

SAFETY MANAGEMENT SYSTEM

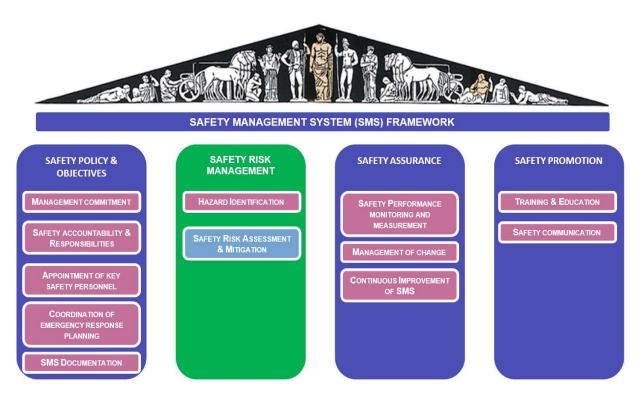
Mohamed Chakib

Regional Officer, Safety Implementation, International Civil Aviation Organization (ICAO), MID Office SMS Aerodrome Workshop Nov 2018, Cairo

Safety Management-Aerodrome

Module 2: Risk Assessment

27 November 2018


INTRODUCTION SMS Framework Risk Management Principles

HAZARD ANALYSIS Objective **BOW TIE Model BOWTIE XP RISK ASSESSMENT & MITIGATION Risk Assessment Matrix** Inherent & Residual risk **Decisions on mitigations** DOCUMENTATION Hazard Log CONCLUSIONS

27 November 2018

SMS Framework

SSP Framework

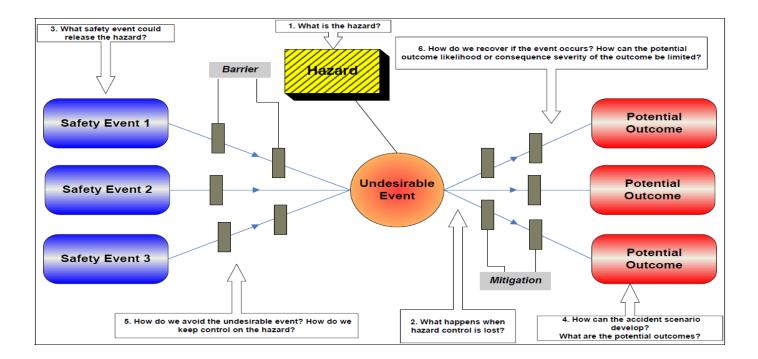
STATE SAFETY PROGRAMME (SSP) FRAMEWORK

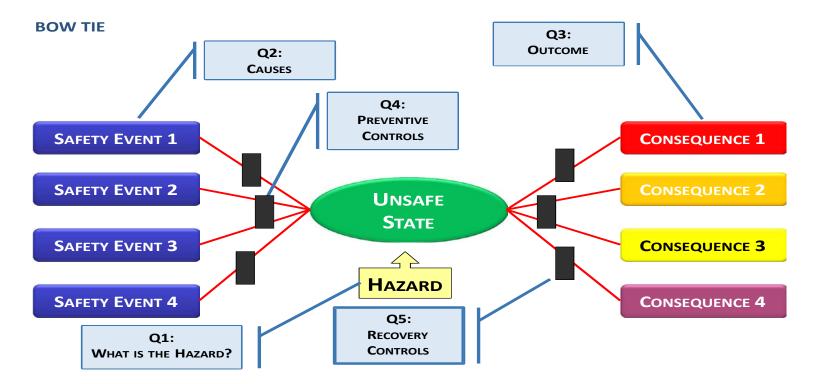
Risk Management Process HAZARD IDENTIFICATION WHEN AND WHERE HAZARD ANALYSIS CAUSES AND CONSEQUENCES **CONSEQUENCES RISK ANALYSIS: SEVERITY** LIKELIHOOD **RISK ANALYSIS: FREQUENCY** TOLERABILITY **RISK ANALYSIS: EVALUATION ACTIONS TO TAKE RISK CONTROL: MITIGATION**

27 November 2018

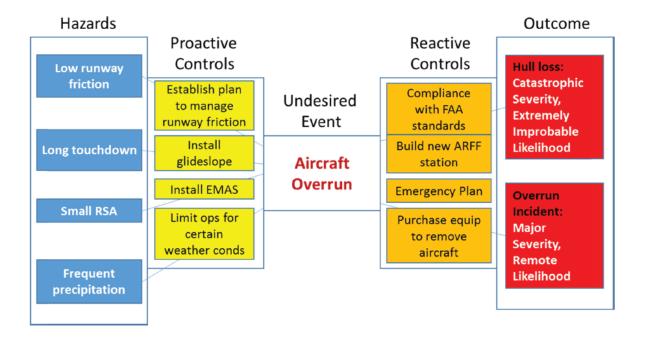
Objective

- A structured hazard analysis should address these questions:
- 1. What is the hazard?
- 2. Which events can produce it?
- 3. What happens when hazard is released? how can we reverse the situation?
- 4. How can the system propagate into an accident?
- 5. How can we avoid such adverse outcome?

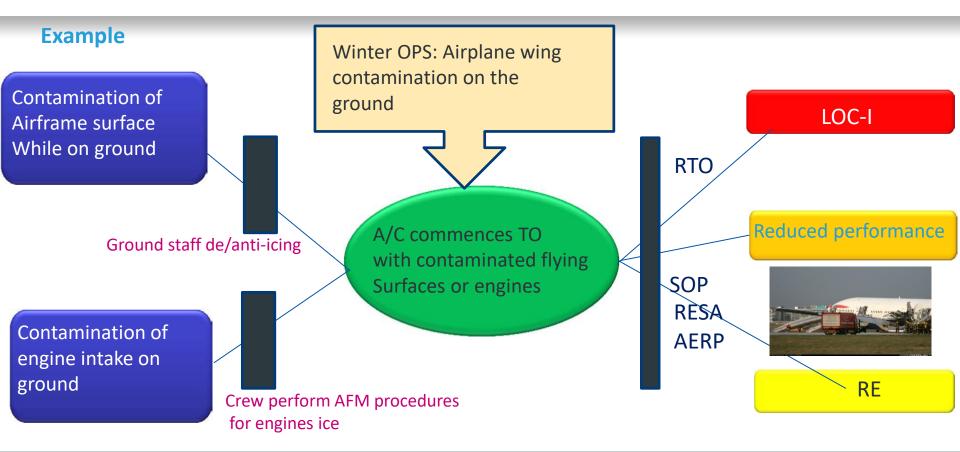



Hazard Analysis

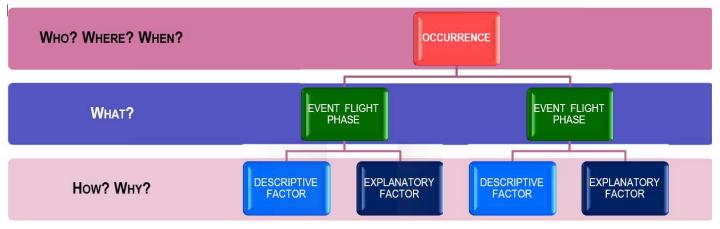
Bowtie Model



Bowtie Model



Bowtie model with examples



Bowtie XP: ADREP Taxonomy

- ADREP is the name of a common reporting taxonomy, which is periodically updated by ICAO in cooperation with relevant parties
- ADREP is aimed to achieve international harmonization, and thereby enable the exchange and aggregation of safety occurrences data
- > To achieve that goal, safety management software tools need to be compatible with ADREP

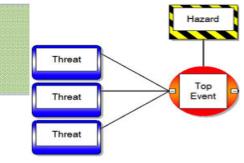
Bowtie XP: Components

TERM		MEANING
HAZARD		Something in, around or part of the system which has the potential to cause damage
1 Tep event	Unsafe State (Top Event)	STATE WHEN CONTROL IS LOST OVER THE HAZARD
Safety Event	SAFETY EVENT (TRIGGERING EVENT)	WHATEVER WILL CAUSE THE UNSAFE EVENT
Barrier	Barrier/Mitigation	ELEMENTS THAT INTERRUPT THE PROPAGATION SO THAT THE TRIGGERING EVENT DOES NOT RESULT IN A LOSS OF CONTROL OF THE HAZARD OR DO NOT ESCALATE INTO A POTENTIAL OUTCOME.
Cansequesce	CONSEQUENCE	RESULTS FROM THE UNSAFE EVENT
Escalation Factor	Escalation Factor	Factors or conditions which make a barrier/mitigation to fail

BOWTIEXP: TOP EVENT

Also known as undesired state or unsafe event:

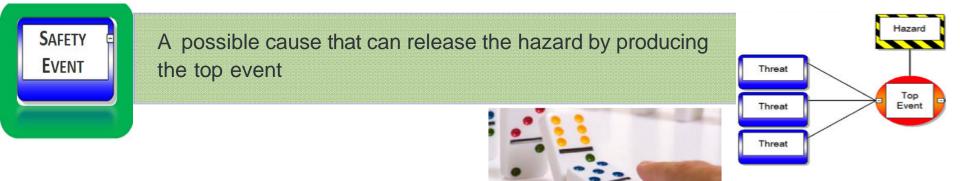
- The first event in a chain of negative events leading to unwanted consequences
- > It is not a catastrophe yet, but now there is exposure to the potential harm of the hazard
- > However, it should be possible to bring the situation under control again



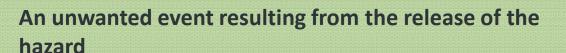
BOWTIEXP: SAFETY EVENTS

SAFETY Event A possible cause that can release the hazard by producing the top event

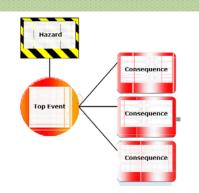
Also known as threats, causes or triggering events:


- there can be multiple safety events for one top event
- each safety event represents a single scenario that could independently lead to the top event.
- direct means causally direct (not necessarily in terms of time)

BOWTIEXP: SAFETY EVENTS


Sufficiency and independency :

Each safety event (SE) itself, should in theory, be sufficient to directly cause the top event. If two SEs need to occur together for them to cause the top event, They need to be reformulated into one independent safety event


BOWTIEXP: CONSEQUENCES

CONSEQUENCE

Also known as potential outcomes:

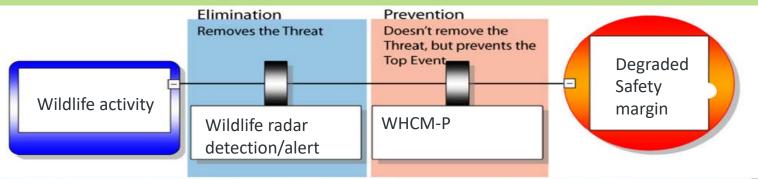
- Consequences are events that are caused by the top event
- What we ultimately want to prevent

BOWTIEXP: CONSEQUENCES

Ultimate Consequences:

- Making consequences specific for a top event will lead to more specific barriers later on, and help to get more out of the bowtie
- Try to classify events based in type of accidents or serious incidents (e.g. according ICAO ADREP occurrence category taxonomy), including scenario related details and consequences.

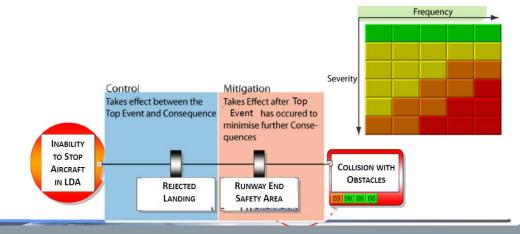
Also known as controls or mitigations. There are three different places for barriers :


- Between a safety event and the top event (preventive barriers also known as proactive barriers)
- Between the top event and a consequence (recovery barriers, also known as reactive or defense barriers)
- Between a barrier and an escalation factor (escalation factor barriers)
 27 November 2018

BOWTIEXP: BARRIERS

Preventive barriers:

- act against a safety event/top event. its effect takes place before the top event has happened (always
 present on the left side of the bowtie diagram). it can follow two strategies:
 - <u>elimination</u>. remove the safety event and make sure that there is nothing (or less) to cause the top event (they should appear to the left of the safety event, but for simplicity purposes they are located to the right)
 - <u>prevention</u>, stop the safety event from becoming a top event, either by blocking the causal effect of the safety event or directly stopping the top event from happening



BowtieXP: Recovery Barriers:

Aimed at regaining control once it is lost (top event has occurred). They act on the likelihood or severity of a potential consequence through:

Control: Prevents the consequence from happening

Mitigation: Does not prevent the consequence from happening, but lessens the severity of the consequence

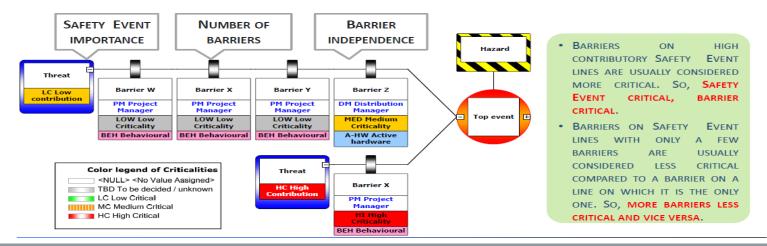
Bowtie XP: Barriers Type

İ	Ť	Ť	Behavioral: Barrier components completely represented by people e.g.: procedure, double check
٥ļ	٥Ì	۰	Socio-Technical: Barrier components are a mix between people and hardware e.g.: safety net (ACAS, GPWS, CAWS)
\$	٥	٥	Active Hardware: Barrier components are completely hardware based e.g.: angle of attack protection
	\$	٥	Continuous Hardware: a barrier with no detection, but a continuous action e.g.: pressurization system
			Passive Hardware: is effective by just existing without any need for explicit action e.g.: anti corrosion paint, airframe

BowtieXP: Barriers Effectiveness

Barrier effectiveness is a way to assess how well a barrier performs.

- The purpose of rating control effectiveness is to highlight areas of strength and weakness within the bowtie, potentially using this information as a basis for a matrix based risk assessment
- The results are typically displayed according to a color code (e.g. red for poor through to green at for good).
- when creating your effectiveness scale consider the usefulness of allocating "average" as a score



BowtieXP: Barriers criticality

Not all controls will have the same importance with regard to the management of a specific event differentiating control significance according to criticality provides benefits such as:

- o focusing attention for the purpose of communication to stakeholders.
- o highlighting which controls require a greater depth of detail in terms of escalation factor consideration

BowtieXP: Escalation factors

ESCALATION

FACTOR

A condition that leads to increased risk by defeating or reducing the effectiveness of a barrier

The following three escalation factor categories can be used :

Human factors: anything a person does to make a barrier less effective

Abnormal conditions: anything in the environment that causes a barrier to be put under strain

Loss of critical services: if a barrier relies on an outside service, losing that service might cause it to lose effectiveness

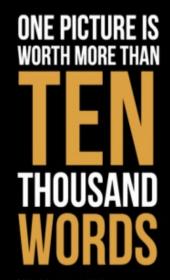
BowtieXP: Escalation factors barriers

ESCALATION FACTORS BARRIERS:

- Barrier that manages the conditions which reduce the effectiveness of other barriers
- Escalation factor barriers are the same concept as all the previously discussed barriers, but now they do not prevent/mitigate a top event or consequence from happening, but they prevent a barrier from failing.
- The same principles that apply to normal barriers also apply to escalation factor barriers

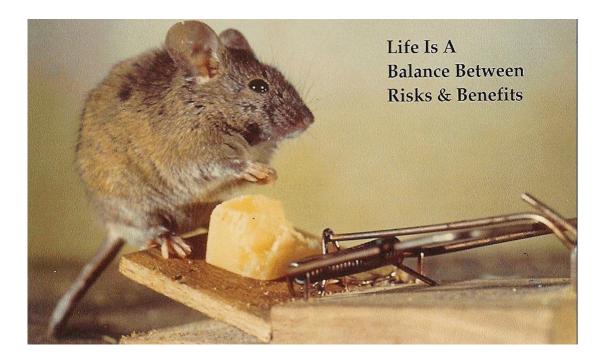
Bowtie in simple way during brainstorming sessions

HAZARD: Human Error: Delay pilot recognition of RI by departure pilot because the departure Pilot mistakes the incurring aircraft for one safely on the EAT


SAFETY EVENTS	PREVENTIVE CONTROLS/BARRIERS	UNSAFE (TOP) EVENT	RECOVERY CONTROLS/BARRIERS	POTENTIAL OUTCOME / ULTIMATE CONSEQUENCES
Flight crew do not comply with procedures Ineffective Flight crew communications	 ATCO MONITORS & SOLVES POTENTIAL CONFLICT CRM SOP 	Conflict between aircraft taking off and aircraft taxiing on the EAT	 Compliance with procedures AERP 	. High Aircraft / severity of equipmen RI on the t heavy EAT damages, fatalities .Collision with other aircraft on the EAT

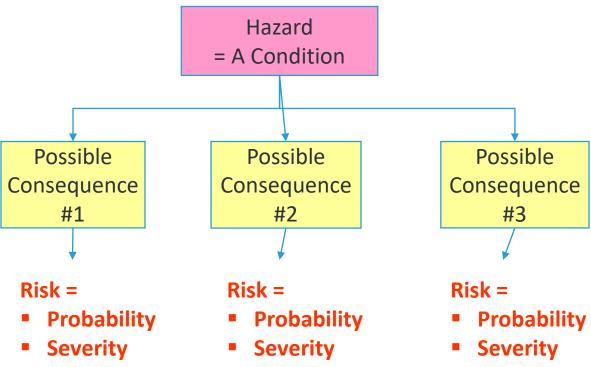
BOWTIE: Added value

Bowtie provide benefits to safety management processes due to:

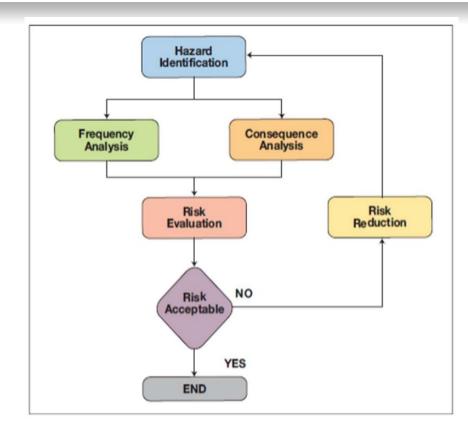

- Effective, visual depiction of hazard components
- Balanced overview for internal and external stakeholders (including third party risks)
- Increased awareness and understanding of the hazards leading to accident scenarios.
- Best practice guidance material for safety risk management at an operational and regulatory level.
- Identification of critical risk controls and an assessment of their effectiveness

filind Audichyas Wallpapers

Risk Assessment and Mitigation

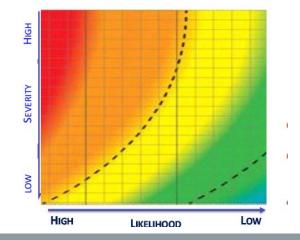

Risk Assessment and Mitigation

Risk is the composite of the predicted probability (or likelihood) and severity of each possible consequence.


Risk Assessment

Risk Concept

- SAFETY IS ASSOCIATED TO THE CONCEPT OF RISK, DEFINED AS A COMBINATION OF THE ANALYSIS OF TWO TERMS:
 - O LIKELIHOOD
 - O CONSEQUENCES
- RISK IS SUBJECT TO AN OBJECTIVE EVALUATION PROCESS THAT ALLOWS FURTHER DECISION MAKING (ACCEPTANCE OR REJECTION)



RISK ASSESSMENT MATRIX

A risk matrix is just used for ranking events and decide whether you need to accept the risk or reduce it through mitigations

Decisions need to be based on an underlying analysis (such as a bowtie diagram), that will tell what will cause the unsafe event and what an organization is already doing to control it.

Safety	Risk	Severity
--------	------	----------

5A	5B	5C	5D	5E
4A	4B	4 C	4D	4 E
3A	3 B	3C	3D	3E
2A	2 B	2C	2D	2E
1A	1B	1C	1D	1 E

RISK ASSESSMENT MATRIX

The risk matrix may be customized to reflect the context of each service provider, and aviation activities, and may be subject to the agreement with its regulatory authority

Elements to be considered for customization are Qualitative and quantitative criteria to define:

- Likelihood depending on the availability of the historical data series
- Severity, depending on the nature of the supplied service

FAA

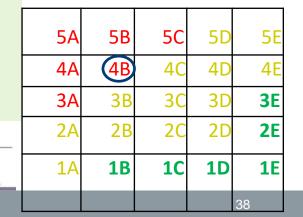
	Risk Matrix				
Severity Likelihood	Minimal 5	Minor 4	Major 3	Hazardous 2	Catastrophic 1
Frequent A					
Probable B					
Remote C					
Extremely Remote D					
Extremely Improbable E					

ECAST ARMS EVENT RISK CLASSIFICATION (ERC) What was the effectiveness of the remaining barriers between this event and the most f this event had escalated into an edible accident scenario? incident outcome, what would have Minimal Not effective ion the most cradible outcome fatalities (3 or more or 2 fatalities, multiple Major Accider serious injuries, major damage to the aircraft Minor Injurie injuries, minor dam or damage to aircraft No proident No potential damage o injury could acc

27 November 2018

VALUE	SEVERITY	ICAO SMM (Fig 2.12)	FAA ARP Internal Order 5200.11		
А	CATASTROPHIC	 Equipment destroyed Multiple deaths			
В	Hazardous	 A large reduction in safety margins, physical distress or a workload such that the operators cannot be relied upon to perform their tasks accurately or completely Serious injury Major equipment damage 			
с	Major	 A significant reduction in safety margins, a reduction in the ability of the operators to cope with adverse operating conditions as a result of an increase in workload or as a result of conditions impairing their efficiency Serious incident Injury to persons 			
D	Minor	 Nuisance Operating limitations Use of emergency procedures Minor incident 	 Minimal damage to aircraft or Minor injury to passengers, or Minimal unplanned airport operations limitations (i.e. taxiway closure), or Minor incident involving the use of airport emergency procedures 		
E	NEGLIGIBLE	• Few consequences	No damage to aircraft but minimal injury or discomfort of little risk to passenger(s) or workers		

VALUE	PROBABILITY	ICA	O SMM (Fig 2.11)	FAA ARP Internal Order 5200.11
1	EXTREMELY IMPROBABLE		Almost inconceivable that the event will occur	Expected to occur < every 100 years
2	IMPROBABLE/ Extremely Remote	(Very unlikely to occur (not known to have	Expected to occur once every 10-100 years or 25 million departures, whichever occurs sooner
3	REMOTE	• (Doccurred) Unlikely to occur, but Dossible (has occurred rarely)	Expected to occur about once every year or 2.5 million departures, whichever occurs sooner
4	OCCASIONAL	• [Likely to occur sometimes (has occurred infrequently)	Expected to occur about once every month or 250,000 departures, whichever occurs sooner
5	FREQUENT	t	Likely to occur many times (has occurred frequently)	Expected to occur more than once per week or every 2500 departures, whichever occurs sooner



RISK ASSESSMENT

Safety risk is the projected likelihood and severity of the consequence or outcome from an existing hazard or situation:

severity is defined as the extent of harm that might reasonably occur as a consequence or outcome of the identified hazard. the severity assessment should consider all possible consequences related to an unsafe condition or object, taking into account the worst foreseeable situation

probability is defined as the likelihood or frequency that a safety consequence or outcome might occur

INHERENT & RESIDUAL RISK

Two possible types of risk can be estimated during the assessment of a particular system:

- Inherent risk is associated to the worst foreseeable (or credible) situation subject to analysis
- Residual risk that takes into account the effect of the safety actions that could be implemented to improve system's safety performance by bringing down risk to an acceptable level

Decision making at management level

- Barriers have brought the risk down to an acceptable level but
- Additional effort may be required to obtain further risk

Safety risk mitigation strategies

Safety risk mitigation is often referred to as a safety risk control.

- Safety risks should be managed to an acceptable level by mitigating the safety risk through the application of appropriate safety risk controls.
- □ This should be balanced against the time, cost and difficulty of taking action to reduce or eliminate the safety risk.
- □ The level of safety risk can be lowered by reducing the severity of the potential consequences, reducing the likelihood of occurrence or by reducing exposure to that safety risk. It is easier and more common to reduce the likelihood than it is to reduce the severity.

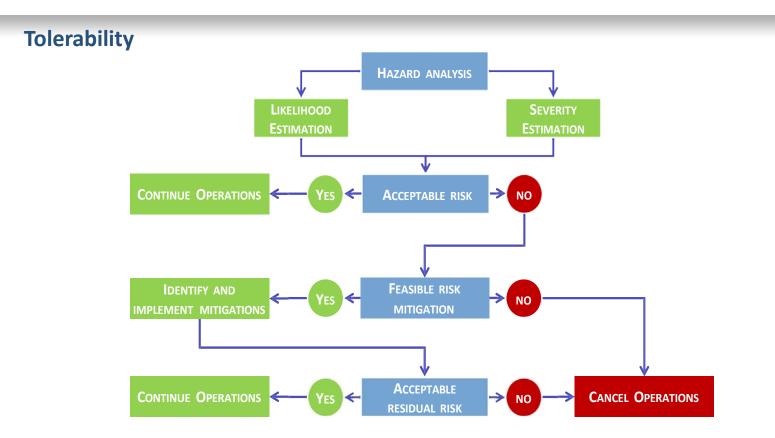
Safety risk mitigation strategies

- Avoidance: The operation or activity is cancelled or avoided because the safety risk exceeds the benefits of continuing the activity, thereby eliminating the safety risk entirely.
- Reduction: The frequency of the operation or activity is reduced, or action is taken to reduce the magnitude of the consequences of the safety risk.
- Segregation: Action is taken to isolate the effects of the consequences of the safety risk or build in redundancy to protect against them.

Tolerability

A risk mitigation strategy may include multiple approaches and it is important to consider them to find an optimal solution. each proposed safety risk mitigation alternative should be examined from the following perspectives: (SMM doc. 9859. 4th ED) :

- <u>effectiveness</u>: the extent to which the alternatives reduce or eliminate the safety risks can be determined in terms of the technical, training and regulatory defenses that can reduce or eliminate safety risks
- cost-benefit: the extent to which the perceived benefits of the mitigation outweigh the costs
- practicality: the extent to which mitigation can be implemented and how appropriate it is in terms of available technology, financial and administrative resources, legislation and regulations, political will, etc..
- **acceptability:** the extent to which the alternative is consistent with stakeholder paradigms



Tolerability

A risk mitigation strategy may include multiple approaches and it is important to consider them to find an optimal solution. each proposed safety risk mitigation alternative should be examined from the following perspectives: (SMM doc. 9859. 4th ED) :

- <u>enforceability</u>: the extent to which compliance with new rules, regulations or operating procedures can be monitored.
- **durability**: the extent to which the mitigation will be sustainable and effective
- **<u>Residual safety risks</u>**. The degree of safety risk that remains subsequent to the implementation of the initial mitigation and which may necessitate additional safety risk control measures
- <u>Unintended consequences</u>. The introduction of new hazards and related safety risks associated with the implementation of any mitigation alternative.
- O <u>*Time*</u>. Time required for the implementation of the safety risk mitigation alternative

SRM Documentation

- □ Findings/results of each safety risk assessment must be documented.
- Both the results of the assessments and the decisions made when determining if safety assessments are required are documented and kept on file for the life of the proposed change.

Suggested Hazard Worksheet Contents

A Hazard Worksheet contains, at a minimum:

- description of the proposed change
- identified hazards
- estimation of risk
- description of existing and planned mitigation
- description of methodology for tracking hazards and verifying effectiveness of mitigation controls throughout the lifecycle of the system or change
- method for monitoring operational data to ensure hazards are controlled
- identification of the organization responsible for the conduct of the analysis and tracking of the resolution, if any
- a recommendation concerning the implementation decision

Haz Wksht	
Barn Menn	

Hazard Log

□ Each risk mitigation exercise will need to be documented as necessary.

This may be done on a basic spreadsheet or table For risk mitigation or by risk mitigation software t Facilitate the documentation process

(Operation / System					
	Hazard No.					
	Hazard Description					
	Safety Events					
	Causes or Threats)					
0	causes or inreats)					
	Potential Outcomes					
	(and Associated					
	Consequence					
	Magnitudes)					
	riugineauco)					
Risk Controls (Barriers and Mitigations)						
No.						
1						
2						
3						
4						
5						
	Risk Asses	sment (Worst Fores	eeable Scenario – i.e. Higl	nest Risk)		
	Hazard Frequency					
0	Outcome Likelihood					
Consequence Severity						
Risk						
Management Approval		Name:	Post:	Signature:		
Relevant Previously						
Reported Incident Data						
Safety Performance Monitoring Requirements						
No.		Description		Responsible		
1						
2						
3						

SRA Triggers

The Safety Risk Assessment (SRA) is a safety assessment performed by a panel of stakeholders and subject matter experts (SMEs) to analyze a safety issue, run the SRM process to establish risk mitigation actions, and document the process. The SRA is a formal application of the SRM process to study an airport condition, either planned or discovered.

The SRA is triggered by conditions or events at the airport; follows the SRM process in a formal, proactive manner; is facilitated by a person well versed in the SRM process; and provides airport management with actionable knowledge to enhance effective, risk-informed decisions.

Basic Principles

An SRA should be conducted any time the airport determines that a full safety analysis of an airport condition or event is warranted. Three rules of thumb can help in the determination:

- A change in the airport system is pending.
- The allocation of significant airport resources is required
- An undesirable trend in airport safety metrics is revealed

An SRA Trigger is a condition, a system change, or piece of information that prompts management to convene a panel to conduct the full SRM process or an event that automatically requires convening a panel. In most cases, SRA triggers are associated with safety issues that require a multidisciplinary team to perform the SRM process thoroughly.

Common airport SRA triggers

SRA Trigger	Description	Example
	Airfield improvement	Runway extension
	Airfield rehabilitation	Resurfacing Taxiway C
	Airfield maintenance (beyond day to day work)	Rubber removal
	Construction of tower	Construction of new ATC tower
Construction	Terminal expansion	Additional gates and gate areas
	Landside roadway reconfiguration	Additional lanes into the terminal area
	Parking area modifications or rehab	Parking garage rehab or updating facilities
	Changes in access roads onto airport property	Adding or subtracting lanes and access points
Standard Operating Procedures	New SOP	SOP for towing aircraft; SOP for mowing grass in safety areas
Changes	Modification to existing SOP	Changes to SOP on snow removal due to new equipment
Airport Organization	Significant changes to airport organizational structure or key personnel	Rearranging the Department of Operations; creating an SMS Division

Common airport SRA triggers

SRA Trigger	Description	Example
	Safety issues reported by pilots or airport	Reports of pavement failure, blind spots, or
	employees (including tenants)	hazardous conditions on the ramp
Safety Reports (Hazardous Condition Reports)	Safety issues resulting from daily inspections	FOD generated by poor pavement conditions at the intersection of taxiways
condition heportsy	Accidents and incidents	Surface or ramp accident; birdstrikes
Special Event	Major sport events	Super Bowl; Olympic Games; Major College Football Game
	New aircraft brought in by a carrier	Starting operation of A380 or B787 aircraft
	New passenger boarding bridge	Installation of new bridges that have different capabilities
New Equipment or Software	New ramp equipment that requires special consideration	Introduction of towbar less tractor
	Changes to information management systems	Changes to reporting procedures during self inspections
	Trends identified from safety performance	
Safety Assurance	indicators (e.g. birdstrikes, FOD, etc.) Safety audits	Increase of birdstrikes with damage to aircraft Unsatisfactory SMS internal or external audit results

27 November 2018

Hazard Reports

Hazard reports at airports are used to describe safety issues (e.g., presence of wildlife, damaged NAVAID, and FOD) identified during routine procedures. The diverse sources may include:

- Daily inspections by airport staff
- PIREPs
- Observations from airfield workers (e.g., Maintenance, ARFF, and FBO)
- Observations from ATCT personnel

Accident and Incident Reports

Accident and incident reports constitute an important category of triggers. In most cases, these reports lead to an accident or incident investigation. The purpose of an investigation is to determine causal and contributing factors to the event so such factors can be prevented or mitigated. Airport staff can augment and complement investigations by performing an SRA and identifying risk mitigation actions and staff responsibilities to reduce the chances of a similar incident or accident.

The most common types of accidents and incidents in this category are:

- Surface incidents/accidents
- Wingtip collisions and incidents
- Runway incursions and excursions
- FOD (damage)
- Wildlife strikes

Trend Analysis

With the implementation of SMS comes the introduction of safety performance indicators. These could be new measures of safety developed to support the SMS and its SRA component. Data for these indicators are collected and trends are followed to determine the need for new actions if an undesirable trend is identified. Examples of indicators in this category are the frequency of wildlife strikes at the airport, the number of FOD incidents in movement areas, or the number of specific incidents on the ramp (e.g., frequency of vehicle/equipment speeding reports).

Major System Changes

Major system changes at the airport are sources of risks. Some typical examples of such changes include:

- Airfield improvements: runway rehabilitation and extension, construction of new taxiway, renovation of terminals
- Operation of a new large aircraft: B747-800, A380
- Changes to airport management: reorganization of Dept. of Operations, new Director at a small airport
- Introduction of new snow control equipment
- Special events: Super Bowl, college football game, air show
- Introduction of new systems: new NAVAID, new IT system for work orders
- Development of new operational or administration procedures
- Financial priority adjustments
- Rapid airport growth: aircraft operations increases, passenger increases

New SOPs

In most cases, the introduction of a new SOP will not represent a major system change. However, SOPs that focus on procedures used in the airfield can substantially affect safety. Conducting an SRA may enhance the safety effect of the changes and enable stakeholders to examine fully how the change affects their operations.

Key points to remember

□ Risk assessment based decisions are founded upon:

- customized risk classification schemes for the provided service or operation
- an underlying analysis (such as a bowtie diagram) to explore incident/accident causal chains and what organizations are doing to control
- Risk can be expressed as inherent and residual. both estimations will determine the need for mitigations
- Risk mitigation strategies may include multiple approaches and it is important to consider them to find an optimal solution
- Each risk mitigation exercise needs to be documented as necessary
- □ SRA triggers needs to be conducted thoroughly

