

Course Structure

Module 1

Course Introduction

Module 4

Type Design & Reliability Considerations

Module 7

Continued Surveillance

Module 2

EDTO Foundation

Module 5

Flight Operations
Considerations

Module 8

Implementing EDTO Regulations

Module 3

Approval Process

Module 6

Maintenance Considerations

Module 9

Assessment

Module 10 – Wrap Up

At the end of this module, participants will understand the flight operations requirements and dispatch planning considerations supporting EDTO operations.

EDTOM References

Doc 10085: Extended Diversion Time Operations (EDTO) Manual

- Chapter 3: EDTO flight operations requirements
 - 3.1 General
 - 3.2 Conversion of threshold and maximum diversion time into distance
 - 3.3 Operations beyond 60 minutes
 - 3.4 Operations beyond EDTO threshold time
 - 3.5 Flight preparation considerations
 - 3.6 In-flight considerations
 - 3.7 Aeroplane performance data
 - 3.8 EDTO flight operations manual (EFOM)
 - 3.9 EDTO training programme

Module 5 - Outline

Part I

Defining the EDTO Area of Operations

Part II —

Performing EDTO Flight Planning

Part III—

Conducting EDTO Flights

Part IV—

Documentation and Training

Part V —

Practical Exercise

Area of Operation Determination

Objective:

- To establish a geographic region for conducting EDTO flight operations, or to demonstrate that an operation does not require EDTO capability. The area of operations assessment establishes applicability of the standards set forth in Annex 6, Part 1 and associated State regulations.
 - Does the operation require a diversion time in excess of 60 minutes?
 (If so, Section 4.7.1 applies)
 - Does the operation require a diversion time in excess of the state established threshold time? (If so, Section 4.7.2 and Specific EDTO Approval applies)
 - If EDTO, what is the maximum diversion time (MDT) required?

Area of Operation Applicability

Annex 6, Part 1 (4.7.2.1):

- EDTO specific approval is required to operate on routes where the diversion time to an <u>enroute alternate aerodrome</u> exceeds a <u>threshold</u> <u>time</u> established by the State.
 - One engine inoperative (OEI) speed for two engine aeroplanes
 - All engines operating (AEO) speed for aeroplanes with more than two engines
 - Standard day (ISA), still air conditions
- Diversion time must be converted to distance to establish geographic applicability (ref Attachment C, and Chapter 3 of the EDTOM).

Area of Operation Dependencies

- The primary factors affecting the EDTO Area of Operation determination include the selection of:
 - Enroute alternate aerodromes
 - Maximum Diversion Time (MDT)
 - Assumed Diversion Speed (OEI or AEO)
 - Assumed Diversion Weight (Reference Weight)

- These same considerations apply to area of operations determination for:
 - 60-minute operations
 - Operations within the EDTO threshold time

Definitions

Enroute Alternate Aerodrome (Annex 6, Part 1 Definitions)

<u>Alternate Aerodrome</u>: An aerodrome to which an aircraft may proceed when it becomes either impossible or inadvisable to proceed to or to land at the aerodrome of intended landing where the necessary services and facilities are available, where aircraft performance requirements can be met and which is operational at the expected time of use.

En-route alternate: An alternate aerodrome at which an aircraft would be able to land in the event that a diversion becomes necessary while en route (may also be the takeoff and/or destination aerodromes).

Note: An **EDTO Alternate Aerodrome** is an en-route alternate aerodrome which has been nominated for an EDTO flight

EDTO Area of Operation

En-route Alternate Aerodrome Considerations

- Availability (e.g. hours of operation or ability to respond to a diversion)
- Performance requirements for the expected landing weight (e.g. runway length, width)
- Runway strength (with allowance for ICAO and State overload guidance*)
- Ground operational services (ATS, lighting, communications, weather reporting)
- At least one let down navigation aid and approach procedure
- Emergency services (Minimum RFFS Category 4)
- Other criteria: Maintenance facilities, passenger accommodations...

⁷²

^{*} ICAO Doc 9157 - Aerodrome Design Manual, Part 3 - Pavements, Chapter 2

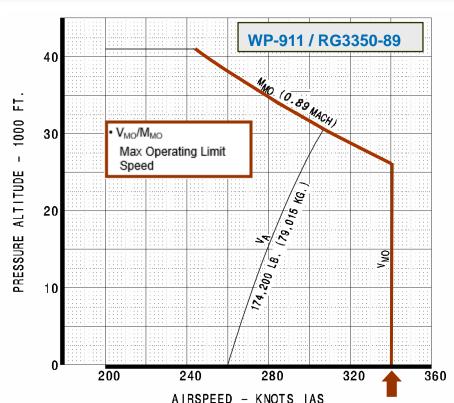
EDTO Area of Operation

Assumed weight at diversion (Reference Weight)

- Not specifically defined in the ICAO Standards, but intended to be a representative weight for the planned EDTO operation.
- Potential approachs:
 - Weight at xx minutes (EDTO threshold time) into a typical mission
 - Heaviest expected weight at EDTO Entry Point (EEP)
 - Heaviest expected weight at Equal Time Points (ETPs) between EDTO diversion aerodromes.

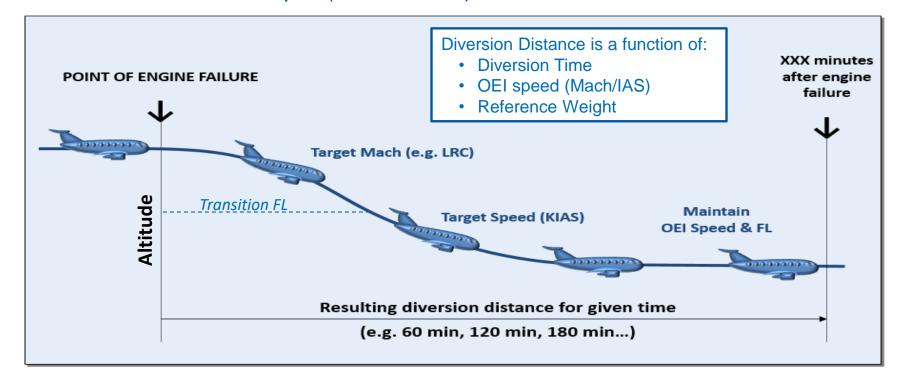
Approved one engine inoperative (OEI) speed

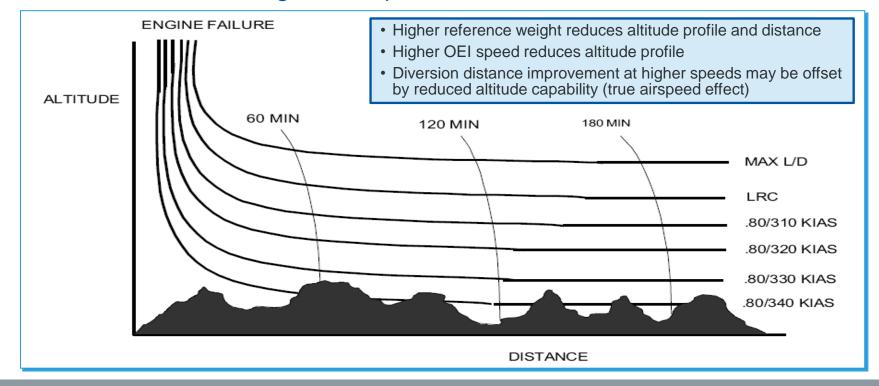
- Typically a Mach/Indicated Airspeed (IAS) combination, which must be within the certified operating limits of the aeroplane
- Basis for both the EDTO area of operation diversion distance and engine inoperative diversion fuel requirements
- Normally a high speed approaching M_{MO}/V_{MO} is selected, but this may be reduced if diversion fuel limitations or altitude capability considerations are a factor
- The diversion distance calculation assumes Maximum Continuous Thrust (MCT) on the operating engine and includes a driftdown profile from the initial all engine cruise altitude



Example Operational Flight Envelope

- Based on upset protection to maximum dive speeds (M_D, V_D)
- Some margin is typically included in overspeed warning systems (e.g. V_{MO}-5 KIAS)
- Speeds for best fuel burn are typically well below max operating speeds (e.g. WP-911 LRC ~ 0.84 Mach)




Driftdown Profile Example (Still Air, ISA):

Effect of Diversion Weight and Speed

Example Diversion Distance Information

WP-911 / RG3350-89

DIVERSION DISTANCE (NM)									
DIVERSION SPEED	WEIGHT AT	LEVEL OFF FLIGHT LEVEL (100 FT)	DIVERSION TIME (MIN)						
(M/KIAS)	(1000 KG)		60	120	180	240	300		
.84/330	170	190	439	866	1294	1720	2100		
	190	180	436	860	1285	1703	2100		
	210	170	434	853	1272	1685	2095		
	230	160	430	840	1250	1660	2070		
	250	150	427	834	1235	1642	2052		
.84/310	170	220	424	837	1249	1680	2090		
	190	220	424	836	1249	1663	2073		
	210	220	419	827	1238	1645	2055		
	230	210	415	818	1224	1620	2030		
	250	190	412	806	1200	1602	2012		

- Engine Inoperative
- MaxContinuousThrust
- Zero Wind

Example Operational Diversion Distance Solution

WP-911 / RG3350-89

Assumptions:

EDTO Threshold Time: 60 Minutes

EDTO Threshold Weight: 230,000 KG

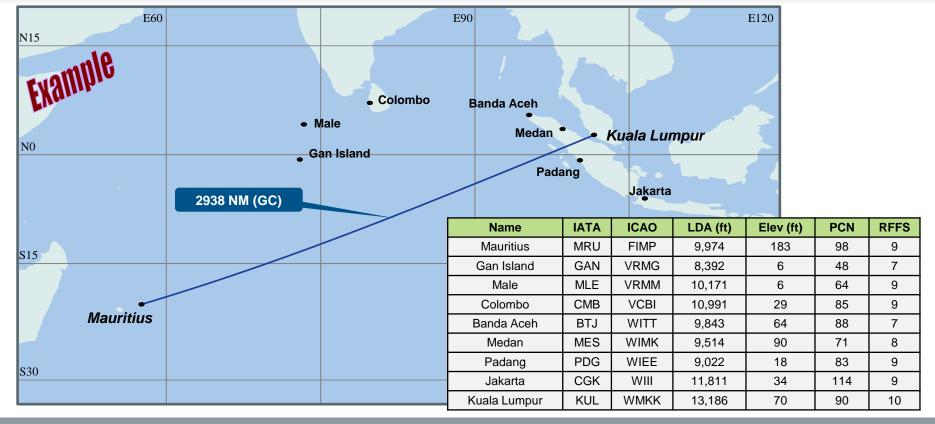
Maximum Diversion Time: 240 Minutes

One Engine Inop (OEI) Speed: .84 Mach / 330 KIAS

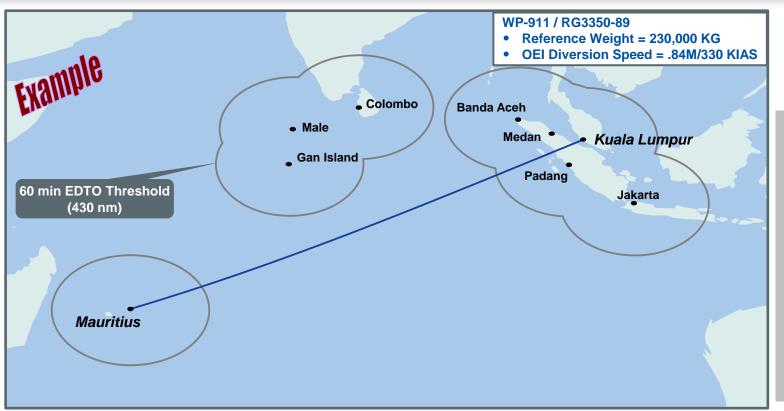
Example Diversion Distance Information

WP-911 / RG3350-89

DIVERSION DISTANCE (NM)									
DIVERSION SPEED	WEIGHT AT DIVERSION	LEVEL OFF FLIGHT LEVEL	DIVERSION TIME (MIN)						
(M/KIAS)	(1000 KG) (100 FT)		60	120	180	240	300		
.84/330	170	190	439	866	1294	1720	2100		
	190	180	436	860	1285	1703	2100		
	210	170	434	853	1272	1685	2095		
	230	160	430	840	1250	1660	2070		
	250	150	427	834	1235	1642	2052		
.84/310	170	220	424	837	1249	1680	2090		
	190	220	424	836 1249		1663	2073		
	210	220	419	827	1238	1645	2055		
	230	210	415	818	1224	1620	2030		
	250	190	412	806	1200	1602	2012		


- Engine Inoperative
- Max Continuous Thrust
- Zero Wind

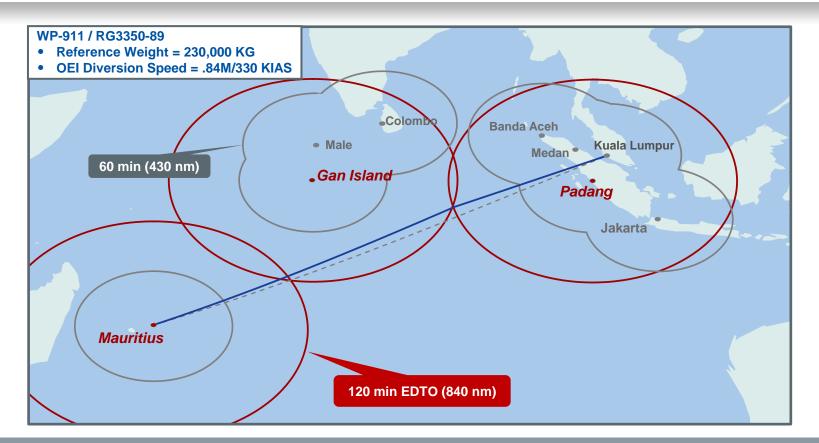
EDTO Area of Operation Example



EDTO Area of Operation Example

Two engine aeroplane

Beyond 60 Minute Operation?

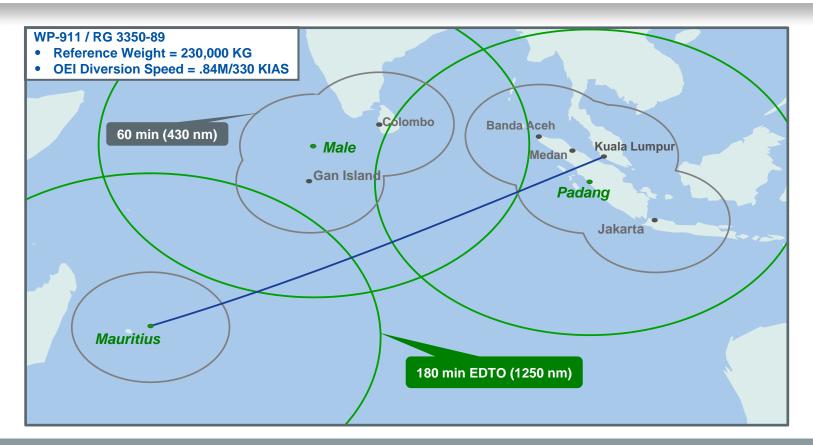

EDTO Operation?

Maximum
Diversion
Time
Required?

Example EDTO Dispatch Solution

120 Minutes

EDTO Area of Operation


Considerations for a higher Maximum Diversion Time (MDT)

- Aeroplane must be configured to a higher airworthiness standard
 - CMP, MEL Compliance
- Fewer EDTO alternates required for dispatch, but more enroute alternate aerodromes within the EDTO area of operations
- Increased flexibility for weather avoidance and other operational factors
- Improved route optimization and less potential for indirect 'dog leg' routing
 - Reduced route time reduces potential for problems
 - Reduced over water exposure mitigates operational risk
 - Enhanced operating efficiency <u>and</u> safety

Example EDTO Dispatch Solution

180 Minutes

EDTO Area of OperationAeroplanes with more than two engines

All engines operating (AEO) speed

- Typically a fixed Mach number or Indicated Airspeed (IAS), which must be within the certified operating limits of the aeroplane
- Basis for the EDTO area of operation diversion distance, but no relationship to EDTO diversion fuel planning
- Normally a high speed approaching MMO/VMO is selected to maximize EDTO time limited system capability
- The diversion distance calculation is based on a fixed true airspeed (no driftdown), at an assumed all engine cruise altitude

EDTO Area of Operation

Aeroplanes with more than two engines

Example Operational Diversion Distance Solution

WP-3 / MT2021

Assumptions:

EDTO Threshold Weight: 220,000 KG

• Optimum Altitude: FL 380

• All Engines Operating (AEO) Speed: .84 Mach = 482 KTAS [1]

[1]
$$TAS = 661.4786 * M \sqrt{\Theta}$$

[2]
$$Dist = (TAS * Time) \div 60$$

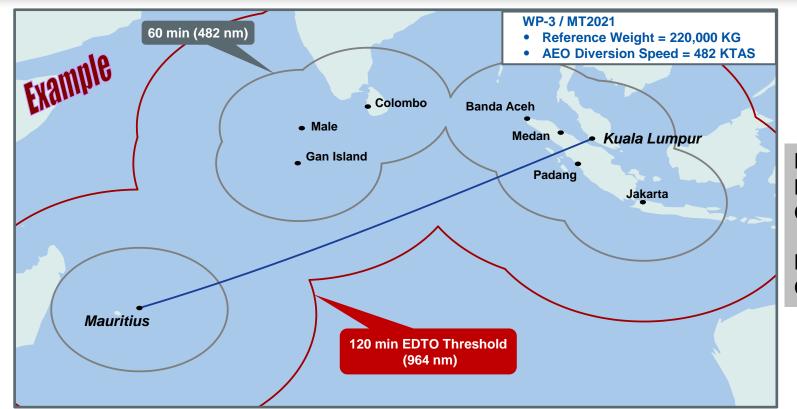
EDTO Area of Operation Aeroplanes with more than two engines

Example All Engine Cruise Information*

WP-3 / MT2021

PRESS ALT (1000 FT)		KIAS	WEIGHT (1000 KG)									
		TD TAT KTAS	260	250	240	230	220	210	200	190	180	170
	239	%N1									85.2	84.1
43	-26	MAX TAT										
	482	FF/ENG									2663	2534
	244	%N1								85.3	84.2	83.3
	-26	MAX TAT										
	482	FF/ENG								2802	2667	2565
41	250	%N1							85.3	84.2	83.3	82.5
	-26	MAX TAT										
	482	FF/ENG							2940	2801	2696	2606
	256	%N1						85.2	84.2	83.3	82.5	81.8
40	-26	MAX TAT										
	482	FF/ENG						3071	2930	2824	2733	2657
39	262	%N1				86.4	85.1	84.1	83.3	82.5	81.8	81.1
	-26	MAX TAT										
	482	FF/ENG				3381	3198	3058	2951	2859	2781	2717
38	268	%N1			86.2	84.9	84.0	83.2	82.5	81.8	81.1	80.5
	-26	MAX TAT										
	482	FF/ENG			3503	3323	3185	3080	2987	2909	2844	2781
37	274	%N1	87.2	85.9	84.7	83.8	83.0	82.4	81.7	81.0	80.4	79.9
	-26	MAX TAT										
	482	FF/ENG	3824	3620	3446	3313	3209	3117	3039	2974	2910	2850
	281	%N1	85.5	84.5	83.6	82.9	82.3	81.6	81.0	80.4	79.9	79.5
36	-26	MAX TAT										
	482	FF/ENG	3738	3572	3445	3342	3252	3174	3108	3045	2984	2927
35	287	%N1	84.6	83.8	83.1	82.5	81.8	81.3	80.7	80.3	79.8	79.4
	-23	MAX TAT										
	484	FF/ENG	3720	3599	3497	3408	3331	3265	3201	3139	3081	3028

[•] All Engines Operating


^{• .84} Mach

^{*} Shaded area approximates Optimum Altitude

EDTO Area of Operation Example

Aeroplanes with more than two engines

Beyond 60 Minute Operation?

EDTO Operation?

Q5.1 Chose the most appropriate definition of the term 'MDT'

- Maintenance Data Terminal
- Mean Down Time
- Maximum Diversion Time
- Mission Design Team

Q5.2 Which of the following has no impact on the EDTO diversion distance calculation

- Diversion time
- OEI or AEO speed
- Assumed diversion weight
- Enroute alternate aerodromes

Module 5 - Outline

Part I

Defining the EDTO Area of Operations

Part II —

Performing EDTO Flight Planning

Part III—

Conducting EDTO Flights

Part IV—

Documentation and Training

Part V —

Practical Exercise

Performing EDTO Flight Planning

Planning for EDTO routes typically involves two phases:

- EDTO Approval Planning
 - The EDTO Route Authorization or initial conceptual planning phase which precedes EDTO Operational Approval
- EDTO Dispatch Planning
 - The day-to-day EDTO operational flight planning prior to each EDTO flight

Note: The decisions made in the initial approval planning phase will establish the basis for day-to-day EDTO dispatch planning

Performing EDTO Flight Planning

EDTO Approval Planning

(Still air planning exercise)

- Determine approved diversion speed and Maximum Diversion Time (MDT)
- Evaluate enroute alternate aerodromes
- Establish approved EDTO area of operation
- Implement EDTO flight planning system

EDTO Dispatch Planning

(Considers forecast weather conditions)

- MDT is a dispatch limitation.
 Check diversion fuel considering forecast wind and temperature.
- Select EDTO alternate aerodromes
- Establish dispatch EDTO area of operation
- Execute EDTO flight planning system

EDTO Flight Planning Definitions

EDTO Entry Point (EEP):

The <u>first point</u> on an EDTO flight, under standard conditions in still air, that is beyond the state established threshold time from an enroute alternate aerodrome

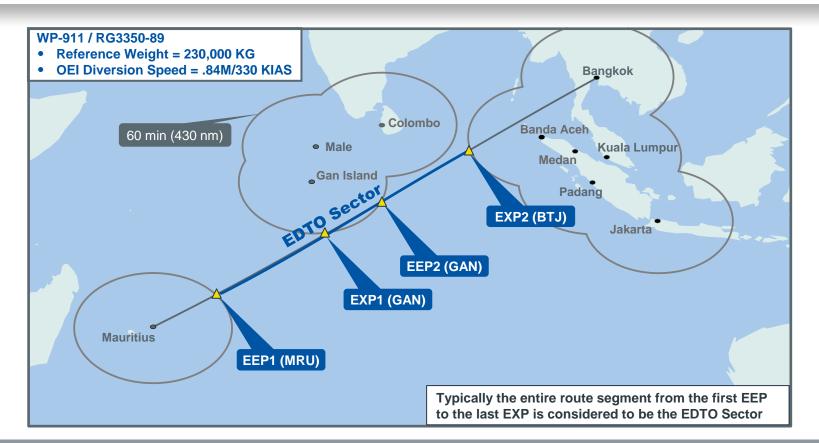
Determined using an OEI speed for two engine aeroplanes and an AEO speed for aeroplanes with more than two engines

EDTO Exit Point (EXP):

The <u>last point</u> on an EDTO flight, under standard conditions in still air, that is beyond the state established threshold time from an enroute alternate aerodrome

Example - EDTO Entry/Exit Points

MRU to KUL



Example - Multiple EDTO Sectors?

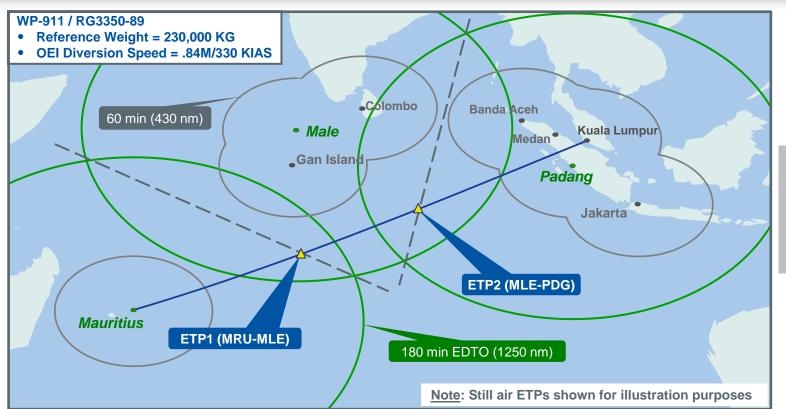
MRU to BKK

EDTO Flight Planning Definitions

EDTO Equal Time Point (ETP):

A point of equal diversion time between EDTO alternate aerodromes, considering forecast wind and temperature conditions at the applicable diversion flight level

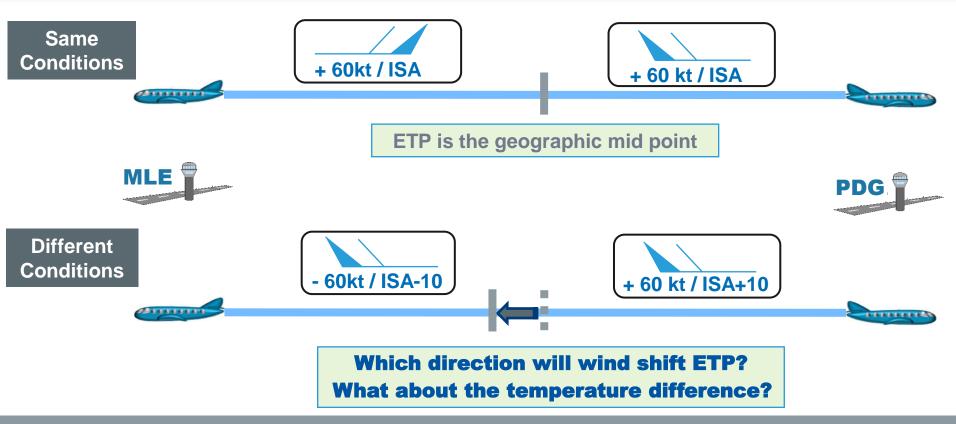
Critical Point (CP):


The EDTO ETP at which the EDTO diversion fuel required exceeds or is closest to the normal planned fuel load

Typically the last ETP on an EDTO flight

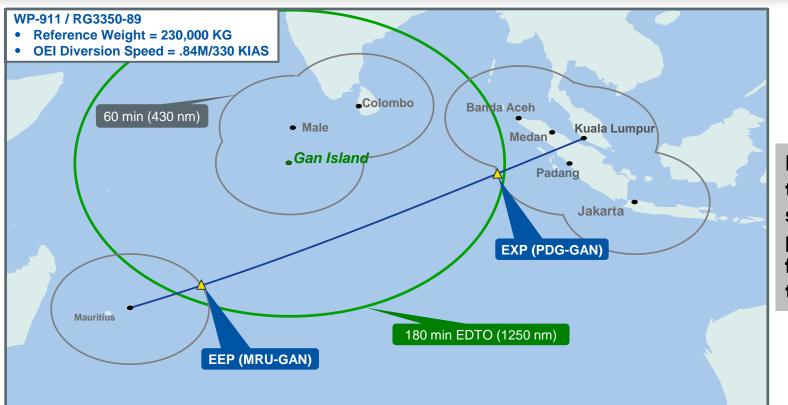
Example - EDTO Equal Time Points

MRU to KUL



Which ETP is the Critical Point (CP)?

EDTO Equal Time Points


Effect of forecast wind and temperature

Special Case - Single EDTO Alternate

MRU to KUL

Diversion to GAN should be protected from EEP to EXP

EDTO Flight Planning Definitions

EDTO Alternate Aerodrome (EDTOM Definitions)

An en-route alternate aerodrome that is designated in a dispatch or flight release for use in the event of a diversion during an EDTO flight, and which meets the applicable dispatch minima (weather and field conditions)

This definition applies to flight planning and does not in any way limit the authority of the pilot in command during flight

Note: EDTO alternate aerodromes may also be the takeoff and/or destination

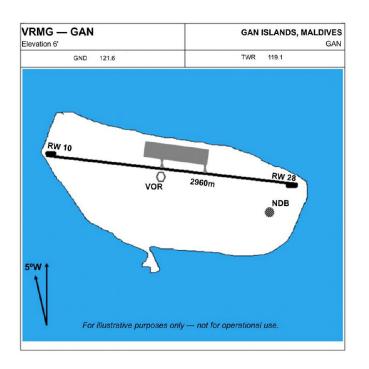
aerodromes

₩EDTOM Section 3.5.2

EDTO Dispatch Planning Weather Minimums

 Ceiling and visibility requirements for EDTO dispatch planning which are more conservative than the normal operating minimums required to conduct an approach

- Intended to account for potential deteriorating weather conditions over a 'period of validity' during the EDTO flight
- Published NOTAMs and MEL constraints may impact available approach procedures and required minimums for dispatch
- Specific requirements may vary from State to State (e.g. relief for conditional forecast elements)
- Applicable to dispatch only, normal operating minimums apply once enroute


Example EDTO Dispatch Planning Minimums (May vary from State to State)

Approach Facility	Ceiling	Visibility
Precision approach	Authorized DH/DA plus an increment of 60 m (200 ft)	Authorized visibility plus an increment of 800 m
Non-precision approach or circling approach	Authorized MDH/MDA plus an increment of 120 m (400 ft)	Authorized visibility plus an increment of 1500 m

Example Aerodrome Approach Minimums (Gan Island)

RWY 28	MDA	RVR	Circling	
Α			400 ft (1 600 m)	
В	360 ft) ft 1 200 m	500 ft (1 600 m)	
С			600 ft (2 400 m)	
D	360 ft	2 000 m	700 ft (3 600 m)	

RWY 28	MDA	RVR	Circling
Α		1 200 m	400 ft (1 600 m)
В	360 ft		500 ft (1 600 m)
С			600 ft (2 400 m)
D	360 ft	2 000 m	700 ft (3 600 m)

Approach Facility	Ceiling	Visibility
Precision approach	Authorized DH/DA plus an increment of 60 m (200 ft)	Authorized visibility plus an increment of 800 m
Non-precision approach or circling approach	Authorized MDH/MDA plus an increment of 120 m (400 ft)	Authorized visibility plus an increment of 1500 m

Based on this example, what are the EDTO dispatch planning minimums for a Cat D straight-in approach to Rwy 28?

Q5.3 EDTO Dispatch Planning Minimums (GAN, RWY 28)

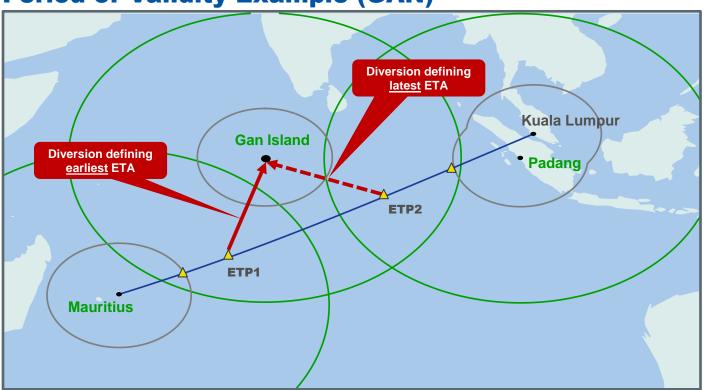
- 360 ft ceiling and 2000 m visibility
- 760 ft ceiling and 3500 m visibility
- 400 ft ceiling and 1500 m visibility
- 700 ft ceiling and 3600 m visibility

Based on this example, what are the EDTO dispatch planning minimums for a Cat D straight-in approach to GAN RWY 28?

RWY 28	MDA	RVR	Circling
Α			400 ft (1 600 m)
В	360 ft	1 200 m	500 ft (1 600 m)
С			600 ft (2 400 m)
D	360 ft	2 000 m	700 ft (3 600 m)

Approach Facility	Ceiling	Visibility
Precision approach	Authorized DH/DA plus an increment of 60 m (200 ft)	Authorized visibility plus an increment of 800 m
Non-precision approach or circling approach	Authorized MDH/MDA plus an increment of 120 m (400 ft)	Authorized visibility plus an increment of 1500 m

760 ft ceiling (360 + 400) and 3500 m visibility (2000 + 1500)

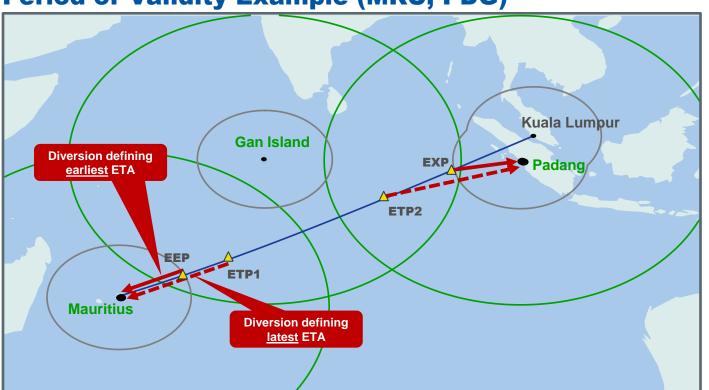


Period of Validity (EDTOM Section 3.5.2.3)

- The 'time window' over which the forecast weather conditions should meet or exceed the EDTO dispatch planning minima at a particular EDTO Alternate Aerodrome
- Considers the earliest to latest expected arrival times at the EDTO alternate in the event of an enroute diversion
 - Some States have applied additional margins (e.g. 1 hour) to these times

Period of Validity Example (GAN)

Typical case with ETP before and after EDTO alternate


Period of Validity Example (GAN)

Special case for single EDTO alternate

Period of Validity Example (MRU, PDG)

Typical case for first and last EDTO alternates

EDTO Period of ValidityOperational Application

Typical EDTO Flight Plan Presentation

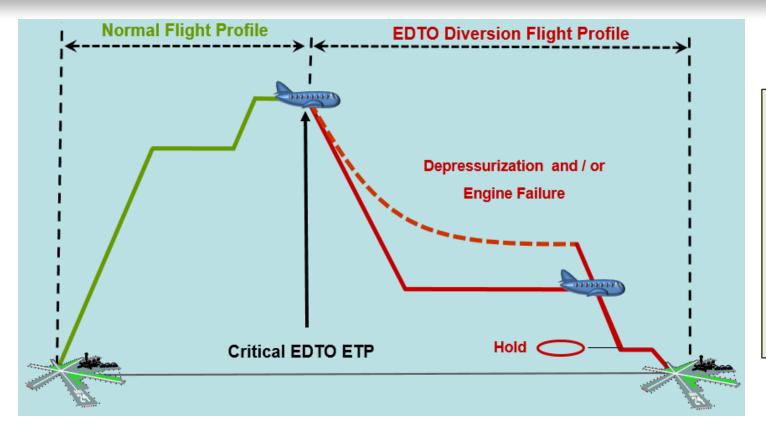
```
FIMP VALIDITY PERIOD FROM 1347 UTC / TO 1547 UTC
VRMG VALIDITY PERIOD FROM 1546 UTC / TO 1827 UTC
WIEE VALIDITY PERIOD FROM 1828 UTC / TO 1839 UTC
```


The last EDTO alternate typically has the shortest period of validity (additional time margin may be appropriate)

How is the flight plan validity period confirmed?

Rescue and Fire Fighting Service (RFFS)

- The minimum RFFS level for an EDTO alternate aerodrome is Category 4 independent of the aeroplane RFFS category
 - Any modification by NOTAM should be considered
- Some States have adopted additional requirements (e.g. RFFS 7) for EDTO beyond 180 minutes
- State regulations may also include allowance for fire fighting resources outside of the aerodrome environment (with sufficient response time)
- Additional guidance on RFFS levels for all aerodromes is provided in Attachment I to Annex 6, Part I


EDTO Critical Fuel Scenario

- A check against the normal planned fuel load to ensure diversion fuel protection for EDTO (adjust fuel load if required)
- EDTO fuel protection considers three 'scenarios' from the most critical point (CP) on an EDTO route to a designated EDTO alternate aerodrome:
 - Engine Failure (Two Engine Aeroplanes only)
 - Decompression
 - Simultaneous Engine Failure and Decompression

EDTO Critical Fuel Scenario

Section 3.5.3

Fuel Allowances:

- Icing/anti-ice
- Performance degradation
- Wind forecast errors
- Holding and approach
- APU (if required)

EDTO Critical Fuel Scenario Diversion Speed Modes

	60 Min/EDTO Threshold Distance	EDTO Max Diversion Distance	Critical Fuel – All engine depressurization	Critical Fuel – Engine inop depressurization	Critical fuel – Engine failure only
Two engine aeroplanes	Any selected OEI Speed	Approved OEI speed	Any selected AEO speed	Approved OEI speed	Approved OEI speed
Aeroplanes with more than two engines	Any selected AEO speed	Approved AEO speed	Any selected AEO speed	Any selected OEI speed	Not Applicable
May also apply to EDTO threshold distance, if EDTO is required					

 For two engine aeroplanes, the assumed speed for the engine failure critical fuel scenarios is the approved OEI speed used to define the EDTO maximum diversion distance

EDTO Critical Fuel Check

Example: No Additional EDTO Fuel Required

Hold **Diversion to Destination Alternate** Contingency Trip to destination Taxi

Standard fuel calculation

Critical Fuel to EDTO **Alternate** Trip to the most critical point Taxi

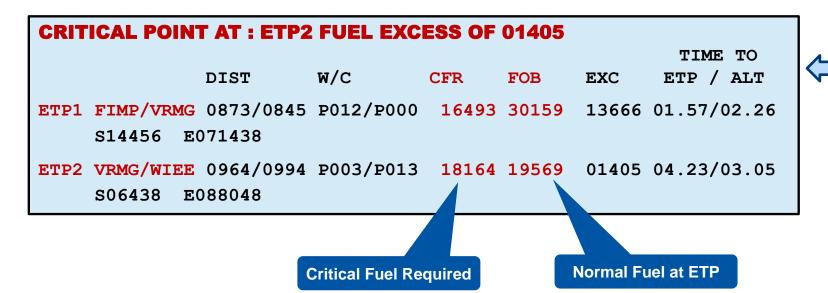
No additional EDTO fuel required

EDTO fuel calculation

EDTO Critical Fuel Check

Example: Additional EDTO Fuel Required

Standard fuel calculation


Critical Fuel to EDTO **Alternate** Trip to the most critical point Taxi

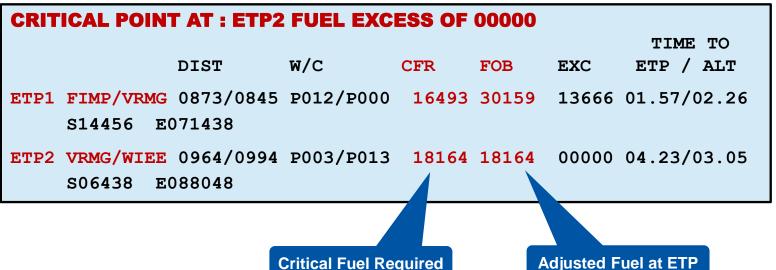
EDTO fuel calculation

EDTO Critical Fuel Scenario Operational Application

Example - No Additional EDTO Fuel Required*

Typical EDTO

Flight Plan


* Normal fuel on board (FOB) exceeds critical fuel requirement (CFR) at each ETP

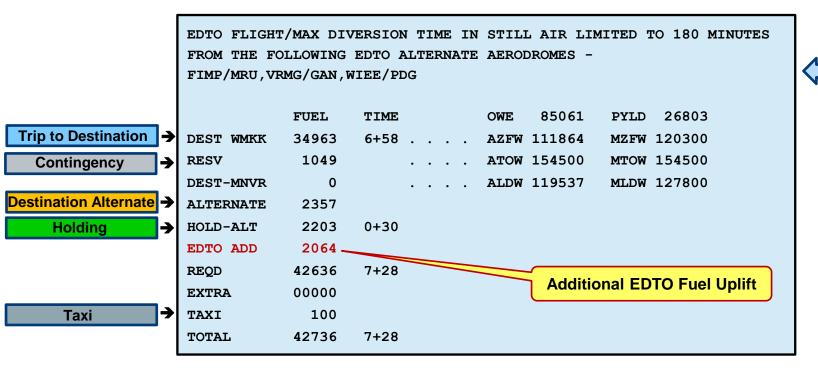
EDTO Critical Fuel Scenario

Operational Application

Example - Additional EDTO Fuel Required*

Typical EDTO Flight Plan

Adjusted Fuel at ETP


^{*} Normal fuel on board (FOB) adjusted for critical fuel requirement (CFR) at ETP2

EDTO Critical Fuel Scenario

Operational Application

Example - Additional EDTO Fuel Required*

EDTO Time Limited Systems (TLS)

Section 3.5.4

Consideration of Time Limitations:

Annex 6 Part 1, Attachment C (3.2.5.2 and 3.3.5.2)

For all operations beyond the EDTO threshold as determined by the State of the Operator, the operator should consider at the time of dispatch... the most limiting EDTO significant system time, if any, indicated in the aeroplane flight manual (directly or by reference) and relevant to that particular operation

- **All aeroplanes**: The time capability of the cargo fire suppression system minus a state established operational margin (e.g. 15 minutes)
- **Two engine aeroplanes**: An additional system time limitation (other than cargo fire suppression) may be identified

EDTO Time Limited Systems (TLS)

EDTO Up to 180 Minutes (Including 15% Operational Extension)

- Time limited system planning based on <u>still air</u>, <u>standard day conditions</u>
- Does not vary from flight to flight unless aeroplane TLS configuration is impacted by MEL constraints

EDTO beyond 180 Minutes

- Time limited system planning based on <u>forecast wind and temperature</u> (planning varies from flight to flight)
- All engines operating (AEO) speed for cargo fire suppression
- One engine inoperative (OEI) speed for any two engine aeroplane time limited systems other than cargo fire suppression



EDTO Time Limited Systems (TLS) EDTO up to 180 Minutes Example

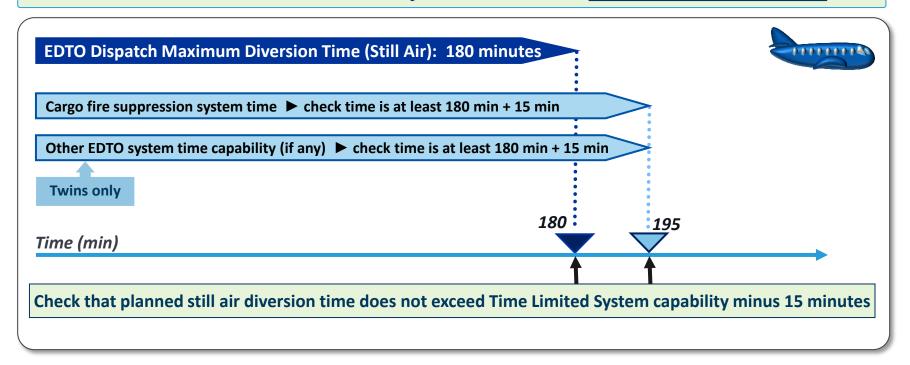
Example AFM Statement - 180 Minute EDTO:

Aeroplane Flight Manual 180 Minute EDTO - Time Limited System Capability

The time capability of the most limiting EDTO significant system including cargo fire suppression is **195 minutes**

Wonder Planes

Operational Application:


- Still Air diversion time can not exceed EDTO TLS time minus 15 minutes
- 195 minute system time supports 180 minute EDTO (195 min 15 min)

EDTO Time Limited Systems (TLS)

EDTO up to 180 Minutes Example

Consideration of Time Limited Systems based on ISA, Still Air Conditions

EDTO Time Limited Systems (TLS) EDTO beyond 180 Minutes Example

Example AFM Statement - EDTO beyond 180 Minutes:

Aeroplane Flight Manual EDTO Beyond 180 Minutes - Time Limited System Capability

The time capability of the cargo fire suppression system is 225 minutes

The time capability of all other EDTO significant systems is at least 290 minutes

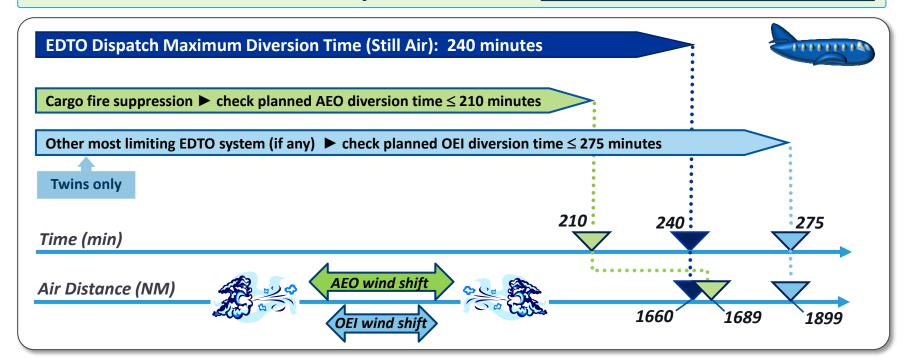
Operational Application:

- AEO diversion time with forecast winds and temps can not exceed cargo fire suppression time minus 15 minutes
- OEI diversion time with forecast winds and temps can not exceed other EDTO TLS system time minus 15 minutes

EDTO Time Limited Systems (TLS) 240 Minute EDTO Example

Time to distance relationship depends on diversion conditions:

Time Consideration / Diversion Flight Condition		Distance (NM)	
Time Consideration / Diversion Flight Condition	Air	Ground *	
 240 Minute EDTO Maximum Diversion Time (ISA, still air): OEI Driftown at Reference Weight and Approved OEI speed From Slide 15, WP-911 Diversion Distance assumed conditions: 	1660	1660	
 225 Minute Cargo Fire Suppression Time (forecast winds & temps): AEO Cruise at ETP Weight, Typical TAS = 482 knots (.84 Mach) 482 nm/hr * (225 min - 15 min) ÷ 60 	1687	???*	
 290 Minute Other EDTO System Time (forecast winds & temps): OEI Driftdown at ETP Weight and Approved OEI speed, From Slide 18 assumed conditions at 275 (290 - 15) minutes: 	1899	???*	



^{*} TLS diversion distance will vary with forecast winds and temperatures

EDTO Time Limited Systems (TLS) 240 Minute EDTO Example

Consideration of Time Limited Systems based on forecast winds and temperatures

Annex 6, Part 1 Definitions:

Master Minimum Equipment List (MMEL):

A list established for a particular aircraft type by the organization responsible for the type design with the approval of the State of Design containing items, one or more of which is permitted to be unserviceable at the commencement of a flight. The MMEL may be associated with special operating conditions, limitations or procedures

Minimum Equipment List (MEL):

A list which provides for the operation of aircraft, subject to specified conditions, with particular equipment inoperative, prepared by an operator in conformity with, or more restrictive than, the MMEL established for the aircraft type

Chapter 6, 6.1.3 establishes requirement for a MEL. Additional guidance is provided in Attachment E

Minimum Equipment List

EDTO MMEL/MEL restrictions may be related to:

The allowable Maximum Diversion Time

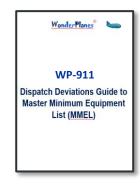
Some States have established specific requirements for EDTO up to 180 minutes and EDTO beyond 180 minutes (e.g. FAA MMEL Policy Letter 40)

The capability of the Time Limited Systems

Example: A reduction in the capacity of the cargo fire suppression system

Weather minimums or approach capability

These items are typically not stated as EDTO restrictions, but may impact the assessment of EDTO alternate aerodromes


Example: "May be inoperative provided approach minimums do not require its use"

Minimum Equipment List

Example of MEL Item based on EDTO restriction:

₩onderPlanes® WP-911 Dispatch Deviations Guide (DDG)					
ATA 24, ITEM 24-02: APU Generator System					
Repair Interval No. Installed No. Required Procedure					
C 1 0 (O) (M)					

Except for EDTO operations, may be inoperative

What is the allowed maximum diversion time in this example?

Minimum Equipment List

Example of MEL Item based on diversion time restriction:

WP911SP+ Dispatch Deviations Guide (DDG)

ATA 24, ITEM 24-02: APU Generator System

Repair Interval	No. Installed	No. Required	Procedure
С	1	0	(O) (M)

WP-911SP+ Dispatch Deviations Guide to Master Minimum Equipment List (MMEL)

May be inoperative provided:

- a. IDGs and Backup Generator operate normally
- **b.** Operations beyond 180 minute diversion time are not conducted.

Master Minimum Equipment List

Additional requirements for EDTO beyond 180 minutes:

FAR Part 121, Appendix P

- Fuel Quantity Indicating System (FQIS) *
- APU, both electrical and pneumatic
- Auto throttle system
- Second communication system (SATCOM Voice) *
- Engine-out auto-land (if used for planning)

EASA AMC 20-6

- Fuel Quantity Indicating System (FQIS)
- APU, both electrical and pneumatic
- Automatic engine or propeller control system
- Communication system(s) relied on by the flight crew to comply with communication requirements

EDTO Flight Planning Summary

- Check Aeroplane
 Configuration / EDTO Status
- Nominate EDTO Alternate Aerodromes
- Establish Area of Operation
- Consider EDTO Fuel Requirements
- Prepare Flight Folder

AIRCRAFT: WP-911 ENGINES: SOFT THRUST 1500	DEP: MRU/FIMP DEST: KUL/WMKK
EDTO STATUS	
EDTO APPROVED: AEC	Υ
EDTO APPROVED: CREW	Υ
EDTO APPROVED: ROUTE	Υ
MAXIMUM DIVERSION TIME	180 Min
TIME LIMITED SYSTEMS	195 Min
MEL /CDL	None
EDTO ALTERNATE AERODROMES	
WEATHER MINIMUMS	✓
NOTAMS	✓
COMPUTER FLIGHT PLAN (CFP)	
AREA OF OPERATION	✓
EEP, ETP, EXP	✓
PERIOD OF VALIDITY	✓
CRITICAL FUEL CHECK	✓
WEATHER FOLDER	
TAF, METARS, SIGMETS	✓
WINDS AND TEMPS ALOFT	✓
ICING FORECASTS	✓

Q5.4 Chose the most appropriate definition of the term 'ETP'

- Engineering Test Plan
- External Tracking Processor
- Employment Training Panel
- Equal Time Point

Q5.5 Which of the following <u>does not</u> apply to the assessment of an EDTO alternate aerodrome

- Weather minima
- Landing performance requirements
- Rescue and fire-fighting service (RFFS)
- Business lounge in passenger terminal

Q5.6 Which of the following **is not** considered in the EDTO critical fuel scenario

- Engine failure
- Decompression
- Combined engine failure and decompression
- Cargo fire

Module 5 - Outline

Part I — Defining the EDTO Area of Operations

Part II — Performing EDTO Flight Planning

Part III— Conducting EDTO Flights

Documentation and Training

Practical Exercise

Part IV—

Part V —

EDTO In-flight Considerations EDTOM EDTOM Section 3.6

Fundamental Concepts:

"In-flight considerations for EDTO are separate but complimentary to the flight preparation considerations discussed in Section 3.5. The pilot in command is not bound by the EDTO planning assumptions and may exercise discretionary authority to deviate from these assumptions in the event of an in-flight emergency."

The additional in-flight considerations for EDTO primarily consist of enhanced awareness of aeroplane system and fuel status, and the monitoring of EDTO alternate aerodrome conditions... Aeroplane operating procedures are typically equally applicable to both EDTO and non-EDTO operations...

EDTO In-flight Considerations

EDTO Flight Planning

- EDTO Alternate dispatch planning minimums
- Determine EDTO waypoints (EEP, ETPs, EXP)
- Critical fuel requirement
- MEL is applicable
- Approved OEI or AEO speed

EDTO Enroute Operations


- Enroute Alternate operating minimums
- Monitor flight progress within EDTO Sector
- Operator minimum fuel policy
- QRH is applicable
- Diversion speeds may differ at PIC discretion

Flight Progress Monitoring

Standard long range navigation and communication procedures and equipment requirements apply with increased emphasis on:

- Airplane position relative to EDTO Sector (EEP, ETPs, EXP)
- Fuel progress monitoring
- En-route alternate and aeroplane system status

EDTO Plotting Chart

FMS Navigation

POSN FREQY	EV 00183FT LAT LONG FL WIND							ZNT ETA ACBO / ABO ACTM ATA FOB / AFOB
FIMP	S2025.8 E05741.0		DEPA	ARTUI	RE M	ANEUV		00+00 0000 00+00 42636
TOC	370 327072	N633 040		060 069			 	00+22 4084 00+22 38552
OVTIS	S1931.4 E06008.7 370 327072	N633 040						00+02 4287 00+24 38349
EEP	S1756.3 E06415.9 370 324058							00+32 7169 00+56 35467
PADSO	S1738.7 E06500.0 370 324058	N633 026						00+06 7694 01+02 34942
PARTI	S1532.4 E07000.0 370 324036	N633 026						00+40 11224 01+42 31412
ETP1	S1445.6 E07143.8 370 348019						 	00+15 12477 01+57 30159
PEDPI	S1316.6 E07500.0 370 348019	N633 010						00+28 14848 02+25 27788
PANDU	S1138.1 E07826.6 390 360013	N633 010						00+30 17445 02+55 25191
SAKEG	S0810.3 E08520.1 390 026012							01+02 22449 03+57 20187
ETP2	S0643.8 E08804.8 390 030030	N633 010						00+26 24472 04+23 18164
PIBED	S0520.2 E09044.0 390 030030	N633 010						00+25 26430 04+48 16206

Flight Plan Nav/Fuel Log

Alternate Aerodrome Status (Weather Minima)

EDTO Alternate Weather Minima Summary:

- Prior to Departure: EDTO dispatch planning minimums applicable
- Enroute before EEP: Aerodrome operating minimums applicable
 - If an EDTO alternate falls below minimums: amend flight plan to select another EDTO alternate, continue non-EDTO, divert or turn back
- After passing EEP: No specific weather minima requirement

Other Operational Considerations:

- Good practice to monitor EDTO alternate status throughout flight, and update next EDTO alternate weather when passing ETP
- In case of an enroute diversion, the flight crew is not obligated to select a designated EDTO alternate and may chose another suitable aerodrome if determined to be a safer course of action

Procedures to Support EDTO Maintenance Programme

Some EDTO Maintenance Program elements have a Flight Operations interface and may require action by the flight crew:

- APU in-flight start program
- EDTO maintenance verification flights
- EDTO flight release after a non-technical diversion

These interfaces should be addressed in the operators EDTO Flight Operations documentation and training programs.

<u>Note</u>: EDTO Maintenance Program considerations for two engine aeroplanes will be discussed further in Module 6.

Diversion Decision Considerations

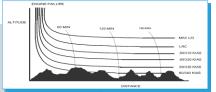
- QRH non-normal checklists calling for 'Land ASAP' or 'Land at nearest suitable aerodrome'
 - Multiple system failures, engine failure, decompression, smoke or fire...
 - OEM non-normal procedures typically do not distinguish EDTO and are validated for both EDTO and non-EDTO operations
- Required alternates unavailable or unsuitable for use (prior to EDTO entry)
- Excessive fuel consumption, exceeding available fuel reserves
- Any other situation that the flight crew determines to have an adverse effect on safety of flight
 - Most EDTO diversions are due to non-technical causes (weather, passenger medical...)
- Comply with route requirements as for non-EDTO, coordinate/communicate with flight dispatch as required

OEI Diversion Strategies

Diversion speed and thrust selection are at the discretion of the flight crew based on prevailing operational conditions.

'Obstacle Clearance' Strategy

- Best altitude profile for terrain clearance
- Optimum driftdown (L/D max) speed


'Fuel' Strategy

- Optimizes diversion fuel required
- Descent to LRC cruise ceiling and LRC cruise

'Fixed Speed' (EDTO) Strategy

- Minimum diversion time (at the expense of fuel and altitude)
- Driftdown and cruise at EDTO OEI Speed

OEI Diversion Strategies

Flight crews should have access to relevant aeroplane performance data:

WP 911 FMS Engine Out Page

		ENGIN	E INOP			1
	$\mathbf{M}A$	X CONTIN	UOUS THRU	JST		
Driftdown S	peed/Level O	ff Altitude				1
100 ft/min res	idual rate of c	limb				1
WEIGHT	(1000 KG)	OPTIMUM	LEVEL (1		
START DRIFT DOWN	LEVEL OFF	DRIFTDOWN SPEED (KIAS)	ISA + 10°C & BELOW	ISA + 15°C	ISA + 20°C	
240	231	266	18400	16900	15500	
230	222	261	20100	18500	17100	
220	213	256	21400	20100	18700	
210	203	250	22700	21500	20300	
200	194	245	24100	22900	21700	
190	184	239	25400	24300	23100	1.0
180	174	232	26700	25800	24600	
170	165	226	28000	27500	26300	144
160	155	220	29500	29200	28100	ייעווומי
150	145	213	30900	30800	29900	
140	136	206	32300	32200	31800	
130	126	199	33700	33700	33600	
120	116	192	35300	35300	35200	
110	107	185	37000	36900	36800	
100	97	178	38800	38700	38600	

WP 911 Performance Manual Data

EDTOM Aeroplane Performance Data is addressed in EDTOM Section 3.7

Q5.7 Which of the following is the most appropriate guidance for an EDTO enroute system failure

- Minimum Equipment List (MEL)
- EDTO Significant Systems List (SSL)
- Quick Reference Handbook (QRH)
- Aeroplane Flight Manual (AFM)

Module 5 - Outline


Part I **Defining the EDTO Area of Operations** Part II — **Performing EDTO Flight Planning Conducting EDTO Flights** Part IV-**Documentation and Training** Part V — **Practical Exercise**

Typical Operations Manual Format

Annex 6, Part 1 – Appendix 2: Organization and Content of an Operations Manual

- Part A: General
- Part B: Aircraft Operating Information
- Part C: Areas, Routes and Aerodromes
- Part D: Training

Doc 9376
Preparation of an
Operations Manual

EDTO provisions may be included in this basic structure or published in a separate stand alone EDTO flight operations manual (EFOM)

EDTO Flight Operations Manual

EDTOM Section 3.8

Purpose:

- To provide involved personnel and EDTO authorized persons with a descriptive means aimed at ensuring safe and efficient EDTO operations...
- Accordingly all EDTO requirements including supportive programme policies, procedures, duties, responsibilities and limitations should be identified...

Approval and revision control:

- The EFOM or EDTO sections of the basic FOM should be reviewed and approved by the responsible Flight Operations Inspector (FOI) as part of the operational approval application process.
- Major revisions to the EDTO program documentation should also be reviewed and approved prior to operator implementation (minor revisions may be accepted).

EDTO Flight Operations Manual

EDTO Flight Operations Manual Content Elements:

- EDTO definitions and concepts. Information on applicable EDTO rules, operator's EDTO program, flight preparation etc...
- AEC specific information (e.g. Max diversion times and distances, OEI or AEO speeds, EDTO procedures, performance data)
- Authorized operational areas, route specific information, enroute alternate aerodromes, approved weather minimums
- EDTO training and qualification policies and procedures, EDTO training curriculi

EDTO Training ProgrammeEDTOM Section 3.9

Considerations:

- Flight Operations personnel should complete approved training on EDTO prior to an operator receiving EDTO operational approval
 - Flight crews, flight dispatchers, other operations personnel...

- EDTO training programmes should address the specific regulations, authorizations, policies, procedures and documentation related to the particular EDTO program.
 - Flight crew training programs should include the content and duration of academic training, simulated flight demonstrations, line checks and currency requirements
 - Dispatcher training programs should also address academic training considerations as well as practical training on the specific tools and methods used for EDTO flight preparation
- Operators may employ the use of different training media and methods (e.g. CBT, standup instruction, simulation) in their EDTO training programmes

EDTO Training Programme

Typical Academic Training Elements:

- Familiarity with ICAO EDTO standards and relevant State regulations
- EDTO Operational Program Approvals
 - EDTO Fleet
 - Operational Area
 - EDTO Threshold, Maximum diversion times and speeds
- EDTO Flight Planning Considerations
 - EDTO area of operations
 - Alternate aerodromes for EDTO
 - EDTO fuel reserves

- EDTO Flight Planning Considerations (cont'd)
 - Time limited system considerations
 - EDTO technical status and MEL considerations
 - EDTO Flight Release and Computer Flight Plan
- EDTO Enroute Considerations
 - Standard Operating Procedures
 - Inflight Monitoring
 - Diversion Considerations
 - Non-normal and Contingency Procedures
- Aeroplane Performance Data
- EDTO Flight Operations Manual

EDTO Training Programme

Typical Practical Training Elements (Flight Crews):

- Preflight briefing
- EDTO flight release
- Cockpit preparation
- En-route (normal)
 - Entering EDTO Sector
 - En-route monitoring procedures
 - FMS procedures (as applicable)
 - Navigation and communication

- En-route (non-normal)
 - Contingency procedures
 - Select non-normal procedures and checklists
 - Diversion decision making
 - FMS procedures (as applicable)
 - En-route diversion
- Post-flight procedures

EDTO Training Programme

Recurrent Training:

- Typically conducted annually, but may vary among operators
 - Frequency, duration and specific currency requirements should be defined in the operator's EDTO training program
- Condensed or shortened refresher academic training is normally adequate for personnel who have maintained an active role in the EDTO program
 - Repeat initial training may be appropriate for personnel who are no longer considered current
- Practical recurrent training (e.g. EDTO LOFT) should consider student exposure to different operational situations instead of repeating the same scenarios
 - Relevent experience from actual in-service events may be considered

EDTO Flight Operations Summary

Approval Planning

- Determine approved diversion speed and Maximum Diversion Time (MDT)
- Evaluate potential enroute alternates
- Establish approved
 EDTO area of operation
- Implement EDTO flight planning system

Dispatch Planning

- EDTO alternate dispatch planning minimums
- Critical fuel requirement
- MEL is applicable
- Approved OEI or AEO speed

Enroute Operations

- Monitor flight progress within EDTO Sector
- Enroute alternate operating minimums
- Operator minimum fuel policy
- QRH is applicable
- Diversion speeds may differ at PIC discretion

Module 5 - Outline

Part II — Defining the EDTO Area of Operations

Part III — Performing EDTO Flight Planning

Part III— Conducting EDTO Flights

Part IV— Documentation and Training

Part V —

Practical Exercise

EDTO Workshop

End of Module 5 - Flight Operations Considerations

