Annual capacity of 16 million passengers
- The passenger terminal became the first gold Leadership in Energy and Environmental Design (LEED) certified building in the Middle East-North Africa (MENA) region
- This case study includes the into-plane fueling facility project and tank farm project

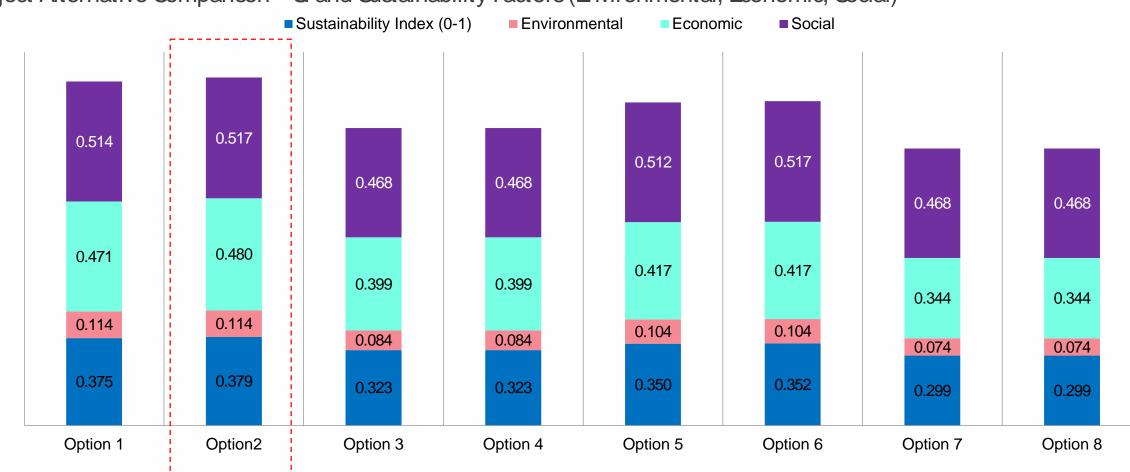
Results of Case Study 1: PMIA Project

Case 1 Project Alternatives

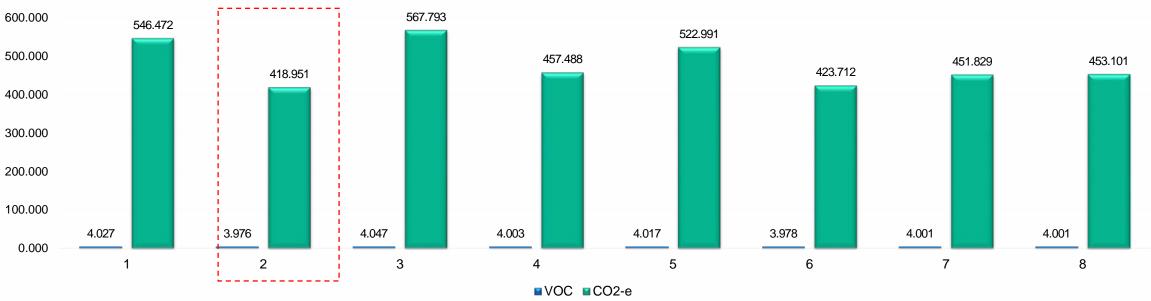
Project Alternatives	Into-plane	Tank Farm
Alternative 1	O1+L1	D1+L3
Alternative 2	O1+L2	D1+L3
Alternative 3	O2+L1	D1+L3
Alternative 4	O2+L2	D1+L3
Alternative 5	O1+L1	D2+L4
Alternative 6	O1+L2	D2+L4
Alternative 7	O2+L1	D2+L4
Alternative 8	O2+L2	D2+L4

O: Operation; D: Design; L: Location

Results of Case Study 1: PMIA Project


Case Study 1 - Sample

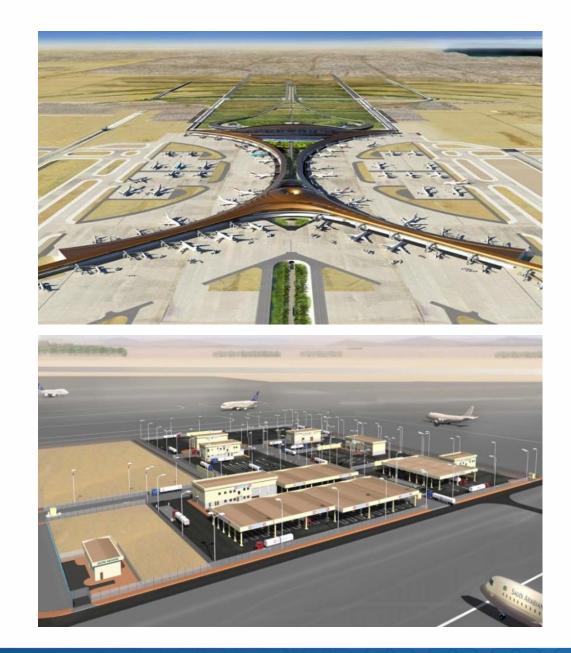
JTPUT	
Sustainability Index	Option 1
	do not edit these cells-automatic cal
Sustainability Index (0-1)	0.375
ity Environmental	0.114
ity Economic	0.471
ity Social	0.514


Results of Case Study 1: PMIA Project

Project Alternative Comparison – S and Sustainability Factors (Environmental, Economic, Social)

Results of Case Study 1: PMIA Project

Project Alternative Comparison – Emissions' Environmental Impact (Tons of VOC and CO₂)


- The project models assessed all alternatives with respect to the three sustainability criteria and sub-criteria, and determined all energy and emissions sources
- Alternative 2 had the highest SI (0.379) among other project alternatives with the utilities of (0.114) for environmental, (0.480) for economy, and (0.517) for social
- The emission and energy models show that alternative 2 has less environmental, economic, and social impacts

Aircraft Fueling Sustainability Projects Model Objectives Validation

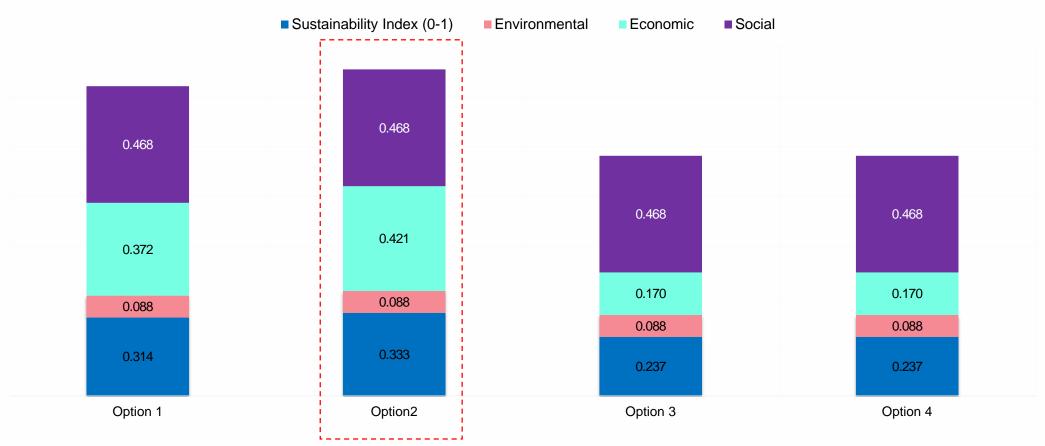
Case Study 2: KAIA Project

- Total cost of US\$7.19 billion
- Adomestic and international hub airport
- Annual capacity of 30 million passengers
- This case study includes the into-plane fueling facility project and tank farm project

Model Objectives Validation

Case 2 Project Alternatives

Project Alternatives	Into-plane	Tank Farm
Alternative 1	D1+L1	D3+L3
Alternative 2	D1+L2	D3+L3
Alternative 3	D2+L1	D3+L3
Alternative 4	D2+L2	D3+L3


D: Design

L: Location

Results of Case Study 2: KAIA Project

Project Alternatives Comparison – S and Sustainability Factors (Environments, Economic, and Social)

Results of Case Study 2: KAIA Project

Project Alternatives Comparison – Emissions' Economic Impact (K\$)

- The project models assessed all alternatives with respect to the three sustainability criteria and sub-criteria, and determined all energy and emissions sources
- Alternative 2 had the highest S (0.333) among other project alternatives with the utilities of (0.088) for environmental, (0.421) for economy, and (0.468) for social
- The emission and energy models show that alternative 2 has less environmental, economic, and social impacts.

Conclusion and Recommendations

- The model has provided a detailed investigation for the sustainability of airport fueling projects and operations
- The model developed emissions and energy consumption analyses for airport fueling projects and operations
- The model and its methodology could be implemented for the sustainability assessment and emissions and energy analyses of other airports ground services and projects
- The model could be used as a management tool to improved and monitor sustainability development at airports
- The model could enhance CORSIA methodology for emissions calculation

Conclusion and Recommendations

CORSIA Methodology for Emissions Calculation

The system boundary of the core Life Cycle Assessment (LCA) value calculation shall include the full supply chain of CORSIA Eigible Fuel (CEF) production and use.

The following life cycle stages of the CEF supply chain MUST be accounted for:

- production at source (e.g., feedstock cultivation);
- conditioning at source (e.g., feedstock harvesting, collection, and recovery);
- feedstock processing and extraction;
- feedstock transportation to processing and fuel production facilities;
- feedstock-to-fuel conversion processes;
- fuel transportation and distribution to the blend point;

INTERNATIONAL CIVIL AVIATION ORGANIZATION

ICAO document

CORSIA Methodology for Calculating Actual Life Cycle Emissions Values

March 2021

Thank You