MIDANPIRG/17 & RASG-MID/7-WP/31 31/3/2019

International Civil Aviation Organization

MIDANPIRG/17 and RASG-MID/7 Meeting

(Cairo, Egypt, 15 – 18 April 2019)

Agenda Item 6.2: Air Navigation Planning and Implementation

AERONAUTICAL FIXED SERVICES (AFS) MATTERS

(Presented by the Secretariat)

SUMMARY

This paper presents an update on several Aeronautical Fixed Services (AFS) matters, emanating especially from the MIDAMC STG/4 and CNS SG/9 meetings.

Action by the meeting is at paragraph 3

REFERENCES

- CNS SG/9 Report

- MSG/6 Report

- MIDAMC STG/4 Report

1. INTRODUCTION

1.1 The Fourth meeting of MID ATS Message Management Center Steering Group (MIDAMC STG/4) was held back-to-back with the CNS SG/9 meeting, 18-19 March 2019.

2. DISCUSSION

SITA Integration in the MID Region

2.1 SITA Integration is a pre-requisite to any AMHS Inter-regional connection, in order to keep efficient and regular messages exchange. ICAO APAC, EUR/NAT and SAM Regions have completed the integration successfully; and the AFI Region is also progressing well.

2.2 The meeting may wish to note that SITA Type X integration date has been postponed several times and the transition could not be completed. It's worth to mention that lagging in SITA integration may isolate the MID Region and keep operating the old obsolete AFTN protocol. During the CNS SG/9 meeting, the operational and safety consequences of not having SITA Type X Integrated in the Region were highlighted.

2.3 The meeting may wish to note that the ICAO EUR/NAT AFSG meeting (held in Paris from 5 to 8 March 2019) raised a concern regarding the lack of SITA AMHS Gateway into the MID Region, which may affect the exchange of ATS messages between the ICAO EUR and MID Regions, as well as inside the respective COM Centres of both Regions.

2.4 Based on the above, the CNS SG/9 meeting agreed, through Draft Conclusion 9/1, that AMHS technical transition should not be impacted by bilateral specific issues to avoid any community impact, and agreed that States should:

- a) implement necessary measures to enable SITA integration in the MID Region as soon as possible;
- b) inform ICAO MID Office by 28 March 2019 about State's readiness to integrate SITA Type X;
- c) be informed by ICAO MID Office about States that are not ready for SITA Type X Integration (if any) by **1 April 2019**;
- d) take necessary actions to avoid relaying messages through non-complied States; and

Why	To ensure seamless and efficient messages exchange within the MID Region and with other ICAO Regions			
What	Complete SITA type X integration in the MID Region			
Who	MID States			
When	25 April 2019			

e) use new routing tables published by MIDAMC by 10 April 2019

DRAFT MIDANPIRG CONCLUSION 17/XX: SITA INTEGRATION IN THE MID REGION

That, in order ensure seamless and efficient messages exchange within the MID Region and with other ICAO Regions, States are urged to complete SITA Type X Integration by **25 April 2019**.

2.5 In the view of the coming transition on 25 April 2019, SITA Type X Transition Monitoring Cell (XTCM) will be formed for one week, from 25 April 2019 till 2 May 2019, on 24/7 basis, in collaboration with the MIDAMC Team and focal points from MID States as at **Appendix A**; to monitor the network performance after the transition and resolve any problem in a timely manner. Moreover, a fall back procedure will be developed and circulated to States in due course.

2.6 The meeting may wish to note that Saudi Arabia requested to establish additional Regional Type X connection in the MID Region in Jeddah COM Centre, in order to improve the reliability and the availability of AMHS/SITA interconnection. SITA stated that the proposal would be discussed internally within SITA and it was expected to receive feedback by 31 March 2019.

IWXXM Implementation and ROC Connectivity

2.7 The thirteen ICAO Air Navigation Conference (AN-Conf/13), through Recommendation 2.3/2, urged States to provide ICAO with their ICAO Meteorological Information Exchange Model (IWXXM) implementation plans before 2020, and requested ICAO to ensure that the IWXXM format is the only standard exchange format by 2026.

2.8 The CNS SG/9 meeting reviewed and updated the AMHS plan of the MID ROC connectivity plan at **Appendix B**, to enable the exchange of OPMET data in the new format between the MID and EUR Regions.

- 3 -

2.9 Most of the AMHS systems in the MID Region are capable to run the extended services and in particular the File Transfer Body Part (FTBP). The current communication systems used (AMHS) have the required capabilities to meet the performance requirements of exchanging XML-based messages in the MID Region. Furthermore, joining the CRV Network will reduce the complexity of the current mixed communication environment (AFTN/AMHS/CIDIN).

2.10 The CNS SG/9 agreed to monitor the FTBP capability through the FICE Module Table in the ANP Vol III as at **Appendix C**, and to monitor the implementation of required communication infrastructure for the exchange of the XML-based messages (IWXXM, FIXM, AIXM,...,etc.) over AMHS.

Inter-regional Connections and Missing Messages

2.11 The meeting may wish to recall that MIDANPIRG/15, through Conclusion 15/30, urged States to refrain from establishing new AFTN and CIDIN connections at the International level, gradually phase out the current connections based on AFTN or CIDIN standards, and expedite their AMHS implementation.

2.12 The majority of CIDIN connections within the MID Region have been removed and there are two remaining connections between Bahrain – UAE and Bahrain – Saudi Arabia. Bahrain and UAE are in the process to migrate to AMHS. The other CIDIN links are the Inter-regional connections with Athens and Nicosia, which are pending SITA integration in the MID Region.

2.13 The meeting may wish to note that, according to the MID Air Navigation Plan (MID ANP) VOL II, the following COM Centres are the entry/exit points with adjacent Regions:

- 1) Bahrain, Iran, and Oman are the entry/exit points with ASIA/PAC Region
- 2) Egypt and Saudi Arabia are the entry/exit points with AFI Region
- 3) Egypt, Kuwait and Lebanon are the entry/exit points with EUR Region

2.14 The meeting may wish to note that Sudan requested to consider Khartoum COM Centre as a Main COM Centre and third gateway with the AFI Region. The MSG/6 meeting agreed that additional inter-regional connection with AFI Region could offer more channels for the Inter-regional communications, and agreed to the following Draft Conclusion:

Why	Improve the performance of the inter-regional communication with the ICAO AFI Region			
What	hartoum COM centre be changed to a Main COM centre			
Who	MIDANPIRG/17			
When	April 2019			

DRAFT MSG CONCLUSION 6/2: KHARTOUM COM CENTRE

That, in order to establish a third Gateway to the AFI Region, Khartoum COM Centre be changed to a main Centre.

2.15 Based on all the above, the CNS SG/9 meeting agreed that the MID Air Navigation Plan (MID ANP) VOL II table CNS-II should be updated to reflect the Conclusion 15/30 and fulfil the current needs. Accordingly, the meeting agreed to the following Draft Conclusion:

Why	o mandate migration AFTN/CIDIN to AMHS			
What	PfA to the MID ANP Volume II - Table CNS II-1 related to the Aeronautical Fixed Telecommunication Network Plan			
Who	ICAO MID/ States			
When	1 July 2019			

DRAFT CONCLUSION 9/2: PFA TO THE MID ANP VOLUME II-CNS

That, a Proposal for Amendment to the MID ANP Volume II – Table CNS II-1 related to the Aeronautical Fixed Telecommunication Network Plan as at **Appendix D** be processed in accordance with the standard procedure, by 1 July 2019.

2.16 In order to eliminate the missing messages in the MID Region, the following actions have been taken by the ICAO MID Office:

- a) requested the ICAO EUR/NAT Office to consider the establishment of new European Gateway (Rome) with the MID Region;
- b) invited Egypt and Lebanon to establish AMHS Inter-regional connection with the current European gateways (Athens and Cyprus);
- c) coordinated with ICAO ESAF Office to establish new Inter-regional AMHS connection between Cairo and South Africa;
- d) invited Bahrain UAE to migrate their bilateral CIDIN connection to AMHS;
- e) requested all States in the MID Region to migrate to AMHS; and
- f) initiated communication with adjacent ICAO Regions (APAC and AFI) to review the performance of the inter-regional connections.

2.17 The CNS SG/9 meeting underlined that States should notify the airspace users and ATS Units in case of communication failure and no communication routes are available. It was agreed to form a team from IATA, ICAO MID and the MIDAMC to coordinate and investigate missing messages, once reported. The meeting recommended to investigate from origination to the destination to identify the source and reasons of the missing message(s) (whether they are operational or technical issues). States were requested to cooperate and support the investigation, once initiated, as appropriate.

2.18 The meeting may wish to note that version 0.5 of Routing Directory for AFTN and CIDIN Document in the MID Region was published in 2011 and does not include AMHS part. The AFTN/CIDIN/AMHS routing tables are managed centrally by the MIDAMC Web application. Therefore, the CNS SG/9 meeting urged States to keep the routing tables up-to-date and to implement these routing tables. Accordingly, the meeting agreed to the following Draft Conclusion:

- 5 -	
-------	--

Why	To eliminate the messages loop problem within the MID Region			
What	To publish updated version of the Routing Directory of the AFTN/CIDIN/AMHS in the MID Region.			
Who	MID States/ ICAO MID Office			
When	1 July 2019			

DRAFT CONCLUSION 9/3: AFTN/CIDIN/AMHS ROUTING TABLES

That, in order to eliminate the messages loop problem within the MID Region:

- a) States be urged to keep the AFTN/CIDIN/AMHS Routing Tables; and
- b) ICAO publish the updated version of the Routing Table for AFTN/CIDIN/AMHS in the MID Region by **1 July 2019**.

2.19 The performance of the Inter-regional connections with the APAC Region was reviewed during the CRV OG/5 meeting (Hong Kong, 23-25 January 2019). Among reported cases, causes were due to communication failures, unavailability of alternative routes, and delay in AFTN failure detection. An investigation has been conducted for the missing messages between Kuwait and Karachi, appropriate changes to the existing routing directory at Kuwait and Karachi COM Centres have been done, and the problem is resolved now.

CRV Project

2.20 The meeting may wish to note the concept of the CRV network has been tested and verified against the 10 points of test plan established at CRV OG/2 meeting. Therefore, it is not necessary for other States to duplicate a similar testing.

2.21 The CNS SG/9 meeting agreed that the establishment of such a common network within specific Region would require careful consideration of all issues involved, as well as the evaluation of common network proposal, as compared to the current point-to-point configuration. Several issues need to be considered including, but not limited to, the followings:

- a) Technical requirements
- b) Cost, including arrangement for division/allocation of cost
- c) Process for contract award
- d) Responsibility for network administration
- e) Handling of network service issues
- f) Performance specifications
- g) Network security issues
- h) Network redundancy issues
- i) Capacity for growth and expansion
- j) Required lead time for implementation
- k) Performance management, measurement, monitoring, reporting and control

MIDANPIRG/17 & RASG-MID/7-WP/31

- 6 -

2.22 Based on the above, the CNS SG/9 meeting agreed to conduct a special meeting on CRV project with Subject Matter Experts (SME), in the short term, to investigate the issues described above, study the appropriate CRV framework for the MID IP Network and develop detailed proposal for appropriate CRV Packages for States, System Design Document (SDD) and Implementation Plan. Therefore, it was agreed to conduct the MIDAMC STG/5 meeting in the fourth quarter of 2019, that will address only CRV project and will involve CRV service provider (PCCW Global). It was highlighted that MID States should negotiate the price as a team in order to get better offer.

AIDC/OLDI Implementation (B0-FICE)

2.23 The level of AIDC/OLDI implementation in the MID Region is still far below the acceptable level.

2.24 The MSG/6 meeting agreed, through Conclusion 6/16, that a requirement for AIDC/OLDI implementation (priority 1 interconnections) should be included in the MID eANP Volume II Part IV-ATM, under Specific Regional Requirements.

2.25 The MSG/6 meeting urged States to initiate communication for AIDC connection taking into consideration the guidance material in the MID DOC 006; MID Region Guidance for AIDC/OLDI Implementation in the MID Region. The Document includes in addition to the implementation phases, guidance material and sample of script to be used for testing. The CNS SG/9 meeting reviewed and updated Details of the ATM systems table in the MID Doc 006, and updated the message types to be used in the MID Region.

2.26 The CNS SG/9 meeting agreed to the following Draft Conclusion:

Why	To further update the Guidance for AIDC/OLDI Implementation in the MID Region			
What	pdated version of the MID Doc 006			
Who	MIDANPIRG/17			
When	April 2019			

DRAFT CONCLUSION 9/6: UPDATE OF THE GUIDANCE FOR AIDC/OLDI IMPLEMENTATION IN THE MID REGION (MID DOC 006)

That, the ICAO MID Doc 006 - Guidance for AIDC/OLDI Implementation in the MID Region be updated as at **Appendix E**.

2.27 The CNS SG/9 meeting recalled the reasons for non-implementation of AIDC/OLDI and the associated recommendations developed based on the challenges identified related to AIDC/OLDI implementation in MID Region.

2.28 Considering the slow progress in implementing AIDC/OLDI in the MID Region, the CNS SG/9 meeting agreed that the establishment of an Implementation Support Team composed of Subject Matter Experts (SME) from the MID Region (Oman, Saudi Arabia, UAE and ICAO) might provide a good way to solve identified technical problems, if requested by concerned States, and expedite the implementation of AIDC/OLDI.

CNS SG and MIDAMC STG Terms of Reference

2.29 The CNS SG/9 meeting reviewed and updated the CNS SG and MIDAMC STG Terms of References as at **Appendix F** and **G**, respectively. Accordingly, the meeting is invited to agree to the following Draft Decisions:

Why	To revise the Terms of Reference of the CNS SG to keep pace with developments				
What	Update CNS SG Terms of Reference				
Who	MIDANPIRG/17				
When	April 2019				

DRAFT MIDANPIRG DECISION 17/XX: TERMS OF REFERENCE OF THE CNS SG

That, the Terms of Reference of the CNS SG be updated as at Appendix F.

Why	Why To revise the Terms of Reference of the MIDAMC STG to ke pace with developments			
What	Update the MIDAMC STG Terms of Reference			
Who	MIDANPIRG/17			
When	April 2019			

DRAFT DECISION 9/4: TERMS OF REFERENCE OF THE MIDAMC STG

That, the Terms of Reference and Work Programme of the MIDAMC STG be updated as at **Appendix G**.

3. ACTION BY THE MEETING

- 3.1 The meeting is invited to:
 - a) review and update, as deemed necessary, focal point(s) to the SITA Type X Transition monitoring cell (XTMC) at Appendix A;
 - b) urge States to monitor and report to the XTMC any network anomaly in a timely manner;

- c) encourage States and Users to report any occurrence of missing messages to the ICAO MID Office and IATA, for further coordination and investigation;
- d) urge States to participate actively in the coming SME CRV meeting (MIDAMC STG/5) planned in 2019;
- e) consider the CNS SG/9 proposal in para. 2.28 related to AIDC/OLDI Implementation Support Team; and
- f) endorse the proposed Draft Decisions and Conclusions.

APPENDIX A

SITA Type S Transition Monitoring Cell (TMC)

State	Name	Tel.	Mobile	Email
Bahrain	Yaseen Hasan Al Sayed	+ 973 17321183	+973 3952 0025	y.alsayed@mtt.gov.bh
_	Essam Helmy	+20222657946	+2010022505	Essamhelmi07@hotmail.com
Egypt	Mohamed Ahmed Mohamed Sultan		+2 01005197189	mohamed.a.sultan@gmail.com
	Ali Akbar Salehi Valojerd		+989120186940	aasalehi@airport.ir
Iran	Alireza Mahdavisefat			mahdavi@airport.ir
	Samad Aghajani	+9863146400	+989022368018	saghajani@airport.ir
Iraq	Haider Mahdi Sadeq Al-Hasani		+964 7901 889053	haidermahdy@gmail.com
Jordan	Yasser Zayyad	+9626 489 1473 ext.3230	+96279 578 1882	Yasser.Zayyad@CARC.GOV.JO
Jordan	Marwan Alqaddoumi	+9626 489 1473 ext. 3260	+962 7998335887	Marwan.Al-qaddoumi@CARC.GOV.JO
Kuwait	E. Hassan Alattar		+96599449454	Ha.alattar@dgca.gov.kw
Kuwan	Naser J. Al-Hubail			nj.alhubail@dgca.gov.kw
Lebanon	ebanon Mohamad Abdallah Saad +961-1 628 151		+961-3 280 299	msaad@beirutairport.gov.lb
Libya	Fadel Ageli Ghubbar	+21821 5630277	+021891 5076599	fadel.ghubbar@caa.gov.ly
Oman	Shabiba Khamis Al-Mandhari	+968 243 54757		shabiba@paca.gov.om
Ostar	Ibrahim Kozanli	+974 44705170	+97455245687	Ibrahim.Kozanli@caa.gov.qa
Qatar	Mehdi Sahbi		+974 330 57863	Mehdi.Sahbi@caa.gov.qa
Saudi Arabia	Loay Beshawri	+699 12 6717717	+966 562289944	lbeshawri@sans.com.sa
Sauui Aradia	Ali Awad Aldahri	+966 126717717	+966 503635266	adahri@sans.com.sa

MIDANPIRG/17 & RASG-MID/7-WP/31 Appendix A

A-2

Sudan	Omer Al-Gallabi			
	Mubark Galaleldin Abuzaid		+249 123499394	mubark_g@hotmail.com
Syria	Kaleem Sharaf		+963 933715222	eng.kaleem@yahoo.com
UAE	Yousif Al Awadhi	+971 2 5996859	+971 50 2226262	yawadi@szc.gcaa.ae
	Varghese Koshy	+971 2 599 6844	+971 50 818 6488	vkoshy@szc.gcaa.ae
Yemen				

Completed

July, 2015

Completed

Completed

On 3/5/2016

APPENDIX B								
AMHS Plan for ROC in Jeddah and Bahrain								
	Task	Timeframe	Assigned to	Champion	Status			
	AMHS Intra-regional Trunk Connections							
1	Establish Jeddah – Beirut IP Network.	Jul 2015	Saudi Lebanon	IM MS	Completed			
2	Establish Bahrain – Beirut IP Network.	Feb 2016	Bahrain Lebanon	YH MS	Completed			
3	Establish Cairo – Beirut IP Network.	July 2016	Egypt Lebanon	AF//MR MS	Completed			
4	Establish Bahrain – Jeddah IP Network.	Mar 2016	Bahrain Saudi	IM YH				
5	Perform the Interoperability test between Jeddah and Beirut COM Centers.	July 2015	Saudi Lebanon	IB MS	Completed			
6	Perform the Interoperability test between Bahrain and Beirut COM Centers.	July 2016	Bahrain Lebanon	MS YH	Completed			
7	Perform the Interoperability test between Cairo and Beirut COM Centers	July 2016	Egypt Lebanon	AF/TZ/MR MS/EK	Depends on IP network availability Ongoing completed			
8	Perform the Interoperability test between Bahrain and Jeddah COM Centers.	July 2016	Bahrain Saudi	YH IM				
9	Perform the Pre-operational test between Jeddah and Beirut COM Centers.	July2015	Saudi Lebanon	IM MS	Completed			
10	Perform the Pre-operational test between Bahrain and Beirut COM Centers.	July 2016	Bahrain Lebanon	YH MS	Completed			
11	Perform the Pre-operational test between Cairo and Beirut COM Centers.	July 2016 March 2017	Egypt Lebanon	AF/ /MR MS/EK	Completed			
12	Perform the Pre-operational test between Bahrain and	July 2016	Bahrain Saudi	YH IM				

July 2015

July 2016

Aug 2016

April 2017

Saudi

Lebanon

MID

AMC

Bahrain

Lebanon

MID

AMC

Egypt

Lebanon

MID

AMC

IM

MS/EK

MN

YH

MS/EK

MN

AF/TZ/MR

MS/EK

MN

ADDENIDIV D

Saudi COM Centers.

13

14

15

Place the AMHS link into

operation between Jeddah and

Beirut COM centers, and

Place the AMHS link into

operation between Bahrain and

Beirut COM centers, and

Place the AMHS link into

operation between Cairo and

Beirut COM centers, and

updating the Routing tables.

updating the Routing tables.

updating the Routing tables.

16	Evaluate the Trunks connections bandwidth and increase it if required between (Bahrain, Beirut, Cairo and Jeddah).	July 2016	Bahrain Beirut Cairo Jeddah	YH MS/EK AF/TZ IM	Depends on testing of digital data exchanged Beirut and Cairo increased the bandwidth to 128 kbps
	The AMHS Interconnection with Depends on Nicosia and Athens			transition	
17	Establish Cairo – Tunis IP Network.	March2016 July 2016		AF/TZ/MR IB/MA	Completed
18	Establish Nicosia – Beirut IP Network.	Awaiting reply from EUR		MS/EK	Pending SITA Type X Transition
19	Establish Nicosia – Jeddah IP Network.	Dec 2016		IM	Pending SITA Type X Transition
20	Establish Bahrain – Nicosia IP Network.	Dec 2016		YH	Pending SITA Type X Transition
21	Establish Cairo – Athens IP Network.	Dec 2016		AF/TZ/MR	Pending SITA Type X Transition
22	Perform the Interoperability test between Cairo and Tunis COM Centers.	April 2016 August 2016		AF/ /MR IB/MA	Completed
23	Perform the pre operational test between Cairo and Tunis COM Centers.	Q3 2016		AF/ /MR IB/MA	Completed
24	Place the AMHS link into operation between Cairo and Tunis COM Centers, and updating the Routing tables.	Aug 2016		AF/ /MR IB/MA	Completed
25	Perform the Interoperability test between Athens and Cairo COM Centers.	Mar 2017		AF/TZ/MR IB/MA	Pending SITA Type X Transition
26	Perform the Interoperability test between Bahrain and Nicosia COM Centers.	Q1 2017		YH	Pending SITA Type X Transition
27	Perform the Interoperability test between Nicosia and Jeddah COM Centers.	Q1 2017		IM	Pending SITA Type X Transition
28	Perform the Interoperability test between Nicosia and Beirut COM Centers.	Q1 2017		MS/EK	Pending SITA Type X Transition
29	Perform the Pre-operational test between Athens and Cairo COM Centers.	Mar 2017		AF/TZ/MR	Pending SITA Type X Transition
30	Perform the Pre-operational test between Bahrain and Nicosia COM Centers.	Q1 2017		ҮН	Pending SITA Type X Transition
31	Perform the Pre-operational test between Nicosia and Beirut COM Centers.	Q1 2017		MS/EK	Pending SITA Type X Transition

MIDANPIRG/17 & RASG	-MID//-WP/31
	APPENDIX B

32	Perform the Pre-operational	Q1 2017		IM	Pending SITA
52	test between Nicosia and				Type X Transition
	Jeddah COM Centers.				
33	Place the AMHS link into	Q1 2017		MIDAMC	Pending SITA
33	operation between Athens and			AF//MR	Type X Transition
	Cairo COM Centers, and				- 71
	updating the Routing tables.				
2.4	Place the AMHS link into	Q1 2017		MID AMC	Pending SITA
34	operation between Bahrain and			YH	Type X Transition
	Nicosia COM Centers, and				- 71
	updating the Routing tables.				
	Place the AMHS link into	Q1 2017		MID AMC	Pending SITA
35	operation between Nicosia and	L		IM	Type X Transition
	Jeddah COM Centers, and				
	updating the Routing tables.				
2.6	Place the AMHS link into	Q1 2017		MS/EK	Pending SITA
36	operation between Nicosia and	L			Type X Transition
	Beirut COM Centers, and				
	updating the Routing tables.				
	Evaluate the inter-region	Q1 2017		MID AMC	
37	connections bandwidth and	Q1 2017			
	increase it if required.				
	Transition of all regional	Q2 2017	All MID		2 CIDIN
38	AFTN/CIDIN Connections to	Q2 2017	States		connections
	AMHS.		States		between Bahrain
	AIVILLO.				and UAE,
					and UAE, Bahrain and
					<mark>Saudi Arabia</mark>

MIDANPIRG/17 & RASG-MID/7-WP/31 Appendix C

APPENDIX C

Page II-1

B0 – FICE: Increased Interoperability, Efficiency and Capacity through Ground-Ground Integration

Description and Purpose

To improve coordination between air traffic service units (ATSUs) by using ATS Interfacility Data Communication (AIDC) defined by the ICAO *Manual of Air Traffic Services Data Link Applications* (Doc 9694). The transfer of communication in a data link environment improves the efficiency of this process particularly for oceanic ATSUs.

Main Performance Impact:

KPA- 01 – Access and Equity	KPA-02 – Capacity	KPA-04 – Efficiency	KPA-05 – Environment	KPA-10 - Safety
N	Y	Y	Ν	Y

Applicability Consideration:

Applicable to at least two area control centres (ACCs) dealing with enroute and/or terminal control area (TMA) airspace. A greater number of consecutive participating ACCs will increase the benefits.

B0 – FICE: Inc	B0 – FICE: Increased Interoperability, Efficiency and Capacity through Ground-Ground Integration							
Elements	Applicability	Performance Indicators/Supporting Metrics	Targets	Timelines				
AMHS capability	All States	Indicator: % of States with AMHS capability Supporting metric: Number of States with AMHS capability	70%	Dec. 2017				
AMHS implementation /interconnection	All States	Indicator: % of States with AMHS implemented (interconnected with other States AMHS) Supporting metric: Number of States with AMHS implemented (interconnections with other States AMHS)	60%	Dec. 2017				
Implementation of AIDC/OLDI between adjacent ACCs	As per the AIDC/OLDI Applicability Table*	Indicator: % of priority 1 AIDC/OLDI Interconnection have been implemented Supporting metric: Number of AIDC/OLDI interconnections implemented between adjacent ACCs	70%	Dec. 2020				

* Note – the required AIDC/OLDI connection is detailed in the MID eANP Volume II Part III

TABLE B0-FICE 3-1

EXPLANATION OF THE TABLE

Column

- 1 Name of the State
- 2,3,5 Status of AMHS Capability and Interconnection and AIDC/OLDI Capability, where:
 - Y Fully Implemented
 - N Not Implemented
 - 4 File Transfer Body Part (FTBP) Capability Y – Fully Implemented N – Not Implemented
 - 6 Number of required AIDC/OLDI Interconnections
 - 7 Number of implemented AIDC/OLDI Interconnection.
 - 8 Remarks

State	AMHS Capability	AMHS Interconnection	FTBP Capability	AIDC/OLDI Capability	Required AIDC/OLDI Interconnections	AIDC/OLDI Implementation	Remarks
1	2	3	<mark>4</mark>	5*	6	7	8
Bahrain	Y	Y		Y	5	1	connection with ABU Dhabi
Egypt	Y	Y		Y	4	1	
Iran	N	N		Y	4	0	Contract signed for AMHS
Iraq	Y	N		Y	2	0	Thales Topsky ATM system AMHS planned in 2019
Jordan	Y	Y		Y	2	0	
Kuwait	Y	Y		Y	2	0	
Lebanon	Y	Y		Y	1	0	
Libya	Y	N		Y	0	0	0Contract signed for AMHS
Oman	Y	Y		Y	4	1	
Qatar	Y	Y		Y	2	1	local implementation for OLDI
Saudi Arabia	Y	Y		Y	8	2	local implementation for AIDC
Sudan	Y	Y		Y	4	0	
Syria	Ν	N		Ν	0	0	
UAE	Y	Y		Y	4	3	
Yemen	N	N		N	0	0	Contract signed for AMHS
Total Percentage / Number	<mark>73%</mark> 80%	67%		80%	<mark>42</mark>	<mark>9</mark> (21%)	

B0 – ACAS: ACAS Improvements

Description and Purpose:

To provide short-term improvements to existing airborne collision avoidance systems (ACAS) to reduce nuisance alerts while maintaining existing levels of safety. This will reduce trajectory deviations and increase safety in cases where there is a breakdown of separation

Main Performance Impact:

KPA- 01 – Access and	КРА-02 –	КРА-04 –	КРА-05 –	KPA-10 –
Equity	Capacity	Efficiency	Environment	Safety
N/A	N/A	Y	N/A	Y

Applicability Consideration:

Safety and operational benefits increase with the proportion of equipped aircraft.

B0 – ACAS: ACAS Improvements									
Elements	Applicability	Performance Indicators/Supporting Metrics	Targets	Timelines					
Avionics (TCAS V7.1)	All States	Indicator: % of States requiring carriage of ACAS (TCAS v 7.1) for aircraft with a max certificated take-off mass greater than 5.7 tons Supporting metric: Number of States requiring carriage of ACAS (TCAS v 7.1) for aircraft with a max certificated take-off mass greater than 5.7 tons	100%	Dec. 2017					

Table B0-ACAS 3-1

EXPLANATION OF THE TABLE

Column

- Name of the State 1
- 2 Status of implementation:
 - Y Fully Implemented N Not Implemented
- 3 National Regulation(s) Reference(s)
- 4 Remarks

State	Status	Regulation Reference	Effective Date	Remarks
1	2	3	4	5
Bahrain	Y	Aeronautical Circular AC/OPS/05/2015 dated 10th of March 2015		Air Navigation Technical Regulations (ANTR) updated to reflect Annex 10 (Volume IV) Reference needs to be provided <u>http://www.mtt.gov.bh/content/caa-</u> <u>laws-and-regulations</u>
Egypt	Y	ECAR Part 121.356 & ECAR Part 91.221	1 January 2017	Egyptian Civil Aviation Regulation (ECAR) Parts 121 and 91 have been updated in accordance with the relevant provisions of ICAO Annex 10, Volume IV, Ch.4 <u>http://www.civilaviation.gov.eg/Regulat</u> <u>ions/regulation.html</u>
Iran	Y	Aeronautical Telecommunications bylaw, articles 3 and 4		According to articles 3 and 4 of Iran aeronautical telecommunications by law, ratified by board of ministers, Airborne collision avoidance systems are categorized as aeronautical telecommunications systems and should be manufactured, installed and maintained according to standards of Annex 10. -Since no difference to ICAO annex 10 is notified, ACAS V 7.1 is mandatory according to provisions of annex 10 amendment 85. -Airworthiness directives issued by FAA and EASA shall to be implemented by Iranian AOC holders.
Iraq	Ν			

State	Status	Regulation Reference	Effective Date	Remarks
1	2	3	4	5
Jordan	Y	JCAR-OPS.1 (1.668 airborne collision avoidance system)	15 April 2015	
Kuwait	Y	Kuwait Civil Aviation Safety Regulations – Part 6 – Operation of Aircraft, Para. 6.20.4		
Lebanon	Y	Lebanese Aviation Regulations Part V subpart 6 605.12		http://dgca.gov.lb/index.php/en/pd- cat-8-lar6-en/file/72-part-vi-subpart- 5-general-operating-and-flight- rules-new-2015
Libya	N			
Oman	Y	CAR-OPS 1, Subpart K, CAR-OPS 1.668-Airborne Collision Avoidance System		Regulation reference needs to be provided
Qatar	Y	QCAR – OPS 1, Subpart K, QCAR – OPS 1.668 – Airborne collision avoidance system QCAR Part 10 - Volume4 Chapter 4 Airborne Collision Avoidance System		References: <u>http://www.caa.gov.qa/en/safety_regula</u> <u>tions</u>
Saudi Arabia	Y	GACAR PART 91 – Appendix C		
Sudan	Y	Amended Annex 10 (V4)- ANNESX 6 (V2)		According to adopted annexes to Sudan Regulations (SUCAR 10 V4 Par. 4.3.5.3.1 and SUCAR 6 V2 par 2.05.15)
Syria	N			
UAE	Y	CAR-OPS 1.668 Airborne Collision Avoidance System (See IEM OPS 1.668) and CAAP 29 and AIP 1.5.6.6	1 July 2011	https://www.gcaa.gov.ae/en/ePublicatio n/Pages/CARs.aspx?CertD=CARs
Yemen	Y			Reference need to be provided

APPENDIX D

TABLE CNS II-1- AERONAUTICAL FIXED TELECOMMUNICATIONS NETWORK (AFTN)PLAN

EXPLANATION OF THE TABLE

Column	
1	The AFTN Centres/Stations of each State are listed alphabetically. Each circuit appears twice in
	the table. The categories of these facilities are as follows:
	M - Main AFTN COM Centre
	T - Tributary AFTN COM Centre
	S - AFTN Station
2	Category of circuit:
	M - Main trunk circuit connecting Main AFTN communication centres.
	T - Tributary circuit connecting Main AFTN communication centre and Tributary AFTN
	Communications Centre.
	S - AFTN circuit connecting an AFTN Station to an AFTN Communication Centre.
3	Type of circuit provided:
	LTT/a - Landline teletypewriter, analogue (e.g. cable, microwave)
	LTT/d - Landline teletypewriter, digital (e.g. cable, microwave)
	LDD/a - Landline data circuit, analogue (e.g. cable, microwave)
	LDD/d - Landline data circuit, digital (e.g. cable, microwave)
	SAT/a/d - Satellite link, with /a for analogue or /d for digital
4	Circuit signalling speed in bits/s.
5	Circuit protocols
6	Data transfer code (syntax):
	ITA-2 - International Telegraph Alphabet No. 2 (5-unit code).
	IA-5 - International Alphabet No. 5 (ICAO 7-unit code).

- CBI Code and Byte Independency (ATN compliant).
- 7 Remarks

			Remarks			
State/Station	Category	Type Signalling Speed		Protocol	Code	
1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>	
BAHRAIN BAHRAIN ABU DHABI ANKARA BEIRUT DOHA JEDDAH KUWAIT MUSCAT NICOSIA SINGAPORE TEHRAN	M M T M M M M M M M		64 – 9.6Kbps 64Kbps 64 – 9.6 Kbps 64 – 9.6 Kbps	CIDIN AFTN AMHS AMHS AMHS CIDIN None CIDIN None None	IA-5 IA-5 IA-5 IA-5 IA-5 IA-5 IA-5 IA-5	All: AMHS by 2017

			Requ	iirement		Remarks
State/Station	Category	Туре	<mark>Signalling</mark> Speed	Protocol	Code	
1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>	
EGYPT						
CAIRO	М					
AMMAN	M		<mark>64-9.6Kbps</mark>	AMHS	IA-5	
ATHENS	M		64-9.6Kbps	AMHS CIDIN	IA-5	
BEN GURION	M		64-9.6Kbps	AMHSNone	IA-5	
BEIRUT	M		9.6 Kbps	AMHS CIDIN	IA-5	
JEDDAH	M		128-9.6Kbps	AMHS	IA-5	
KHARTOUM	Т		9.6Kbps	AMHS None	IA-5	
NAIROBI	M		9.6Kbps	AMHS None	IA-5	
TUNIS	M		64-9.6Kbps	AMHS	IA-5	
TRIPOLI	Т		64-9.6Kbps	AMHS None	IA-5	
TRIPOLI	Т		9.6Kbps	AMHS None	IA-5	STNDBY
DAMASCUS	Т		64-9.6Kbps	AMHS None	IA-5	
ASMARA	Т		9.6Kbps	AMHS None	IA-5	
IRAN						
TEHRAN	М					
BAHRAIN	M		<mark>64 Kbps</mark>	AMHS None	IA-5	
KUWAIT	M		64 Kbps	AMHS None	IA-5 IA-5	
ABU-DHABI	M		9.6 Kbps	AMHS None	IA-5 IA-5	
KARACHI	M		64Kbps	AMHS None	IA-5 IA-5	
ANKARA	M		64Kbps	AMHS AFTN	IA-5 IA-5	
MUSCAT	M		64Kbps	AMHS AF IN AMHS None	IA-5 IA-5	
DAMASCUS	T		50 BD	AMHS None	IA-5 IA-5	
BAGHDAD	T		64Kbps	AMHS None	IA-3 ITA-2	Planned
BAOIIDAD	1		041C0ps	AWITS	IA-5	Taimed
IRAQ			_			
BAGHDAD	Т				.	
AMMAN	Т		2MBps	AMHS None	IA-5	VPN
BEIRUT	Т		2MBps	AMHS None	IA-5	VPN
KUWAIT	T	SAT	<mark>9.6Kbps</mark>	AMHS None	IA-5	Planed
ANKARA	Т			AMHS	IA-5	

D-3

			Requirement						
State/Station	Category Type Signalling Speed		<mark>Signalling</mark> Speed	Protocol	Code	_			
1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>				
JORDAN AMMAN ABU DHABI ANKARA BAGHDAD BEIRUT BEN GURION CAIRO DAMASCUS JEDDAH NICOSIA	T M T T M T T M T		2MBps 64Kpbs 2MBps 2MBps 9.6 Kbps 64 – 9.6Kbps 64 – 9.6Kbps 64Kbps 64Kbps	AMHS AMHS AFTN AMHS AMHS AMHS None AMHS AMHS None AMHS <mark>AFTN</mark>	IA-5 IA-5 IA-5 IA-5 IA-5 IA-5 <u>X400</u> IA-5	VPN Land Line VPN Planed VPN Planed			
KUWAIT KUWAIT BAHRAIN DAMASCUS BEIRUT DOHA Hamad-Airport KARACHI TEHRAN BAGHDAD	T M T T M M T	LDD/d LDD/a LDD/a LDD/a LDD/d SAT/ad	64 – 9.6 Kbps 64- 9.6 Kbps 64- 9.6 Kbps 64 – 9.6 Kbps 64- 9.6 Kbps 64 – 9.6 Kbps 64 – 9.6 Kbps	AMHS None AMHS None AMHS None AMHS None AMHS None AMHS None AMHS None AMHS None	IA-5 IA-5 IA-5 IA-5 IA-5 IA-5 IA-5 IA-5	Back-up			
LEBANON BEIRUT AMMAN BAGHDAD BAHRAIN CAIRO DAMASCUS JEDDAH KUWAIT NICOSIA	M M T M M T M M M		2Mbps 2Mbps 64 -9.6 Kbps 64 9.6 Kbps 64 9.6 Kbps 64 -9.6 Kbps 64 -9.6 Kbps	AMHS AMHS CIDIN AMHS CIDIN AMHS None AMHS None AMHS None AMHS CIDIN AMHS	IA-5 IA-5 <u>A-5IA-5</u> IA-5 IA-5 IA-5 IA-5 IA-5	VPN in process VPN planed			
LIBYA TRIPOLI MALTA TUNIS BENGHAZI CAIRO KHARTOUM	T T M T M T		<mark>649.6</mark> Kbps 64 Kpbs 64 9.6 Kbps 64 9.6 Kbps	AMHS AMHS AMHS None AMHS AMHS None AMHS None	IA-5 IA-5 IA-5 IA-5 IA-5 IA-5				

	Requirement						
State/Station	Category	Туре	<mark>Signalling</mark> Speed	Protocol	Code		
1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>		
OMAN MUSCAT ABU DHABI BAHRAIN MUMBAI JEDDAH SANA'A KARACHI TEHRAN	T M M M T M M		64Kbps 64Kbps 64Kbps 64Kbps 64 kbps 100 BD 64Kbps 64Kbps 64Kbps	AMHS AMHS None AMHS None AMHS None AMHS None AMHS None AMHS None	IA-5 IA-5 IA-5 IA-5 IA-5 IA-5 IA-5		
QATAR DOHA BAHRAIN KUWAIT ABU DHABI	M M T		2Mbps 2Mbps 2Mbps	AMHS AFTN AMHS AMHS	іа-5 (тср) <mark>жаю(тср)</mark> IA-5 <mark>жаю(тср)</mark> IA-5		
SAUDI ARABIA JEDDAH ADDIS-ABABA BAHRAIN BEIRUT CAIRO MUSCAT SANA'A AMMAN KHARTOUM ABUDHABI NICOSIA	M M M M M T T M T T M	SAT SAT SAT	64 9.6 Kbps 64 9.6 Kbps 128 9.6 Kbps 64 Kbps 64 Kbps 64 Kbps 64Kbps 64Kbps 64Kbps 64Kbps	AMHS None AMHS CIDIN AMHS None AMHS AMHS None AMHS <mark>None</mark> AMHS AMHS AMHS AMHS	IA-5 IA-5 X400 IA-5 IA-5 IA-5 IA-5 IA-5 IA-5	AMHS (2015 AMHS (2015 AMHS (2015	
						AMHS EUR/ MID OPMET	

			Requirement						
State/Station	Category	Туре	<mark>Signalling</mark> Speed	Protocol	Code	-			
1	2	3	<mark>4</mark>	<mark>5</mark>	<mark>6</mark>				
SUDAN KHARTOUM ADDIS ABABA ASMARA CAIRO JEDDAH TRIPOLI NDJAMENA	T M T M M T M		64 9.6 Kbps 64 9.6 Kbps 64 9.6 Kbps 64Kbps 64Kbps 64 9.6 Kbps 64 9.6 Kbps	AMHS None AMHS -None AMHS -None AMHS AMHS None AMHS None	IA-5 IA-5 IA-5 IA-5 IA-5 IA-5				
SYRIA DAMASCUS ATHENS AMMAN BEIRUT CAIRO KUWAIT TEHRAN	M T M M M T		2 X 50 BD 64 9.6 Kbps 64 9.6 Kbps 64 9.6 Kbps 64 9.6 Kbps 649.6Kbps	AMHS None AMHS None AMHS None AMHS None AMHS None AMHS None	IA-5 ITA-2 IA-5 IA-5 IA-5 IA-5				
UAE ABU DHABI BAHRAIN AMMAN MUSCAT DOHA TEHRAN JEDDAH	M T M T M T	VPN SAT	<mark>649.6Kbps</mark> 2 Mbps 64Kbps 128Kbps 64 9.6 Kbps 64Kbps	AMHS CIDIN AMHS AMHS AMHS AMHS <mark>None</mark> AMHS	IA-5 IA-5 IA-5 IA-5 IA-5 IA-5	VPN			
YEMEN SANA'A JEDDAH MUSCAT	T T		<mark>649.6Kbps</mark> 64 9.6 Kbps	AMHS None AMHS None	IA-5 IA-5				

MIDANPIRG/17 & RASG-MID/7-WP/31 Appendix E

APPENDIX E

MID Doc 006

INTERNATIONAL CIVIL AVIATION ORGANIZATION

MIDDLE EAST AIR NAVIGATION PLANNING AND IMPLEMENTATION REGIONAL GROUP (MIDANPIRG)

MID REGION GUIDANCE FOR THE IMPLEMENTATION OF AIDC/OLDI

EDITION 1.1 JUNE, 2015 The designations employed and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of ICAO concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontier or boundaries.

TABLE OF CONTENTS

1.	Introduction:	5
2.	Background and ASBU B0-FICE	6
3.	ICAO General Assembly 38 WP-266:	111
4.	Details of the ATM systems to support implementation	13
5.	Message Types – Phase 1	16
6.	D – Message Types – Phase 2	24
7.	Test objectives	
8.	Sample Test Scripts and Flight plans	27
9.	Bilateral Agreement Template	
10.	Implementation Phases	

RECORD OF AMENDMENTS

Edition Number	Edition Date	Description	Pages Affected
0.1	03 February 2014	Initial version	All
0.2	09 September 2014	CNS SG/6 update	All
1.0	26 November 2014	MSG/4 endorsement	All
1.1	June 2015	Deletion of the planning parts and change of title of the Document. MIDANPIRG/15 endorsement.	All
1.2	April 2019	Update the table - Details of the ATM systems to support Implementation Table	13-15

The following table records the history of the successive editions of the present document:

1. INTRODUCTION

1.1 Seeking to ensure continuous Safety improvement and Air Navigation modernization, the International Civil Aviation Organization (ICAO) has developed the strategic systems approach termed Aviation System Block Upgrade (ASBU). The latter, defines programmatic and flexible global systems, allows all States to advance their Air Navigation capacities based on their specific operational requirements.

1.2 The ASBU approach has four Blocks, namely Block 0, Block 1, Block 2 and Block 3. Each block is further divided into Modules. Block 0 is composed of Modules containing technologies and capabilities that are implemented currently.

1.3 Module FICE in Block 0 is introduced to improve coordination between air traffic service units (ATSUs) by using ATS inter-facility data communication (AIDC). The transfer of communication in a data link environment improves the efficiency of this process. The data link environment enhances capacity, efficiency, interoperability, safety and reduces cost.

1.4 The AIDC and the OLDI are tools to coordinate flight data between Air Traffic Service Units (ATSU) and both satisfies the requirements of basic coordination of flight notification, coordination and transfer of control.

1.5 Various items concerning MID Region Implementation of AIDC/OLDI have been detailed in this document.

2. BACKGROUND AND ASBU B0-FICE

Module B0-FICE: Increased Interoperability, Efficiency and Capacity through Ground-Ground Integration:

Summary	To improve coordination between air traffic service units (ATSUs) by using ATS interfacility data communication (AIDC) defined by the ICAO <i>Manual of Air Traffic Services Data Link Applications</i> (Doc 9694). The transfer of communication in a data link environment improves the efficiency of this process particularly for oceanic ATSUs.				
Main performance impact as per Doc 9883	KPA-02 – Capacity, KPA-04 – Efficiency, KPA-07 – Global Interoperability, KPA-10 – Safety.				
Operating environment/ Phases of flight	All flight phases and all type of ATS units.				
Applicability considerations	Applicable to at least two area control centres (ACCs) dealing with en- route and/or terminal control area (TMA) airspace. A greater number of consecutive participating ACCs will increase the benefits.				
Global concept component(s) as per Doc 9854	as CM – conflict management				
Global plan initiatives (GPI)	GPI-16: Decision support systems				
Main dependencies	Linkage with B0-TBO				
Global readiness checklist	Standards readiness Avionics availability Ground systems availability Procedures available Operations approvals	Status (ready now or estimated date) No requirement 			

2.1 General

2.1.1 Flights which are being provided with air traffic services are transferred from one air traffic services (ATS) unit to the next in a manner designed to ensure safety. In order to accomplish this objective, it is a standard procedure that the passage of each flight across the boundary of the areas of responsibility of the two units is co-ordinated between them beforehand and that the control of the flight is transferred when it is at, or adjacent to, the said boundary.

2.1.2 Where it is carried out by telephone, the passing of data on individual flights as part of the coordination process is a major support task at ATS units, particularly at area control centres (ACCs). The operational use of connections between flight data processing systems (FDPSs) at ACCs replacing phone coordination (on-line data interchange (OLDI)) is already proven in Europe.

2.1.3 This is now fully integrated into the ATS interfacility data communications (AIDC) messages in the *Procedures for Air Navigation Services* — *Air Traffic Management*, (PANS-ATM, Doc 4444) which describes the types of messages and their contents to be used for operational communications between ATS unit computer systems. This type of data transfer (AIDC) will be the basis for migration of data communications to the aeronautical telecommunication network (ATN).

2.1.4 The AIDC module is aimed at improving the flow of traffic by allowing neighboring air traffic services units to exchange flight data automatically in the form of coordination and transfer messages.

2.1.5 With the greater accuracy of messages based on the updated trajectory information contained in the system and where possible updated by surveillance data, controllers have more reliable information on the conditions at which aircraft will enter in their airspace of jurisdiction with a reduction of the workload associated to flight coordination and transfer. The increased accuracy and data integrity permits the safe application of reduced separations.

2.1.6 Combined with air-ground data link applications, AIDC also allows the transfer of aircraft logon information and the timely initiation of establishing controller-pilot data link communications (CPDLC) by the next air traffic control (ATC) unit with the aircraft.

2.1.7 These improvements outlined above translate directly into a combination of performance improvements.

2.1.8 Information exchanges between flight data processing systems are established between air traffic services units for the purpose of notification, coordination and transfer of flights and for the purpose of civil/military coordination. These information exchanges rely upon appropriate and harmonized communication protocols to secure their interoperability.

2.1.9 Information exchanges apply to:

- a) communication systems supporting the coordination procedures between air traffic services units using a peer-to-peer communication mechanism and providing services to general air traffic; and
- b) communication systems supporting the coordination procedures between air traffic services units and controlling military units, using a peer-to-peer communication mechanism.

Baseline

2.1.10 The baseline for this module is the traditional coordination by phone, and procedural and/or radar distance/time separations.

Change brought by the module

2.1.11 The module makes available a set of messages to describe consistent transfer conditions via electronic means across ATS units' boundaries. It consists of the implementation of the set of AIDC messages in the flight data processing systems (FDPS) of the different ATS units involved and the establishment of a Letter of Agreement (LoA) between these units to set the appropriate parameters.

2.1.12 Prerequisites for the module, generally available before its implementation, are an ATC system with flight data processing functionality and a surveillance data processing system connected to each other.

Other remarks

2.1.13 This module is a first step towards the more sophisticated 4D trajectory exchanges between both ground/ground and air/ground according to the ICAO *Global Air Traffic Management Operational Concept* (Doc 9854).

2.2 Intended Performance Operational Improvement

2.2.1 Metrics to determine the success of the module are proposed in the *Manual on Global Performance of the Air Navigation System* (Doc 9883).

Capacity	Reduced controller workload and increased data integrity supporting reduced separations translating directly to cross sector or boundary capacity flow increases.
Efficiency	The reduced separation can also be used to more frequently offer aircraft flight levels closer to the flight optimum; in certain cases, this also translates into reduced en-route holding.
Global interoperability	Seamlessness: the use of standardized interfaces reduces the cost of development, allows air traffic controllers to apply the same procedures at the boundaries of all participating centres and border crossing becomes more transparent to flights.
Safety	Better knowledge of more accurate flight plan information.
Cost Benefit Analysis	Increase of throughput at ATS unit boundary and reduced ATCO workload will outweigh the cost of FDPS software changes. The business case is dependent on the environment.

2.3 Necessary Procedures (Air and Ground)

2.3.1 Required procedures exist. They need local analysis of the specific flows and should be spelled out in a Letter of Agreement between ATS units; the experience from other Regions can be a useful reference.

2.4 Necessary System Capability

Avionics

2.4.1 No specific airborne requirements.

Ground systems

2.4.2 Technology is available. It consists in implementing the relevant set of AIDC messages in flight data processing and could use the ground network standard AFTN-AMHS or ATN. Europe is presently implementing it in ADEXP format over IP wide area networks.

2.4.3 The technology also includes for oceanic ATSUs a function supporting transfer of communication via data link.

2.5 Human Performance

Human Factors Considerations

2.5.1 Ground interoperability reduces voice exchange between ATCOs and decreases workload. A system supporting appropriate human-machine interface (HMI) for ATCOs is required.

2.5.2 Human factors have been taken into consideration during the development of the processes and procedures associated with this module. Where automation is to be used, the HMI has been considered from both a functional and ergonomic perspective (see Section 6 for examples). The possibility of latent failures, however, continues to exist and vigilance is required during all implementation activity. In addition it is important that human factor issues, identified during implementation, be reported to the international community through ICAO as part of any safety reporting initiative.

Training and Qualification Requirements

2.5.3 To make the most of the automation support, training in the operational standards and procedures will be required and can be found in the links to the documents in Section 8 to this module. Likewise, the qualifications requirements are identified in the regulatory requirements in Section 6 which are integral to the implementation of this module.

2.6 Regulatory/Standardization Needs and Approval Plan (Air and Ground)

- □ Regulatory/standardization: use current published criteria that include:
 - a) ICAO Doc 4444, *Procedures for Air Navigation Services Air Traffic Management*;
 b) EU Regulation, EC No 552/2004.
- □ Approval plans: to be determined based on regional consideration of ATS interfacility data communications (AIDC).

2.7 Implementation and Demonstration Activities (As known at time of writing)

2.7.1 Although already implemented in several areas, there is a need to complete the existing SARPs to improve harmonization and interoperability. For Oceanic data link application, North Atlantic (NAT) and Asia and Pacific (APAC) (cf ISPACG PT/8- WP.02 - GOLD) have defined some common coordination procedures and messages between oceanic centres for data link application (ADS-C CPDLC).

2.7.2 Current use

□ **Europe:** It is mandatory for exchange between ATS units. <u>http://europa.eu/legislation_summaries/transport/air_transport/124070en.htm</u>

The European Commission has issued a mandate on the interoperability of the European air traffic management network, concerning the coordination and transfer (COTR) between ATS units through REG EC 1032/2006 and the exchange of flight data between ATS units in support of air-ground data link through REG EC 30/2009. This is based on the standard OLDI-Ed 4.2 and ADEXP-Ed 3.1.

□ EUROCONTROL: Specification of interoperability and performance requirements for

the flight message transfer protocol (FMTP). The available set of messages to describe and negotiate consistent transfer conditions via electronic means across centres' boundaries have been used for trials in Europe in 2010 within the scope of EUROCONTROL's FASTI initiative.

- □ India: AIDC implementation is in progress in Indian airspace for improved coordination between ATC centres. Major Indian airports and ATC centres have integrated ATS automation systems having AIDC capability. AIDC functionality is operational between Mumbai and Chennai ACCs. AIDC will be implemented within India by 2012. AIDC trials are underway between Mumbai and Karachi (Pakistan) and are planned between India and Muscat in coordination with Oman.
- □ AIDC: is in use in the Asia-Pacific Region, Australia, New-Zealand, Indonesia and others.

2.7.3 Planned or Ongoing Activities

To be determined.

2.7.4 Currently in Operation

To be determined.

2.8 Reference Documents

2.8.1 Standards

- □ ICAO Doc 4444, Procedures for Air Navigation Services Air Traffic Management, Appendix 6 - ATS Interfacility Data Communications (AIDC) Messages.
- ICAO Doc 9880, Manual on Detailed Technical Specifications for the Aeronautical Telecommunication Network (ATN) using ISO/OSI Standards and Protocols, Part II — Ground-Ground Applications — Air Traffic Services Message Handling Services (ATSMHS).

2.8.2 Procedures

To be determined.

2.8.3 Guidance material □ ICAO Doc 9694, Manual of Air Traffic Services Data Link Applications; Part 6; □ GOLD Global Operational Data Link Document (APANPIRG, NAT SPG), June 2010; □ Pan Regional Interface Control Document for Oceanic ATS Interfacility Data.

Communications (PAN ICD) Coordination Draft Version 0.3. 31 August 2010; \Box Asia/Pacific Regional Interface Control Document (ICD) for ATS Interfacility Data Communications (AIDC) available at <u>http://www.bangkok.icao.int/edocs/icd_aidc_ver3.pdf</u>, ICAO Asia/Pacific Regional Office. \Box EUROCONTROL Standard for On-Line Data Interchange (OLDI); and EUROCONTROL Standard for ATS Data Exchange Presentation (ADEXP).

• ASSEMBLY — 38TH SESSION A38-WP/266.

3. ICAO GENERAL ASSEMBLY 38 WP-266

International Civil Aviation Organization

WORKING PAPER

ASSEMBLY - 38TH SESSION

TECHNICAL COMMISSION

Agenda Item 33: Air Navigation — Standardization

OLDI as AIDC realisation in the MID Region

(Presented by the United Arab Emirates)

EXECUTIVE SUMMARY

The Aviation System Block Upgrade (ASBU) B0-25 recommends "Increased interoperability, efficiency and capacity through ground-ground integration". To this end ATS inter-facility data communication (AIDC) is presumed by many States. The EUROCONTROL uses a different tool called On Line Data Interchange (OLDI) satisfying all AIDC requirements.

The AIDC and the OLDI are tools to coordinate flight data between Air Traffic Service Units (ATSU) and both satisfies the basic coordination of flight notification, coordination and transfer of control. Additional options like pre-departure coordination, Civil-Military coordination and air-ground data link for forwarding log-on parameters are available in the OLDI.

The majority of States in the MID Region has either implemented or is planning to implement OLDI and have no intention of using only AIDC.

Action: The Assembly is invited to:

a) Recommend that OLDI implementation be accepted as MID regional variation of AIDC implementation.

b) Urge States to capitalise opportunities provided by OLDI and wherever both AIDC and OLDI are implemented, choose the suitable option satisfying the requirements of the partnering States.

Strategic Objectives:	This working paper relates to Strategic Objective B
Financial implications:	Not applicable
References:	 Manual of Air Traffic Services Data Link Applications (Doc 9694) MID Region ATN-IPS WG5 meeting report, MID Region ATN-IPS WG5 WP4 Appendix A

A38-WP/266 TE/120 12/09/13

1. INTRODUCTION

1.1 Seeking to ensure continuous Safety improvement and Air Navigation modernization, the International Civil Aviation Organization (ICAO) has developed the strategic systems approach termed Aviation System Block Upgrade (ASBU). The latter, which defines programmatic and flexible global systems, allows all States to advance their Air Navigation capacities based on their specific operational requirements.

1.2 The ASBU approach has four Blocks, namely Block 0, Block 1, Block 2 and Block 3. Each block is further divided into Modules. Block 0 is composed of Modules containing technologies and capabilities that are implemented to date.

1.3 Module 25 in Block 0 is introduced to improve coordination between air traffic service units (ATSUs) by using ATS inter-facility data communication (AIDC). The transfer of communication in a data link environment improves the efficiency of this process. The data link environment enhances capacity, efficiency, interoperability, safety and reduces cost.

2. DISCUSSION

2.1 EUROCONTROL uses a different tool called On Line Data Interchange (OLDI) satisfying all AIDC requirements. The AIDC and the OLDI are tools to coordinate flight data between Air Traffic Service Units (ATSU) and both satisfies the basic coordination of flight notification, coordination and transfer of control. Additional options like pre-departure coordination, Civil-Military coordination and air-ground data link for forwarding log-on parameters are available in the OLDI.

2.2 The OLDI is a proven technology and is in operational use for more than twenty years in the European Region and for more than four years in the United Arab Emirates. This technology meets all the AIDC requirements and is kept up to date to cope with the new developments in the industry. An example is the release of OLDI version 4.2 to accommodate INFPL requirements.

2.3 Based on the analysis carried out during the MID Region ATN-IPS WG5 meeting it was noted that the majority of States in the MID Region have either implemented OLDI or are planning to implement OLDI and have no intention of using only AIDC. Therefore, the meeting agreed that OLDI implementation should be considered and accepted as Regional variation of AIDC implementation as was the case in the European Region.

2.4 The MID Region ATN-IPS WG5 meeting further agreed that if both AIDC and OLDI are implemented, then it will be a bilateral issue and some States that are interfacing with adjacent Regions may require to support and implement dual capabilities (AIDC and OLDI).

2.5 The MID Region is monitoring the work of the joint taskforce harmonization of AIDC and OLDI in NAT and ASIA PAC as it is important to harmonize AIDC and OLDI in order that States in the interface areas have smooth operations.

3. CONCLUSION

3.1 The implementation of OLDI in the MID Region should be accepted as variation AIDC implementation. Wherever both AIDC and OLDI are implemented then States should choose the suitable one satisfying the requirements of the partnering State.

4. DETAILS OF THE ATM SYSTEMS TO SUPPORT IMPLEMENTATION

State	ATM System	Protocol and	Number of	Number of adjacent		System bility	Curre	ent use	Plann	ed Use	Intention of using AIDC	Reasons and Remarks
		Version used	adjacent ATSUs	ATSUs connected by AIDC/ OLDI and type of connection	AIDC	OLDI	AIDC	OLDI	AIDC	OLDI	only	
Bahrain	Thales TopSky-C	OLDI 2.3 FMTP 2.0	7	1 OLDI							No	OLDI implemented with UAE OLDI with Doha is in progress
Egypt	TOPSKY (THALES) Support X25 Protocol only	OLDI V 4.2 AIDC V2.0	7	1 OLDI							No	 OLDI is implemented with EUR (Athens) OLDI with Nicosia is in progress AIDC over AFTN is planned with Jeddah and Khartoum
Iran	Thales	OLDI	11	None								OLDI messages are sent to Ankara
Iraq	Thales TopSky	OLDI 4.0	5	none							No	OLDI planned with Kuwait and Ankara

Jordan	Aircon 2100 Indra	OLDI 4.1 AIDC 2.0	5	none				No	Planned with Jeddah and Egypt
Kuwait	Aircon 2100 INDRA	OLDI v4.2 AIDC v3.0	3	none				No	OLDI to connect to Bahrain and Riyadh
Lebanon			3	1 OLDI with Cyprus				No	OLDI with Cyprus is in progress Planned OLDI with Syria
Libya	Aircon 2000 Indra	OLDI 2.3 AIDC 2.0	7	None				No	AIDC planned with Egypt, OLDI planned withTunis and Malta (2020)
Oman	Indra Itec	OLDI 4.1 AIDC 2.3	5	1 OLDI				No	OLDI connection to UAE OLDI planned with Jeddah AIDC with Mumbai in progress AIDC planned with Karachi
Qatar	Selex	OLDI V4.2 FMTP 2.0 AIDC 2.0	3	1					OLDI in use with UAE and planned for use with Bahrain

Saudi Arabia	INDRA	OLDI V4.2 AIDC V3.0 FMTP V4 & V6	11	- None (Eurocat- X) AIDC Connected between Riyadh and Jeddah				No	OLDI planned for 2020/2021
Sudan	TopSky	OLDI 4.3 AIDC 2.0	5	2				No	Both AIDC and OLDI to cater to neighbouring units requests
Syria			5	none					
UAE	PRISMA from COMSOF T	OLDI V4.2 FMTP 2.0	10	-6 two-way integrated OLDI connections -1 two-way standalone OLDI Total 7 OLDI connections				No	OLDI already in use with 7 partners and all neighbouring ATSUs are OLDI capable
Yemen			3	none					

5. MESSAGE TYPES – PHASE 1

These are the messages that were agreed to be used in ICAO MID Region:

I. Basic Procedure Messages

1.	Advance Boundary Information	ABI
2.	Activate	ACT
3.	Revision	REV
4.	Preliminary Activation	PAC
5.	Abrogation of Co-ordination	MAC
6.	SSR Code Assignment	COD
7.	Arrival Management	AMA
8.	Logical Acknowledgement Message	LAM
9.	Information Message	INF

II. Advance Boundary Information ABI

1. Purpose of the ABI Message

The ABI message satisfies the following operational requirements:

- Provide for acquisition of missing flight plan data;
- Provide advance boundary information and revisions thereto for the next ATC unit;
- Update the basic flight plan data;
- Facilitate early correlation of radar tracks;
- Facilitate accurate short-term sector load assessment;
- Request the assignment of an SSR code from the unit to which the above notification is sent, if required.

The ABI is a notification message.

2. Message Contents

The ABI message shall contain the following items of data:

- Message Type;
- Message Number;
- Aircraft Identification;
- SSR Mode and Code (if available);
- Departure Aerodrome;
- Estimate Data;
- Destination Aerodrome;
- Number and Type of Aircraft;
- Type of Flight;
- Equipment Capability and Status.

If bilaterally agreed, the ABI message shall contain any of the following items of data:

- Route;
- Other Flight Plan Data.

- 3. Example
 - (ABIOMAE/OMSJ578-ABY464/A5476-VIDP-MAXMO/0032F100-OMSJ-9/A320/M-15/N0457F360 OBDAG LUN G333 TIGER/N0454F380 G452 RK G214 PG G665 ASVIB M561 MOBET/N0409F260 A419 DARAX -80/S-81/W/EQ Y/EQ U/NO R/EQ/A1B1C1D1L101S1)

III. <u>Activate</u>

ACT

1. Purpose of the ABI Message

The ACT message satisfies the following operational requirements:

- Replace the verbal boundary estimate by transmitting automatically details of a flight from one ATC unit to the next prior to the transfer of control;
- Update the basic flight plan data in the receiving ATC unit with the most recent information;
- Facilitate distribution and display of flight plan data within the receiving ATC unit to the working positions involved;
- Enable display of correlation in the receiving ATC unit;
- Provide transfer conditions to the receiving ATC unit.
- 2. Message Contents

The ACT message shall contain the following items of data:

- Message Type;
- Message Number;
- Aircraft Identification;
- SSR Mode and Code;
- Departure Aerodrome;
- Estimate Data;
- Destination Aerodrome;
- Number and Type of Aircraft;
- Type of Flight;
- Equipment Capability and Status.

If bilaterally agreed, the ACT message shall contain any of the following items of data:

- Route;
- Other Flight Plan Data;
- Actual Take-Off Time.

Note: The Actual Take-Off Time is normally used in the cases where the ACT follows a PAC message that included the Estimated Take-Off Time.

- 3. Example
 - (ACTOMAE/OMSJ727-ABY604/A7306-HEBA-ALRAR/0130F110-OMSJ-9/A320/M-15/N0428F250 DCT NOZ A727 CVO/N0461F350 UL677 MENLI UN697 NWB W733 METSA UB411 ASH G669 TOKLU UP559 ASPAK/N0438F290 UP559 NALPO P559 ITGIB/N0409F230 P559 -80/S-81/W/EQ Y/EQ U/NO R/EQ/A1B1C1D1L101S1)

IV. <u>Revision Message</u>

REV

1. Purpose of the REV Message

The REV message is used to transmit revisions to co-ordination data previously sent in an ACT message provided that the accepting unit does not change as a result of the modification.

2. Message Contents

The REV message shall contain the following items of data:

- Message Type;
- Message Number;
- Aircraft Identification;
- Departure Aerodrome;
- Estimate Data and/or Co-ordination point;
- Destination Aerodrome;
- **Note:** The Estimate Data contained in the REV has to include complete data in the Estimate Data field in order to eliminate any ambiguity regarding the transfer elements. If the ACT message included the supplementary flight level, the following REV message will include the supplementary flight level if still applicable.

The REV message shall contain the following items of data if they have changed:

- SSR Mode and Code;
- Equipment Capability and Status. If bilaterally agreed, the REV message shall contain any of the following items of
 - data, if they have changed:
- Route.
 If bilaterally agreed, the REV message shall contain any of the following items of data:
- Message Reference.
- 3. Example
 - (REVBC/P873-UAE4486-OMDB-TUMAK/2201F360-LERT-81/Y/NO U/EQ)

V. <u>Preliminary Activation</u>

PAC

1. Purpose of the PAC Message

The PAC message satisfies the following operational requirements:

- Notification and pre-departure co-ordination of a flight where the time of flight from departure to the COP is less than that which would be required to comply with the agreed time parameters for ACT message transmission;
- Notification and pre-departure co-ordination of a flight by a local (aerodrome /approach control) unit to the next unit that will take control of the flight;
- Provide for acquisition of missing flight plan data in case of discrepancies in the initial distribution of flight plan data;
- Request the assignment of an SSR code from the unit to which the above notification/coordination is sent.

2. Message Contents

The PAC message shall contain the following items of data:

- Message Type;
- Message Number;
- Aircraft Identification;
- SSR Mode and Code;
- Departure Aerodrome;
- Estimated Take-Off Time or Estimate Data;
- Destination Aerodrome;
- Number and Type of Aircraft;

A PAC message sent from a TMA control unit or an ACC shall contain the following items of data:

- Type of Flight;
- Equipment Capability and Status. If bilaterally agreed, the PAC message shall contain any of the following items of data:
- Route;
- Other Flight Plan Data;
- Message Reference.
- 3. Example
 - (PACOMSJ/OMAE292-SQC7365/A9999-OMSJ0020-WSSS-9/B744/H-15/N0505F310 DCT RIKET B525 LALDO B505 NADSO A777 VAXIM P307 PARAR N571 VIRAM/N0505F330 N571 LAGOG/M084F330 N571 IGOGU/M084F350 N571 GUNIP/N0500F350 R467 -80/S-81/W/EQ Y/EQ U/NO R/EQ/)

VI. Message for the Abrogation of Co-ordination MAC

1. Purpose of the MAC Message

A MAC message is used to indicate to the receiving unit that the co-ordination or notification previously effected for a flight is being abrogated. The MAC is not a replacement for a Cancellation (CNL) message, as defined by ICAO, and therefore, shall not be used to erase the basic flight plan data.

2. Message Contents

The MAC message shall contain the following items of data:

- Message Type;
- Message Number;
- Aircraft Identification;
- Departure Aerodrome;
- Co-ordination point;
- Destination Aerodrome; If bilaterally agreed, the MAC message shall contain any of the following items of data:
- Message Reference;
- Co-ordination Status and Reason
- 3. Example
 - (MACAM/BC112 AM/BC105-HOZ3188-EHAM-NIK-LFPG-18/STA/INITFL)

VII. SSR Code Assignment Message COD

1. Purpose of the COD Message

The Originating Region Code Allocation Method (ORCAM) is provided to permit a flight to respond on the same code to successive units within a participating area. Unless code allocation is performed centrally, e.g. by an ACC, airports may need to be individually allocated a set of discrete SSR codes. Such allocations are very wasteful of codes.

The COD message satisfies the operational requirement for the issue of a Mode A SSR code by one Air Traffic Service Unit to another for a specified flight when requested. The COD message also satisfies the operational requirement to inform the transferring Air Traffic Service Unit of the next Mode A SSR code when the code assigned cannot be retained by the accepting Air Traffic Service Unit.

2. Message Contents

The COD message shall contain the following items of data:

- Message Type;
- Message Number;
- Aircraft Identification;
- SSR Mode and Code;
- Departure Aerodrome;
- Destination Aerodrome;

If bilaterally agreed, the COD message shall contain any of the following items of data:

• Message Reference.

- 3. Example
 - (CODOMAE/OMSJ720-ABY567/A3450-OMSJ-OAKB)

VIII. Arrival Management Message AMA

1. Purpose of the AMA Message

Arrival management requires the capability for an accepting unit to pass to the transferring unit information on the time that a flight is required to delay (lose) or gain in order to optimise the approach sequence.

The AMA message satisfies the following operational requirements in order to alleviate ATC workload in co-ordinating arriving flights:

- Provide the transferring ATC unit with the time that the flight is to delay/gain at the arrival management metering fix;
- Where procedures have been bilaterally agreed between the units concerned, provide the transferring ATC unit with a target time for the flight to be at the COP;
- When bilaterally agreed, provide the transferring unit with a speed advisory. The speed advisory needs to be communicated to the flight, prior to transfer.
- 2. Message Contents

The AMA message shall contain the following items of data:

- Message Type;
- Message Number;
- Aircraft Identification;
- Departure Aerodrome;
- Destination Aerodrome; and based on bilateral agreement, contain one or more of the following items of data:
 - Metering Fix and Time over Metering Fix;
 - Total Time to Lose or Gain;
 - Time at COP;
 - Assigned speed;
 - Application point;
 - Route;
 - Arrival sequence number

Note: The item Route contains the requested routing

- 3. Example
 - (AMAM/BN112-AZA354-LIRF-CLS/0956-LEMD-18/MFX/PRADO TOM/1022 TTL/12)

IX. Logical Acknowledgement Message

LAM

1. Purpose of the LAM Message

The LAM is the means by which the receipt and safeguarding of a transmitted message is indicated to the sending unit by the receiving unit.

The LAM processing provides the ATC staff at the transferring unit with the following:

- A warning when no acknowledgement has been received;
- An indication that the message being acknowledged has been received, processed successfully, found free of errors, stored and, where relevant, is available for presentation to the appropriate working position(s).
- 2. Message Contents

The LAM message shall contain the following items of data:

- Message Type;
- Message Number;
- Message Reference.
- 3. Example
 - (LAMOMSJ/OMAE939OMAE/OMSJ718)

X. Logical Acknowledgement Message

LAM

1. The INF message is used to provide information on specific flights to agencies not directly involved in the coordination process between two successive ATC units on the route of flight.

The INF message may be used to provide copies of messages and to communicate agreed co-ordination conditions to such agencies following a dialogue between controllers. For this purpose INF messages may be generated by the systems at the transferring or accepting unit. The message may also be used to provide information in relation to any point on the route of flight to an agency. The format allows the communication of initial data, revisions and cancellations.

- 2. The INF message shall contain the following items of data:
 - Message type;
 - Message number;
 - All items of operational data as contained in the original message or resultant
 - co-ordination being copied;
 - Reference Message Type.

6.3. Example

(INFL/IT112-BAW011/A5437-EGLL-KOK/1905F290-OMDB-9/B747/H-15/N0490F410 DVR KOK UG1 NTM UB6 KRH-18/MSG/ACT)

The Pan Regional (NAT and APAC) Interface Control Document for ATS Interfacility Data Communications (PAN AIDC ICD) Version1.0 has defined the specific AIDC messages to be used between ATSUs should be included in bilateral agreements as in the below table which is number as table 4-3

AIDC Messages

Core	Non-core	Message Class	Message
X		Notification	ABI (Advance Boundary Information)
X		Coordination	CPL (Current Flight Plan)
Х		Coordination	EST (Coordination Estimate)
	Х	Coordination	PAC (Preliminary Activate)
Х		Coordination	MAC (Coordination Cancellation)
X		Coordination	CDN (Coordination Negotiation)
X		Coordination	ACP (Acceptance)
X		Coordination	REJ (Rejection)
	Х	Coordination	PCM (Profile Confirmation Message)
	X	Coordination	PCA (Profile Confirmation Acceptance)
	Х	Coordination	TRU (Track Update)
Х		Transfer of Control	TOC (Transfer of Control)
X		Transfer of Control	AOC (Acceptance of Control)
Х		General Information	EMG (Emergency)
Х		General Information	MIS (Miscellaneous)
Х		Application Management	LAM (Logical Acknowledgement Message)
Х		Application Management	LRM (Logical Rejection Message)
	Х	Application Management	ASM (Application Status Monitor)
	Х	Application Management	FAN (FANS Application Message)
	Х	Application Management	FCN (FANS Completion Notification)
	X	Surveillance Data Transfer	ADS (Surveillance ADS-C)

6. D – MESSAGE TYPES – PHASE 2

The messages during this phase will be the advance messages covering all phases of flight

Intentionally left blank

7. TEST OBJECTIVES

		Test Objectives
No	Test step	Test Description
01	Connectivity between FDPSs	Check connectivity between FDPSs.
02	FPL Processing	Check FPLs are correctly received and processed.
		Preliminary Activation Message (PAC)
03	PAC Message association	Check PAC messages are correctly sent, received, processed and associated with the correct FPL. If the system is unable to process a message that is syntactically and semantically correct, it should be referred for Manual intervention.
04	Coordination of Changes to previous PAC message	Check changes to previous PAC messages such as Change in SSR code, Aircraft type, Coordination point, Flight level and Destination aerodrome are correctly sent, received and associated with the correct FPL.
		Advance Boundary Information (ABI)
05	ABI Message association	Check ABI messages are correctly sent, received, processed and associated with the correct FPL. If the system is unable to process a message that is syntactically and semantically correct, it should be referred for Manual intervention.
06	Coordination of Changes to previous ABI message	Check changes to previous ABI messages such as Change in SSR code, Aircraft type, Coordination point, Flight level and Destination aerodrome are correctly sent, received and associated with the correct FPL.
	- ·	Activate (ACT)
07	ACT Message association	Check ACT messages are correctly sent, received, processed and associated with the correct FPL. If the system is unable to process a message that is syntactically and semantically correct, it should be referred for Manual intervention.
		Logical Acknowledgement Messages (LAM)
08	LAM Message generation	Check LAM messages are generated for messages that are syntactically and semantically correct.
		SSR Code Request Messages (COD)
09	COD Message association	Check COD messages are sent with correct SSR Code, received, processed and associated with the correct FPL. If the system is unable to process a message that is syntactically and semantically correct, it should be referred for Manual intervention.

8. SAMPLE TEST SCRIPTS

NOTE: All the samples are provided by UAE

1. Test 001 Connectivity:

	Test 001 – Connectivity						
No	Test description	UAE ACC FDPS	Doha FDPS	Remarks			
01	Ping Doha FDPS from RDS FDPS	OK / Not OK	OK / Not OK				
02	Ping RDS FDPS from Doha FDPS	OK / Not OK	OK / Not OK				
03	Check the link	Log in as root in rds fdps Type in netstat –tnap, should show the link "established" OK / Not OK	Check the link "established" OK / Not OK				

2. Test 002 Flight plan:

	Test 002 – Flight Plan – <i>sent from UAE ACC</i>						
No	Test description	UAE ACC FDPS	Doha FDPS	Remarks			
01	Send TST001 (OMAA-OTBD)	OK / Not OK	OK / Not OK				
02	Send TST002 (OMAM-OTBH)	OK / Not OK	OK / Not OK				

03	Send TST003	OK / Not OK	OK / Not OK	
	(OMAA-OEJN)			
04	Send TST004	OK / Not OK	OK / Not OK	
	(OOMS – OTBD)			
05	Send TST005	OK / Not OK	OK / Not OK	
	(OTBD – OMDB)			
06	Send TST006	OK / Not OK	OK / Not OK	
	(OTBH – OMDM)			
07	Send TST007	OK / Not OK	OK / Not OK	
	(OEJN-OMAD)			
08	Send TST008	OK / Not OK	OK / Not OK	
	(OTBD – OOMS)			

3. <u>Test 003 Preliminary Activation Message (PAC):</u>

	Test 003 – Preliminary Activation Message (PAC) Doha FDPS to UAE ACC FDPS					
No	Test description	UAE ACC FDPS	Doha FDPS	Remarks		
01	Activate start up TST005 (OTBD – OMDB) SSR code:0001 RFL : FPL level	SFPL moves from Pending to Workqueue with SSR code, check CFL field OK / Not OK	OK / Not OK			
02	Change SSR of TST005 New SSR Code:0002	SFPL colour changes to Green in Workqueue OK / Not OK	OK / Not OK			
03	Change ATYP of TST005 New ATYP: A332	SFPL colour changes to Green in Workqueue OK / Not OK	OK / Not OK			
04	Change ADES of TST005 New ADES: VOMM	New FPL is created by OLDI with new ADES	OK / Not OK			

		OK / Not OK			
05	Change RFL of TST005	Manual coordination requires	OK /	Not OK	
	New RFL: 370	OK / Not OK			
06	Change COP of TST005	SFPL colour changes to Green in	OK /	Not OK	
	New COP : NADAM	Workqueue			
		OK / Not OK			
07	Check LAM messages	OK / Not OK	OK /	Not OK	

4. <u>Test 004 ABI & ACT messages:</u>

	Test 004 – Advance Boundary Information Message (ABI), Activate Message (ACT) Doha FDPS to UAE ACC FDPS						
No	Test description	UAE ACC FDPS	Doha FDPS	Remarks			
01	Enter estimate for TST007 (OEJN – OMAD) SSR code:0003 Exit level : 190 ETX : Current time	SFPL moves from Pending to Work queue with SSR code, check ETN and CFL field OK / Not OK	OK / Not OK				
02	Change SSR of TST007 New SSR code: 0004	SFPL colour changes to Green if in Workqueue OK / Not OK	OK / Not OK				
03	Change ATYP of TST007 New ATYP: C130	SFPL colour changes to Green if in Workqueue OK / Not OK	OK / Not OK				

04	Change ADES of TST007	New FPL is created by OLDI with	OK / Not OK
	New ADES: OMAL	new ADES	
		OK / Not OK	
05	Change XFL of TST007	SFPL colour changes to Green if in	OK / Not OK
	New XFL: 170	Workqueue	
		OK / Not OK	
06	Change COP of TST007	SFPL colour changes to Green if in	OK / Not OK
	New COP: NAMLA	Workqueue	
		OK / Not OK	
07	when ETX is Current time + 5	No change, SFPL already in active.	OK / Not OK
	minutes the ACT should be	OK / Not OK	
	automatically generated		
08	Change ATYP of TST007	No change, SFPL already in active	Flag to notify ATCA
	New ATYP:C30J	Expect manual coordination.	that ATYP change is
		OK / Not OK	not communicated
			OK / Not OK
09	Check LAM messages	OK / Not OK	OK / Not OK

5. <u>Test 005 ABI & ACT messages:</u>

	Test 005 – Advance Boundary Information Message (ABI), Activate Message (ACT) UAE ACC FDPS to Doha FDPS				
No	Test description	UAE ACC FDPS	Doha FDPS	Remarks	
01	Enter estimate for TST004 (OOMS – OTBD) SSR code:0005 Exit level : 180 ETN : Current time COPX: MEKMA	SFPL moves from Pending to Active with SSR code A new ABI wiil be generated OK / Not OK	SSR, ETN and Entry level and entry point should be automatically updated for the concerned flight and flagged for ATCA OK / Not OK		

02	Change SSR of TST004	A new ABI wiil be generated	SSR should be automatically
	New SSR code: 0006	OK / Not OK	updated for the concerned flight
			and flagged for ATCA
			OK / Not OK
03	Change ATYP of TST004	A new ABI wiil be generated	ATYP should be automatically
	New ATYP: AT45	OK / Not OK	updated for the concerned flight
			and flagged for ATCA
			OK / Not OK
04	Change ADES of TST004	A new ABI wiil be generated	ADES should be automatically
	New ADES: OTBH	OK / Not OK	updated for the concerned flight
			and flagged for ATCA
			OK / Not OK
05	Change XFL of TST004	A new ABI wiil be generated	Entry level should be
	New XFL: 160	OK / Not OK	automatically updated for the
			concerned flight and flagged
			for ATCA
			OK / Not OK
06	Change COP of TST004	A new ABI wiil be generated	COP should be automatically
	New COP: BUNDU	OK / Not OK	updated for the concerned flight
			and flagged for ATCA
			OK / Not OK
07	when ETX is Current time + 5	ACT will be generated OK / Not	OK / Not OK
	minutes the ACT should be	OK	
	automatically generated		
08	Change ATYP of TST004	An indication to ATCO to show that	Expect manual coordination
	New ATYP: B738	this change needs to be manually	OK / Not OK
		coordinated	
09	Check LAM messages	OK / Not OK	OK / Not OK

6. <u>Test 006 PAC, ABI, ACT without FPL for UAE:</u>

	Test 006 – PAC, ABI, ACT – No FPL for UAE Doha FDPS to UAE ACC FDPS			
No	Test description	UAE ACC FDPS	Doha FDPS	Remarks
01	Activate start up TST009 (OTBD – OMAA) SSR code:0007 ATYP:A320 XFL: 210 COP: NAMLA	SFPL is created by PAC. OLDI window pops up. OK / Not OK	Automatically generates PAC message OK / Not OK	
02	Enter estimate for TST010, (OEJN – OOMS) SSR Code: 0010 ATYP: B738 XFL: 230 COP: BUNDU ETX: Current time	SFPL is created by ABI. OLDI window pops up. OK / Not OK	Automatically generates ABI message OK / Not OK	
03	Enter estimate for TST011, (OEJN – OOMS) SSR Code: 0011 ATYP: B738 XFL: 230 COP: BUNDU ETX: Current time + 3 mins	SFPL is created by ACT. OLDI window pops up. OK / Not OK	Automatically generates ACT message OK / Not OK	
04	Check LAM messages	OK / Not OK	OK / Not OK	

7. <u>Test 007 ABI, ACT without FPL for Doha:</u>

	Test 007 – ABI, ACT – No FPL for Doha FDPS UAE ACC FDPS to Doha FDPS				
No	Test description	UAE ACC FDPS	Doha FDPS	Remarks	
01	Enter estimate for TST012, (TACT – OTBH) SSR Code: 0012 ATYP: K35R XFL: 220 COP: TOSNA ETN: Current time	Automatically generates ABI message OK / Not OK	FPL created by ABI and flags for ATCA attention. OK / Not OK		
02	Enter estimate for TST013, (OOMS – OTBD) SSR Code: 0013 ATYP: A321 XFL: 180 COP: MEKMA ETN: Current time -20 mins	Automatically generates ACT message OK / Not OK	FPL created by ACT and flags for ATCA attention. OK / Not OK		
03	Check LAM messages	OK / Not OK	OK / Not OK		

8. Test 008 Duplicate SSR:

		Test 008 – Duplic	ate SSR	
No	Test description	UAE ACC FDPS	Doha FDPS	Remarks
01	Create a FPL TST020 at Doha with SSR	OLDI message window	Duplicate SSR should	
	0014 to block SSR code	pops up with a question	be duly flagged to	
	Enter estimate data for TST002 at UAE RDS	mark on TST002	operator	
	(OMAM – OTBH)	OK / Not OK	OK / Not OK	
	SSR Code : 0014			
	ETN: Current time			
	XFL: 180			
02	Create a FPL TST030 at UAE RDS with SSR	OLDI message window	Duplicate SSR should	
	0015 to block SSR code	pops up with a question	be duly flagged to	
	Enter estimate data for TST008 at Doha	mark on TST008	operator	
	(OTBD – OOMS)	OK / Not OK	OK / Not OK	
	SSR Code : 0015			
	ETN: Current time			
	XFL: 230			

9. <u>Test 009 Communication failure:</u>

	Test 009 – Communication failure			
No	Test description	UAE ACC FDPS	Doha FDPS	Remarks
01	Simulated link failure	OLDI messages that are not coordinated will move from Active to Workqueue OK / Not OK	Failures should be duly flagged to operator OK / Not OK	

10. Test Flight plans:

a. TST001 (OMAA – OTBD)

(FPL-TST001-IS -A320/M-SDFHIJLOPRVWY/SD -OMAA0655 -N0415F220 TOXIG Z994 VEBAT P899 MEKMA DCT NAJMA DCT DOH -OTBD0030 OEDF -PBN/A1B1C1D1L101S1 NAV/GPSRNAV DOF/13???? REG/A6TST EET/OMAE0008 OBBB0020 SEL/ARKQ OPR/TST RMK/TEST FPL)

b. TST002 (OMAM - OTBH)

(FPL-TST002-IM -C17/H-SGHJPRWXYZ/SD -OMAM0820 -N0454F280 DCT MA270020 DCT MA285032 DCT DASLA Z994 BUNDU B415 DOH DCT -OTBH0032 OMAM -PBN/A1B1C1D1L101S1 NAV/GPSRNAV DOF/13???? REG/A6TST EET/OBBB0019 SEL/CFPR NAV/RNP10 RNAV1 RNAV5 RNVD1E2A1 RMK/TEST FPL)

c. TST003 (OMAA – OEJN)

(FPL-TST003-IS -A320/M-SDGHIJLPRWXY/S -OMAA0800 -N0467F220 TOXIG Z994 BUNDU B415 DOH A415 KIA G782 RGB/N0461F360 UM309 RABTO G782 ASLAT DCT -OEJN0201 OEMA -PBN/A1B1C1D1L101S1 NAV/GPSRNAV DAT/SV DOF/13???? REG/A6TST EET/OMAE0009 OBBB0021 OEJD0044 SEL/BMAR RMK/TCAS EQUIPPED RMK/TEST FPL)

d. TST004 (OOMS – OTBD)

(FPL-TST004-IS -A320/M-SDFHIJLOPRVWY/SD -OOMS0655 -N0458F320 MCT L764 PAXIM P899 ITRAX ALN P899 DASLA/N0440F260 Z994 VEBAT/N0424F220 P899 MEKMA DCT NAJMA DCT DOH -OTBD0057 OMAA -PBN/A1B1C1D1L101S1 DAT/V NAV/TCAS DOF/13???? REG/A6TST EET/OMAE0023 OBBB0047 SEL/GLEH RMK/TEST FPL)

e. TST005 (OTBD – OMDB)

(FPL-TST005-IS

-B738/M-SHPRWXYIGZ/S -OTBD1230 -N0390F210 DOH L305 ITITA L308 DESDI DESDI4T -OMDB0049 OMRK OMAL -PBN/A1B1C1D1L101S1 NAV/RNAV1 RNAV5 RNP4 RNP10 RNP5 RNVD1E2A1 DOF/13???? REG/A6TST EET/OMAE0015 SEL/HQER RMK/TEST FPL)

f. TST006 (OTBH – OMDM)

(FPL-TST006-IM -C130/M-SHITUY/S -OTBH1000 -N0311F150 UL305 ALSEM L305 ITITA L308 SHJ DCT -OMDM0059 OBBI -PBN/A1B1C1D1L101S1 NAV/RNAV1 RNAV5 RNP4 RNP10 RNP5 RNVD1E2A1 DOF/13???? REG/A6TST EET/OMAE0020 RMK/TEST FPL) g. TST007 (OEJN – OMAD)

(FPL-TST007-IN -GLF4/M-SDGHIRVWXY/S -OEJN0600 -N0458F210 JDW T532 KIA B418 ASPAN N318 XAKUM Q666 BOXAK DCT -OMAD0212 OMAL -PBN/A1B1C1D1L101S1 NAV/RNAV1 RNAV5 RNP4 RNP10 RNP5 RNVD1E2A1 DOF/13???? REG/A6TST EET/OBBB0113 OMAE0151 RMK/TEST FPL)

h. TST008 (OTBD – OOMS)

(FPL-TST008-IS -A320/M-SDFHIJLOPRVWY/SD -OTBD0630 -N0466F310 B415 AFNAN B415 ADV N685 LAKLU G216 MCT DCT -OOMS0103 OMAL -PBN/A1B1C1D1L101S1 NAV/RNAV1 RNAV5 RNP4 RNP10 RNP5 RNVD1E2A1 DOF/13???? REG/A6TST EET/OBBB0007 OMAE0012 OOMM0038 SEL/GLEH RMK/TEST FPL)

9. BILATERAL AGREEMENT TEMPLATE

Bilateral Agreement Template to be appended to the main Letter of Agreement (LoA) Template Please choose the appropriate OLDI or AIDC.

NOTE:

This part of the LOA only to be used as guidance it is related to the Automatic data exchange either OLDI or AIDC which are attachments 1 and 2 respectively to Appendix C of the complete letter of agreement.

Appendix C (1)

Exchange of Flight Data

(With automatic data exchange)

Unit 1

Revision: xxxx

Effective: xx xxxx xxxx

Revised: xxx

C.1 General

C.1.1 Basic Flight Plans

Basic flight plan data should normally be available at both ATS Units.

C.1.2 Current Flight Plan Data

Messages, including current flight plan data, shall be forwarded by the transferring ATS unit to the accepting ATS unit either by automatic data exchange or by telephone to the appropriate sector/position.

C.1.2.1 Automatic Data Exchange.

The messages (List agreed message for OLD e.g. ABI/ACT/LAM/PAC/REV/MAC messages are exchanged between the two ATS units in accordance with Attachment 1 or Attachment 2 to Appendix C.

C.1.2.2 <u>Verbal Estimates</u>.

For conditions that are not supported by the automatic data exchange, verbal estimates will be exchanged.

A verbal estimate shall be passed to the appropriate sector at the accepting ATS unit at least value minutes prior, but not earlier than 30 minutes before the aircraft is estimated to pass the transfer of control point.

A verbal estimate shall contain:

a) Callsign.

Unit 2

- Note: To indicate that the flight plan is available, the accepting ATS unit should state aircraft type and destination after having received the callsign.
- b) SSR code:
 - Note: Normally, the notification of a SSR code indicates that the selection of that code by the aircraft was verified.
- c) ETO for the appropriate COP as laid down in Appendix D to this LoA.
- Cleared level, specifying climb or descent conditions if applicable, at the transfer of control point.

Requested level if different from cleared level.

e) Other information, if applicable.

Normally, verbal estimates will not be passed in parallel with ACT messages.

In all cases, verbally passed data shall take precedence over data exchanged automatically.

C.1.2.3 Failure of Automatic Data Exchange.

In the event of a failure which prevents the automatic transfer of data, the Supervisors shall immediately decide to revert to the verbal exchange of estimates.

After recovery from a system failure, the Supervisors shall agree as to when they will revert to automatic data exchange.

C.1.3 Non-availability of Basic Flight Plan Data

If the accepting ATS unit does not have basic flight plan data available, additional information may be requested from the transferring ATS unit to supplement the ACT message or a verbal estimate.

Within the context of RVSM, such additional information should include:

a. the RVSM approval status of the aircraft; and

b. whether or not a non-RVSM approved aircraft is a State aircraft.

C.1.4 Revisions

Any significant revisions to the flight data are to be transmitted to the accepting ATS unit. Time differences of value minutes or more are to be exchanged.

Any levels which different than describe in Appendix D of this LOA are subject to an Approval Request.

C.1.5 Expedite Clearance and Approval Requests

Whenever the minimum time of value minutes for a verbal estimate, or those prescribed in Attachment 1 to Appendix C for ACT messages, cannot be met, either an expedite clearance request, an approval request (*or a PAC*), as appropriate, shall be initiated.

C.2 Means of Communications and their Use

C.2.1 Equipment

The following lines are available between Unit 1 and Unit 2:

Line Type	Amount	Additional Information
Data Line		
Telephone Lines		

"Additional Information" column should indicate if telephone lines meet the requirements for Direct Controller-Controller Voice Communication (DCCVC) or Instantaneous Direct Controller-Controller Voice Communication (ICCVC)

C.2.2 Verbal Co-ordination

All verbal communications between non-physically adjacent controllers should be terminated with the initials of both parties concerned.

Exchange of flight plan data, estimates and control messages by voice shall be carried out in accordance with the following tables:

C.2.2.1 <u>Messages from Unit 1 to Unit 2.</u>

Receiving Sector/COPs	Message	Position
	Flight Plan Data and	
Sector Name	Estimates	
COPs	Control Messages, Expedite Clearances, Approval Requests and Revisions	
	Surveillance Co-ordination	

C.2.2.2 <u>Messages from Unit 2 to Unit 1.</u>

Receiving Sector/COPs	Message	Position
Sector Name	Flight Plan Data and Estimates	
COPs	Control Messages, Expedite Clearances, Approval Requests and Revisions	
	Surveillance Co-ordination	

C.3 Failure of Ground/Ground Voice Communications

C.3.1 Fall-Back Procedures for Co-ordination

To mitigate the effects of failures of direct speech circuits, both parties will establish and maintain dial-up facilities via PABX and ATC Voice Communications Systems (VCS) as follows:

Sector Name Tel Number (For Both Units)

Stand-alone telephones with auto-dial facilities will be maintained as a second level of fall-back to cover the event of failure of PABX or VCS:

Sector Name Tel Number (For Both Units)

C.3.2 Alternate Fall-Back Procedures for Co-ordination

In case of communications failure where the alternatives described in paragraph C.3.1 above are not available or practicable, pilots shall be instructed, at least 5 minutes prior to the transfer of control point, to pass flight data on the appropriate frequency of the accepting ATS unit for the purpose of obtaining an ATC entry clearance from the accepting ATS unit.

If the accepting ATS unit cannot issue an entry clearance to the pilot upon his initial contact, the pilot shall be instructed to inform the transferring ATS unit accordingly via RTF.

The transferring ATS unit shall hold the aircraft within its AoR and after a minimum of 10 minutes instruct the pilot to re-establish RTF contact with the accepting ATS unit.

This procedure shall be repeated until an onward clearance has been obtained from the accepting ATS unit.

C.4 Validity

This Appendix to the LoA takes effect on xxx xxxx and supersedes previous Appendix to Letter of arrangements between the Unit 1 and Unit 2.

Date:

Date:

Name

Title

Authority 1

Name

Title

Authority 2

Attachment 1 to Appendix C

Automatic Data Exchange related to OLDI

ABI/ACT/LAM messages are exchanged between the two ATS units in accordance with the table below:

		Time and/or Di	stance Parameters	
Messages	COPs	Messages from Unit 1	Messages from Unit 1	
		To Unit 2	To Unit 2	
ABI				
ACT				
LAM				
REV				
PAC				
MAC				
LOF				
NAN				

Attachment 2 to Appendix C

Automatic Data Exchange related to AIDC

This is the Generic Template available in the PAN which also contain real sample agreement Auckland Oceanic – Brisbane ATS Centre and Auckland Oceanic – Nadi ATM Operations Centre

AIDC Procedures

- 1. The format of AIDC messages (*List messages used e.g. ABI, PAC, CDN, CPL, ACP, REJ, MAC, LAM and LRM*) are as defined by the Pan Regional (NAT and APAC) AIDC Interface Control Document (ICD) as amended from time to time, unless described otherwise in this LOA.
- 2. List messages not supported (e.g. "EST, TOC, AOC messages are not supported").
- 3. Acceptance of CPL or CDN message is approval of the flight's profile and requires no further voice communication (i.e. Non-Standard Altitudes, Block Altitudes, and Deviations).
- 4. (Describe other procedures applicable to the use of AIDC for this LOA. Some examples are listed below)
 - a. *Example only. If there is any doubt with regard to the final coordination data, voice coordination should be used for confirmation.*
 - b. Example only. Receipt of a MAC message must not be interpreted as meaning that the flight plan has been cancelled. Voice coordination must be conducted by the transferring controller to confirm the status of the flight.
 - c. Example only. Each facility should advise the other facility of any known equipment outage that affects AIDC. In the event of AIDC outage, voice communication procedures will apply.
 - d. Example only. Truncation. Where route amendment outside the FIR is unavoidable.
 - i. Terminate the route details at the farthest possible flight plan significant point of the flight and enter "T" immediately following this.
 - ii. Without amending the originally received details, every effort is to be made to truncate the route at a minimum of one significant point beyond the adjacent FIR to provide an entry track in that FIR.

AIDC Messages

(For each message used describe when it will be sent by each ATSU under the parameter column and use the Notes column to describe other applicable information for the message use by each ATSU. The data below provides an example of the type of information that could be incorporated.)

Messages	Parameter	Notes
ABI	 ATSU1: Sends ABI approx. 80 minutes prior to boundary (73 minutes prior to the 50 nm expanded sector boundary). ATSU2: Sends ABI approx. 87 minutes prior to boundary (80 minutes prior to the 50 nm expanded sector boundary). (Note: An updated ABI will not be sent once a CPL has been sent.) 	ATSU1 : ATSU2 Updated ABI's will be sent automatically if there is any change to profile. ABI is sent automatically and is transparent to the controller. ABI automatically updates the receiving unit's flight data record.
CPL	ATSU1 : ATSU2 Send CPL messages approx. 37 minutes prior to the boundary (30 minutes prior to the 50 nm expanded sector boundary).	ATSU1 : ATSU2 CPL messages should be sent by the transferring controller in sufficient time to allow the completion of coordination at least 30 minutes prior to the boundary or 30 minutes prior to the aircraft passing within 50nmof the FIR boundary for information transfers.
CDN	ATSU1 : ATSU2 CDN messages are sent by either the transferring or receiving facility to propose a change once the coordination process has been completed, i.e., CPL sent and ACP received. CDN's must contain all applicable profile restrictions (e.g. weather deviations, speed assignment, block altitude). If the use of a CDN does not support this requirement, then verbal coordination is required.	ATSU1 : ATSU2 The APS will display a flashing "DIA" until receipt of ACP. If ACPJ not received within ten (10) minutes, controller is alerted with a message to the queue. CDN messages are not normally used for coordination of reroutes; however, with the receiving facilities approval a CDN may be used to coordinate a reroute on a critical status aircraft such as in an emergency.
PAC	ATSU1 : ATSU2 PAC messages will normally be sent when the time criteria from the departure point to the boundary is less than that stipulated in the CPL.	ATSU1 : ATSU2 Will respond to a PAC message with an ACP. PAC messages should be verbally verified with receiving facility.
ACP	ATSUI : ATSU2	ATSU1 : ATSU2 The APS will display a flashing "DIA" until receipt of ACP. If ACP not received within ten (10) minutes, controller is alerted with a message to the queue.
ТОС	ATSU1 : ATSU2 Not supported. Implicit hand in/off.	
AOC	ATSU1 : ATSU2 Not supported. Implicit hand in/off.	
MAC	ATSU1 : ATSU2 MAC messages are sent when a change to the route makes the other facility no longer the "next" responsible unit.	ATSU1 : ATSU2 Receipt of a MAC message must not be interpreted as meaning that the flight plan has been cancelled. Voice coordination must be conducted by the transferring

		controller to confirm the status of the flight.
REJ	ATSU1 : ATSU2 REJ messages are sent in reply to a CDN message when the request change is unacceptable	ATSU1 : ATSU2 REJ messages are sent only as a response to a CDN message.

AIDC Messages

(For each message used describe when it will be sent by each ATSU under the parameter column and use the Notes column to describe other applicable information for the message use by each ATSU. The data below provides an example of the type of information that could be incorporated.)

Messages	Parameter	Notes
ABI	 ATSU1: Sends ABI approx. 80 minutes prior to boundary (73 min prior to the 50 nm expanded sector boundary). ATSU2: Sends ABI approx. 87 minutes prior to boundary (80 min prior to the 50 nm expanded sector boundary). (Note: An updated ABI will not be sent once a CPL has been sent.) 	ATSU1 : ATSU2 Updated ABI's will be sent automatically if there is any change to profile. ABI is sent automatically and is transparent to the controller. ABI automatically updates the receiving unit's flight data record.
CPL	ATSU1 : ATSU2 Send CPL messages approx 37 minutes prior to the boundary (30 minutes prior to the 50 nm expanded sector boundary).	ATSU1 : ATSU2 CPL messages should be sent by the transferring controller in sufficient time to allow the completion of coordination at least 30 minutes prior to the boundary or 30 minutes prior to the aircraft passing within 50nmof the FIR boundary for information transfers.
CDN	ATSU1 : ATSU2 CDN messages are sent by either the transferring or receiving facility to propose a change once the coordination process has been completed, i.e., CPL sent and ACP received. CDN's must contain all applicable profile restrictions (e.g. weather deviations, speed assignment, block altitude). If the use of a CDN does not support this requirement, then verbal coordination is required.	ATSU1 : ATSU2 The APS will display a flashing "DIA" until receipt of ACP. If ACPJ not received within ten (10) minutes, controller is alerted with a message to the queue. CDN messages are not normally used for coordination of reroutes; however, with the receiving facilities approval a CDN may be used to coordinate a reroute on a critical status aircraft such as in an emergency.

PAC	ATSU1 : ATSU2	ATSU1 : ATSU2
	PAC messages will normally be sent when the time criteria from the departure point to the boundary is less than that stipulated in the CPL.	Will respond to a PAC message with an ACP. PAC messages should be verbally verified with receiving facility.
ACP	ATSU1 : ATSU2	ATSU1 : ATSU2
		The APS will display a flashing "DIA" until receipt of ACP. If ACP not received within ten (10) minutes, controller is alerted with a message to the queue.
ТОС	ATSU1 : ATSU2	ATSU1 : ATSU2
	Not supported. Implicit hand in/off.	
AOC	ATSU1 : ATSU2	
	Not supported. Implicit hand in/off.	
MAC	ATSU1 : ATSU2	ATSU1 : ATSU2
	MAC messages are sent when a change to the route makes the other facility no longer the "next" responsible unit.	Receipt of a MAC message must not be interpreted as meaning that the flight plan has been cancelled. Voice coordination must be conducted by the transferring controller to confirm the status of the flight.
REJ	ATSU1 : ATSU2	ATSU1 : ATSU2
	REJ messages are sent in reply to a CDN message when the request change is unacceptable	<i>REJ messages are sent only as a response to a CDN message.</i>

10. IMPLEMENTATION PHASES

In line with ASBU Block 0 time lines, the AIDC/OLDI implementation shall be completed as per the MID Air Navigation Plan. In order to support and assist, the implementation could be accomplished in phases listed below. The actual targets set for the MID Region are in the MID Air Navigation Strategy.

Phase 1	 OLDI/AIDC capable ATSUs should start implementation activities. The activity should cover the following: test activities operator training Revision of LoA transition activities implementation post-implementation reviews The ATSUs not capable of OLDI/AIDC should avail the facility of Standalone terminals with a planned implementation asap, and budget for full Integration with a planned implementation date of the MID Air Navigation Strategy.
Phase 2	 The ATSUs using OLDI/AIDC in an Operational environment should assist other ATSUs to implement OLDI/AIDC The OLDI/AIDC software is readily available therefore the ATSUs waiting for software upgrade should expect a software package asap. On receipt of it they should start implementation activities. The activity should cover the following: test activities operator training Revision of LoA transition activities implementation post-implementation reviews
Phase 3	All ATSUs are connected by Integrated OLDI/AIDC or Standalone terminals

APPENDIX F

COMMUNICATION, NAVIGATION AND SURVEILLANCE SUB-GROUP

(CNS SG)

1. TERMS OF REFERENCE

1.1 The Terms of Reference of the CNS Sub-Group are:

- a) ensure that the implementation of CNS in the MID Region is coherent and compatible with developments in adjacent Regions, and is in line with the Global Air Navigation Plan (GANP), the Aviation System Block Upgrades (ASBU) methodology and the MID Region Air Navigation Strategy;
- b) monitor the status of implementation of the MID Region CNS-related ASBU Modules included in the MID Region Air Navigation Strategy as well as other required CNS supporting infrastructure, identify the associated difficulties and deficiencies and provide progress reports, as required;
- c) keep under review the MID Region CNS performance objectives/priorities, develop action plans to achieve the agreed performance targets and propose changes to the MID Region CNS plans/priorities, modernization programmes through the ANSIG, as appropriate;
- d) seek to achieve common understanding and support from all stakeholders and involved in or affected by the CNS developments/activities in the MID Region;
- e) provide a platform for harmonization of developments and deployments of CNS facilities and procedures within Region and inter regional;
- f) monitor and review the latest developments in the area of CNS, provide expert inputs for CNS-related issues; and propose solutions for meeting ATM operational requirements;
- g) follow-up the developments of ICAO position for future ITU World Radio Communication (WRC) Conferences and provide expert advises to States;
- h) follow-up the development operation of the MID ATS Message Management Center (MIDAMC);
- i) provide regular progress reports to the ANSIG and MIDANPIRG concerning its work programme; and
- j) review periodically its Terms of Reference and propose amendments, as necessary.

1.2 In order to meet the Terms of Reference, the CNS Sub-Group shall:

- a) provide necessary assistance and guidance to States to ensure harmonization and interoperability in line with the GANP, the MID ANP and ASBU methodology;
- b) provide necessary inputs to the MID Air Navigation Strategy through the monitoring of the agreed Key Performance Indicators related to CNS facilities and procedures;
- c) identify and review those specific deficiencies and problems that constitute major obstacles to the provision of efficient CNS implementation, and recommend necessary remedial actions;
- d) lead the work programme of the MID-AMC including the conduct of trainings and upgrades;
- e) assist, coordinate, harmonize and support in the implementation of CNS facilities and procedures;
- f) seek States support to ICAO Position at WRCs, and encourage States for the proper utilization of the Frequency Spectrum and Interrogation Code Allocations;
- g) follow-up surveillance technologies implementation to be in line with the MID Region surveillance plan and the operational improvements in coordination with other Sub-Groups;
- h) review, identify and address major issues in technical, operational, safety and regulatory aspects to facilitate the implementation or provision of efficient Surveillance services in the MID Region;
- i) follow-up Global GNSS evolution, and provide assistance/guidance to states on available GNSS services;
- j) address Datalink communication services and support implementation where operationally required; and
- k) review and identify inter-regional and intra-regional co-ordination issues in the field of CNS, harmonize and recommend actions to address those issues.

2. COMPOSITION

- **2.1** The Sub-Group is composed of:
 - a) MIDANPIRG Member States;
 - b) Concerned International and Regional Organizations as observers; and
 - c) other representatives from provider States and Industry may be invited on ad-hoc basis, as observers, when required.

APPENDIX G

MIDAMC Steering Group

(MIDAMC STG)

1. TERMS OF REFERENCE (TOR)

1.1 The Terms of Reference of the MIDAMC Steering are:

- a) to promote the efficiency and safety of aeronautical fixed services in the MID Region through the operation and management, on a sound and efficient basis, of a permanent MID Regional ATS Messaging Management Center (MIDAMC);
- b) foster the implementation of the Air traffic service Message handling service in the MID Region through provision of the guidance materials and running facilitation tools, utilizing the MIDAMC;
- c) MIDAMC Steering Group will consist of a focal point from each Participating MID State who would represent the State and acts as the Steering Group Member;
- d) MIDAMC Steering Group will be responsible for overall supervision, direction, evaluation of the MIDAMC project and will review/update the MIDAMC work plan whenever required;
- e) the MID Region is considering the establishment of Reginal MID IP Network; the MIDAMC STG will drive the project which is called Common aeRonautical VPN (CRV), until the Operation Group is established; and
- f) provide regular progress reports to the CNS SG, ANSIG and MIDANPIRG concerning its work programme.

1.2 In order to meet the Terms of Reference, the MIDAMC Steering Group shall:

- a) develop/update the accreditation procedure for all users on the MIDAMC;
- b) develop and maintain guidance materials for MIDAMC users;
- c) discuss and identify solution for operational problems may be arising;
- d) provide support/guidance to States for AMHS Implementation, and monitor the AMHS activities;
- e) assist and encourage States to conduct trial on Implementation of the ATS extended services, and identify operational requirements;
- f) provide guidance/support to States on implementation of XML based data models (IWXXM, FIXM, AIXM,...etc) over AMHS;
- g) monitor States' readiness to implement XML based data models over extended AMHS;
- h) identify the need for any enhancement for the MIDAMC and prepare functional and technical specifications, and define its financial implications;

- i) follow-up on ICAO standards and recommendations on the ATS messaging management;
- j) define future liabilities and new participating States and ANSPs;
- k) follow-up and review the work of similar groups in other ICAO Regions;
- follow-up the implementation of <u>CRV Project</u> IP Network in the MID Region, through joining relevant projects, like <u>CRV</u> and act as project manager; and
- m) proposes appropriate actions for the early implementation also support the IP Network until the Operational Group is establish.

2. COMPOSITION

- a) ICAO MID Regional Office;
- b) Members appointed by the MIDANPIRG member States; and
- c) other representatives, who could contribute to the activity of the Steering Group, could be invited to participate as observers, when required.

- END -