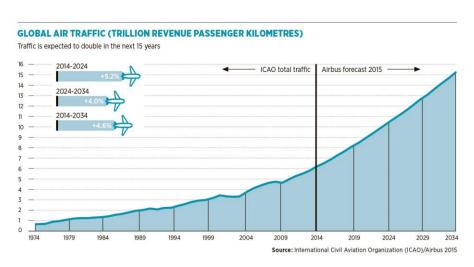
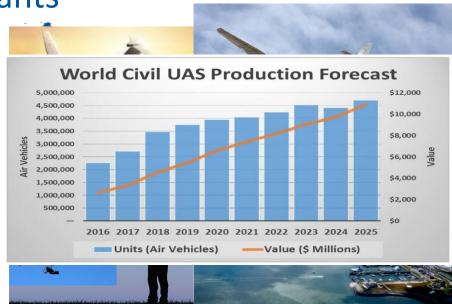


THE GANP PERFORMANCE MANAGEMENT PROCESS




Olga de Frutos

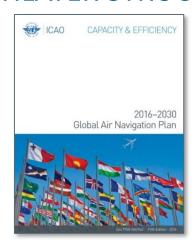
Air Navigation Bureau International Civil Aviation Organization (ICAO)

A NEW ERA IN AVIATION


Demand, including new entrants

SOCIAL WELLBEING ALL PEOPLES OF THE WORLD

- More quiet
- Cleaner
- Safer
- More resilient
- More profitabl


Statistics are based on all worldwide fatal accidents involving civil aircraft with a minimum capacity of 14 passengers, from the ASN Safety Database https://aviation.safety.net

Aviation**Safety**Network

DRAFT GANP 2019

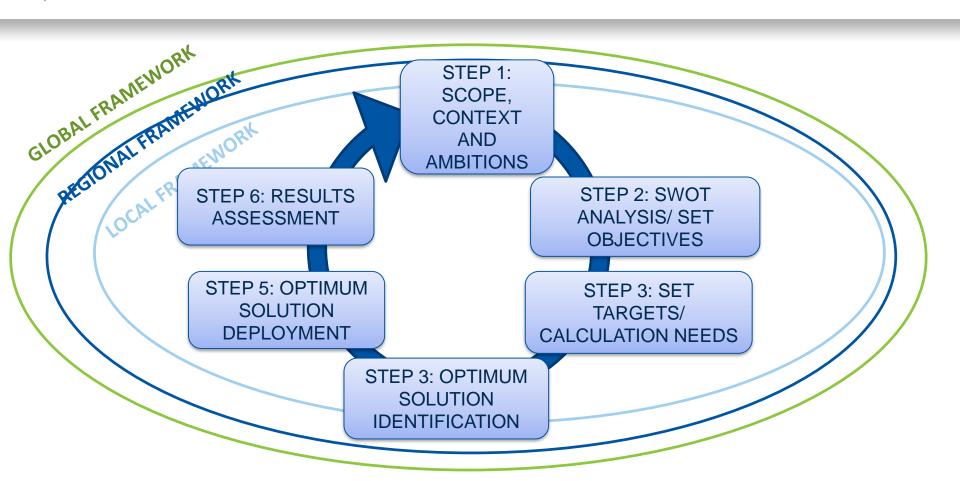
MULTILAYER STRUCTURE


https://www4.icao.int/ganpportal

MAIN GOALS of the 2019 GANP

- Evolution of the global air navigation system
 - Promote investment in innovation through research and development activities AND
 Align Regional Research and Development Programmes
- Support implementation → GLOBAL TECHNICAL LEVEL
 - Ensure the pillars of a robust air navigation system BBBs
 - Facilitate a transformational change ASBU framework
 - Optimize allocation and use of resources for air navigation Performance-based decision making method

PERFORMANCE-BASED APPROACH


Principles:

- Strong focus on desired/required results
- Reliance on facts and data for decision making
- Collaborative justified decision-making

"Fall in love with the **problem**, not with the solution"

Six steps Method

- STEP 1: Scope, Context & General Ambitions and expectations
- STEP 2: SWOT Analysis/ set objectives
- STEP 3: Set of targets/ Calculation of needs
- STEP 4: Optimum solution identification
- STEP 5: Optimum solution deployment
- STEP 6: Results assessment

STEP 1: SCOPE, CONTEXT & AMBITIONS

Context

- 2019 Global Air Navigation Plan
 - Global Strategic Level: Performance Ambitions
 - Objective
 - ICAO KPAs
 - Design criteria
 - Global Technical Level: Performance Objectives
- Regional Air Navigation Plan
 - ANP Vol III
 - Specific Performance Objectives based on regional requirements

STEP 1: SCOPE, CONTEXT & AMBITIONS

- Scope
 - National Air Navigation Plan
 - Performance Targets: who, when and where
 - Make clear assumptions on what is "surrounding" it
 - National Development Plan

STEP 2: SWOT Analysis/ set objectives

- Operational analysis (baseline performance)
 - Data collection, process and analyze
 - Monitor current operations
 - KPIs (GANP 2016)
 - Traffic forecast
- SWOT Analysis
 - Strengths, Weaknesses, Opportunities and Threats
 - → Performance objectives

STEP 2: SWOT Analysis/ set objectives

- National level
 - National Performance Framework
 - Performance Objective
 - High level SWOT analysis
- Local Level
 - KPIs
 - National Performance Framework
 - Specific
 - Detailed SWOT analysis

- Agree & Prioritize performance objectives
 - Focus area within KPAs
 - → Performance objectives
 - Prioritization

- **SMART** Objectives
 - **-S**pecific
 - Measurable
 - **A**chievable
 - -Relevant
 - **—**Time-bounded

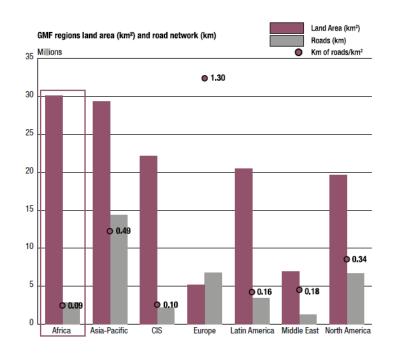
- SMART Objectives
 - -Specific
- **PERFORMANCE**
- Measurable INDICATORS → ICAO KPIs Catalogue
- Achievable
- -Relevant
- -Time-bounded

- **SMART** Objectives
 - -Specific
 - Measurable
 - -Achievable
 - $-\mathsf{R}_{\mathsf{elevant}}$
 - -Time-bounded

PERFORMANCE INDICATORS

VALUE= f(baseline)
SPEED PROGRESS

PERFORMANCE TARGETS
PERFORMANCE
BASELINE

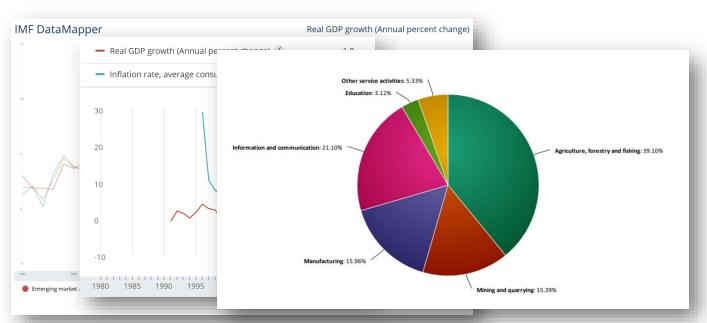

PERFORMANCE NEEDS

Africa

 Aviation essential for further development

Challenges

- Nature: desserts, forest, ocean,...
- Slow liberalization
- Limited resources
- Security


Source: IRF, The World Bank, Airbus GMF 2017

Africa

• Traffic statistics: Average annual growth 2016-2036

Segment	Boeing
Africa -Africa	6.5%
Africa - Europe	4.7%
Africa - Middle East	7.6%
Africa - North America	5.9%
Africa - Southeast Asia	5.7%

Nigeria

Source: NIGERIAN NATIONAL BUREAU OF STATISTICS

Nigeria

• FIR: Kano

Sectors: Kano and Lagos

- Several TMAs
- 30 aerodromes, 9 international aerodromes

YEAR 2016	Abuja	Calabar	Enugu	Kaduna	Kano	Lagos	Maiduguri	Port Harcourt	Sokoto
Passengers	936,814	199,880	353,972	129,804	413,906	2,984,829	10,0928	1,041,821	96,358
Cargo (kg)	3,313,209	2,587	-	-	6,930	175,740,101	-	5,532,259	-
Operations	12,730	3,129	5,394	2,407	4,666,520	28,307	4,411	19,848	1,966

Based on this data...

- How is the system performing?
- Do we have delays?
- Are we punctual?
- Are we accommodating our demand?

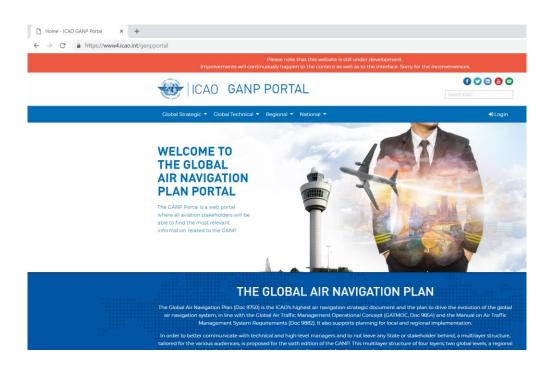
Nigeria

		Abuja	Kano	Lagos	Port Harcourt
KPI01	DEPARTURE PUNCTUALITY (10 MIN)	10%	63%	63%	7%
KPI02	TAXI-OUT ADDITIONAL TIME (MIN)	5 over 7min	3*	3*	6 over 6min
KPI 09	AIRPORT PEAK ARRIVAL CAPACITY (RADAR)	30	30	45	30
KPI 09	AIRPORT PEAK ARRIVAL CAPACITY (NO RADAR)	12	15		15
KPI 10	AIRPORT PEAK ARRIVAL THROUGHPUT	28	28	42	28
KPI 11	AIRPORT ARRIVAL CAPACITY UTILIZATION	75%	75%	67%	75%
KPI 13	TAXI-IN ADDITIONAL TIME (MIN)	3 over 7min	3	5	5 over 5min
KPI 14	ARRIVAL PUNCTUALITY	15%	7%	1%	15%

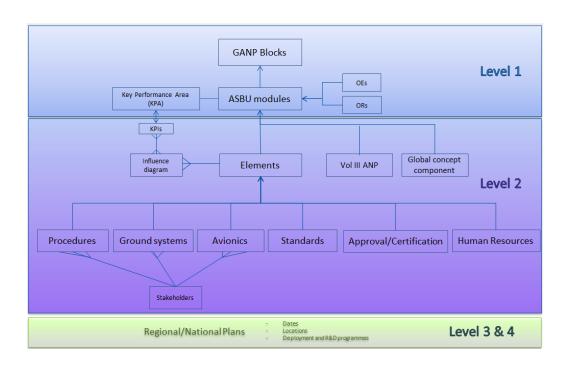
So let's me ask again, based on this data...

- How is the system performing?
- Do we have delays?
- Are we punctual?
- Are we accommodating our demand?

STEP 4: IDENTIFICATION OPT. SOLUTION


- Assessment of the SWOT analysis
 - Dominant factors:main constraints/opportunities
 - → selection and prioritization of opportunities and issues

STEP 4: IDENTIFICATION OPT. SOLUTION

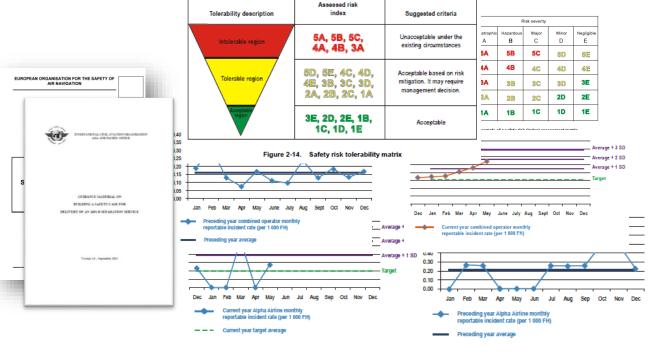

- List of options
 - High-level strategy
 - Operational concept
 - Technical enablers
 - Baseline
 - Availability
 - Safety Assessment
 - Human Factors Assessment
 - Assessment of expected performance

ASBU Framework

Digital ASBU framework

STEP 4: IDENTIFICATION OPT. SOLUTION


STEP 4: IDENTIFICATION OPT. SOLUTION


- Make decisions
 - Information available
 - Scope
 - Performance objectives and targets
 - Assessment of SWOT analysis
 - List of solutions (ASBUs)

Plus...

- Associated Safety Assessment
- Associated Human Factors Assessment
- Associated Environmental Impact Assessment
- Associated Cost-benefits analysis

Safety assessment guidance

GANP & GASP TECHNICAL ALIGNMENT

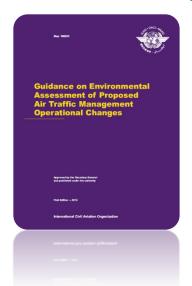
PRE-IMPLEMENTATION

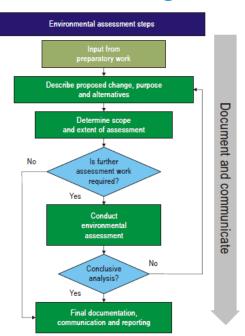
National Air Navigation Plan

- Scope, Context & General Ambitions and expectations (11 KPAs & KPIs)
- SWOT Analysis/ set objectives
- Set of targets/ Calculation of needs including checklist (BBBs)
- Identification of optimum solution (ASBUs)

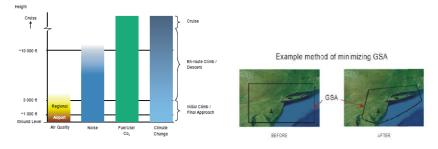
National Aviation Safety Plan

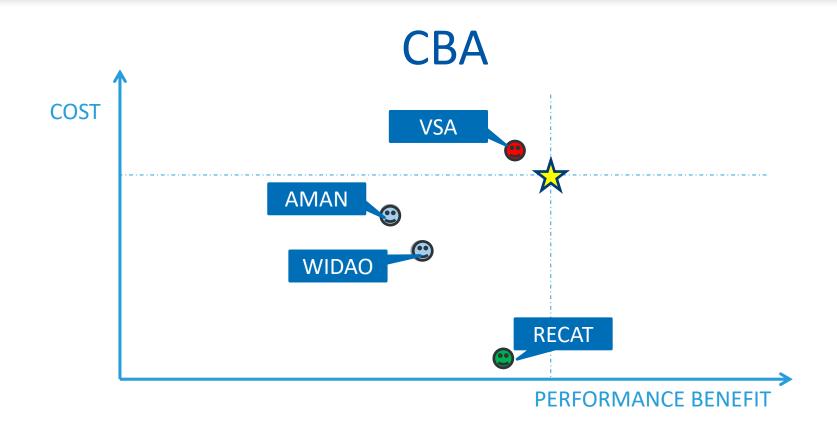
- Optimum solution → management of change through SSP and relevant SMSs
- Safety performance indicators/targets (SPIs/SPTs)
- Safety risk assessment
- Mitigation strategy if needed

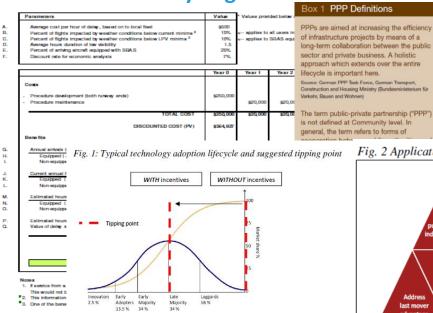

POST-IMPLEMENTATION


Results
assessment (11
KPAs)

- Safety performance monitoring
- Safety oversight


Environmental impact assessment guidance

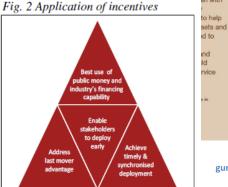




Height AGL Impact	Below 1 000 ft (300 m)	1 000-3 000 ft (300-900 m)	3 000-10 000 ft (900-3 000 m)	Above 10 000 ft (3 000 m)
Air quality (e.g. NOx, PM, etc.)	Most relevant	Relevant (Note 1)	Less relevant	Less relevant
Noise	Potentially (Note 2)	Relevant	Relevant	Potentially (Note 3)
Fuel use / CO ₂	Relevant	Relevant	Most relevant (Note 4)	Most relevant (Note 4)
Climate change	Relevant	Relevant	Most relevant (Note 5)	Most relevant (Note 5)



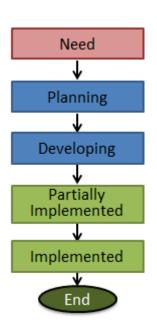
Cost-Benefits Analysis guidance


Source: Everett Rogers, Diffusion of Innovations (5th edition), WG1 analysis

'Public-Private Partnership' is a generic term for the relationships formed between the

en with

Source: John Laing plc

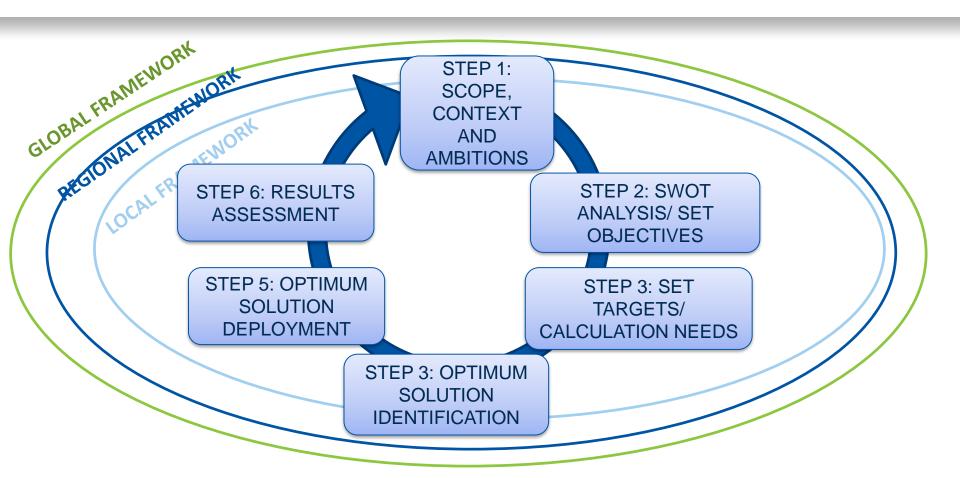


STEP 4: IDENTIFICATION OPT. SOLUTION

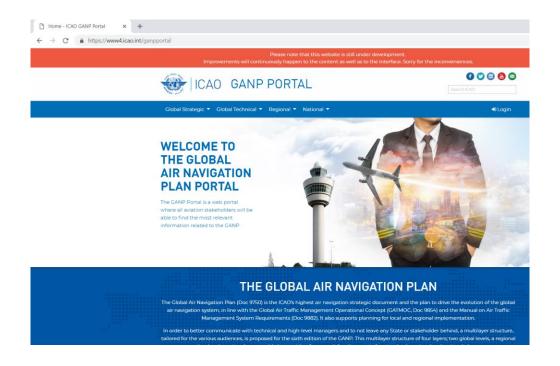
- Make decisions
 - Information available
 - Scope
 - Performance objectives and targets
 - Assessment of SWOT analysis
 - List of solutions (ASBUs)
 - Safety Assessment, HP Assessment, CBA and Environment Impact Assessment
 - Single optimum solution or a roadmap of optimum solutions

STEP 5: DEPLOYMENT OF THE SOLUTION

- Execution phase
 - Planning
 - Implementation
 - National mechanism for tracking the implementation of the elements
 - Benefits


STEP 6: ASSESSMENT OF RESULTS

- Continuously assess performance
- Monitor progress of implementation
- Review actually achieved performance
 - Update performance gaps
- → +(Step 1&2)=


PERFORMANCE MONITORING AND REVIEW

STEP 6: ASSESSMENT OF RESULTS

- Tasks in the PMR:
 - Data collection
 - Data publication
 - Data analysis
 - Formulation of conclusions; and
 - Formulation of recommendations.

ICAO'S support

