

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION

Performance-based Navigation (PBN) Route Laboratory Workshop

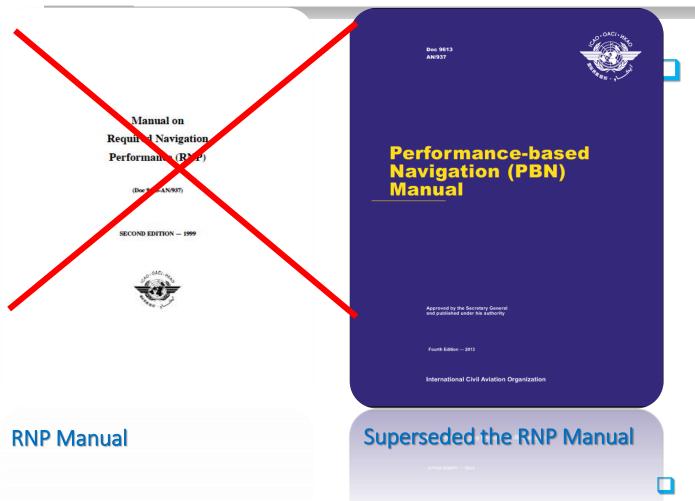
Nairobi, 22 – 26 May 2023

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION

Review of the PBN concept (Doc. 9613, 5th edition)

Regulatory framework
Why PBN
PBN terminology
PBN concept
Relationships between the PBN components
PBN benefits
The AFI PBN roadmap
PBN implementation process
Summary

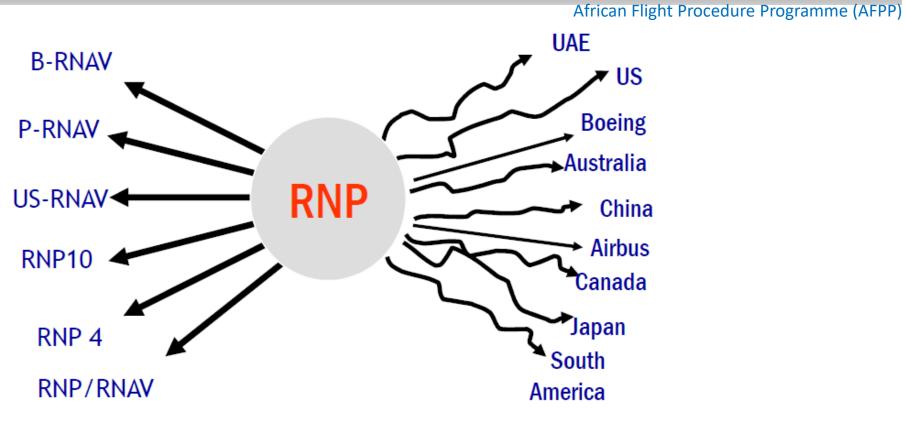
Review of the PBN concept REGULATORY FRAMEWORK



Regulatory framework

Third edition, 2007:

- Navspecs introduced with performance requirements (Accuracy, integrity, continuity and functionality.
- Volume 1: Concept and implementation guidance:
 - Part A: PBN concept;
 - Part B: Implementation guidance
- Volume II: Implementing RNAV & RNP operations:
 - Part A: General;
 - Part B: implementing RNAV operations;
 - Part C: Implementing RNP operations
- Fifth edition, 2023 (Advanced unedited)


UNITING AVIATION

Review of the PBN concept WHY PBN?

Why PBN ?

Not safe, not efficient, costly, confusing

NEED FOR GLOBAL HARMONIZATION

What is PBN about?

Transitioning to area navigation in a globally harmonized manner by means of implementing navigation specifications;

...transitioning from what?

From conventional navigation to performance-based navigation, or from local or regional area navigation to performance-based area navigation.

...Why globally harmonized?

- To enable airlines to operate seamlessly from one State to another;
- Same airspace design principles;
- Same phraseology, separation and control procedures;
- To reduce the number of operational approvals.

• ... How?

By the use of performance and additional requirements.

What is PBN about?

Globally Harmonized:

PBN is being implemented according to Doc 9613 in the same manner all around the world:

- Same design criteria;
- Same pilot procedures;
- Same ATC separation;
- Same phraseology;
- Same airspace design principles....

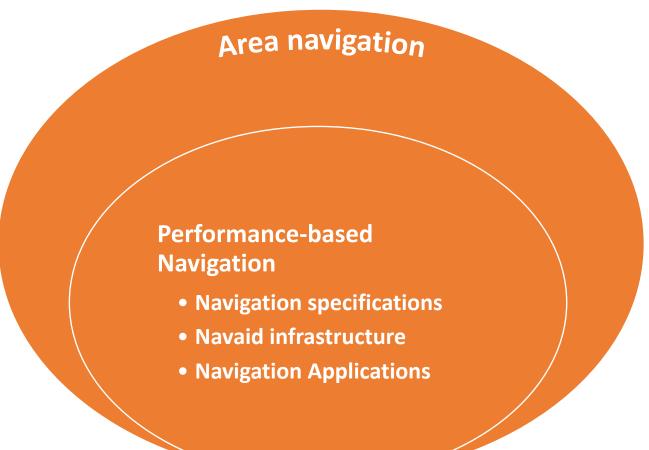
UNITING AVIATION

Review of the PBN concept **PBN TERMINOLOGY**

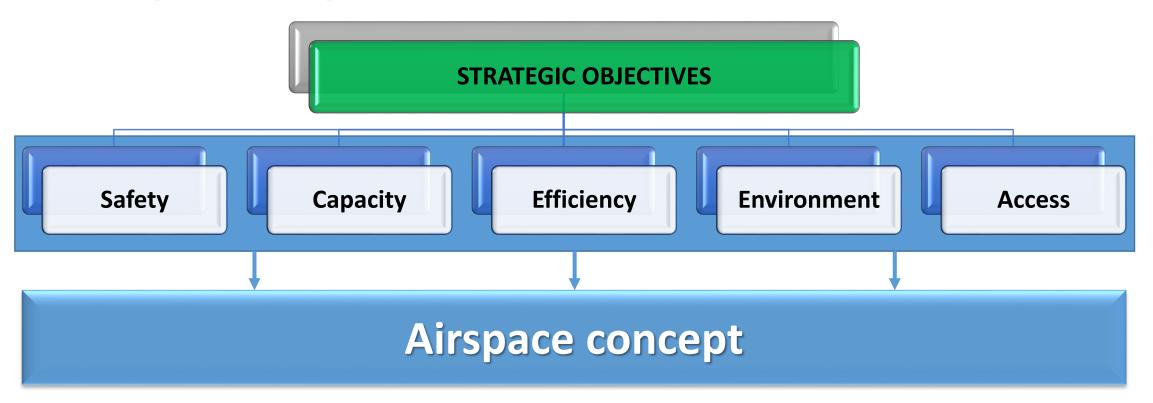
Correct terminology is important for clarity:

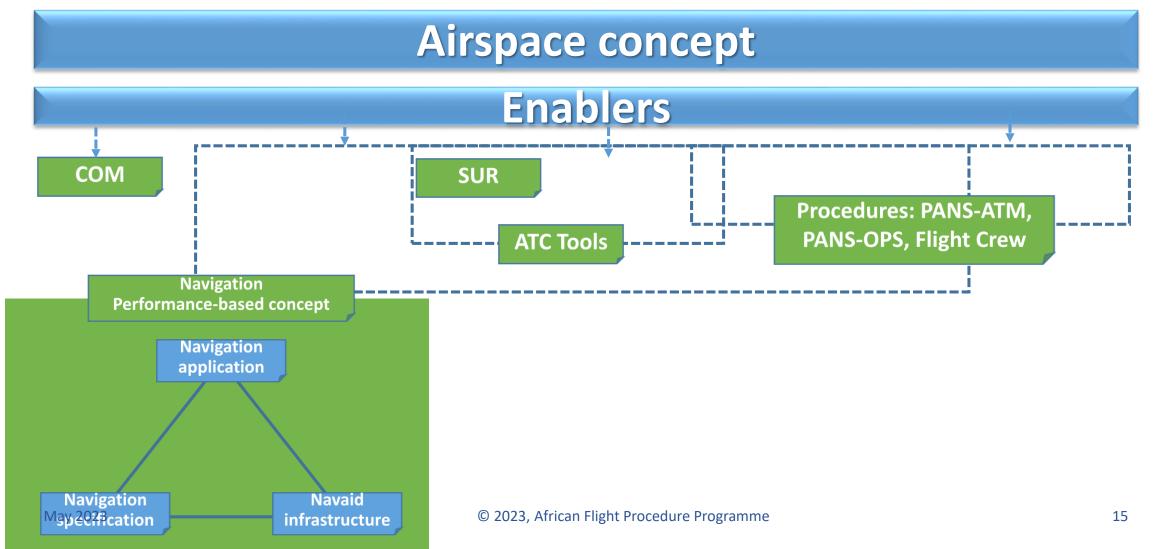
- Area Navigation is the generic term used for area navigation and should not be abbreviated to avoid confusion:
 - RNAV is used only in reference to RNAV specifications or RNAV systems.
 - RNP is used only in reference to RNP specifications or RNP systems:
 - "RNP" and "RNAV" are Navspec designator;
 - 1, 2 or 4 is a Navspec descriptors (accuracy).

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION


Review of PBN concept **PBN CONCEPT**

PBN concept


African Flight Procedure Programme (AFPP)


The airspace concept

PBN concept

African Flight Procedure Programme (AFPP)

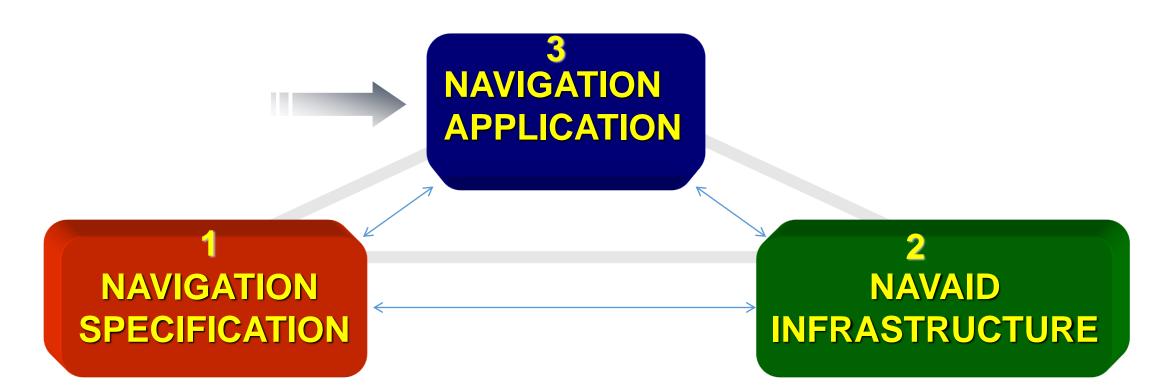
Description of the Performance-based Navigation

PBN concept:

Specifies aircraft RNP or RNAV system performance in terms of: accuracy, integrity, continuity and functionalities:

- Required for the intended operation;
- In a particular airspace concept.
- ^{The set of the set of}
- Shall comply with WGS-84 data and prescribed data quality (Annex 15).

Description of the Performance-Based Navigation


PBN also defines:

- Navigation functional requirements:
 - Bearing & distance to the next waypoint
 - Navigation data storage;
 - Etc.
- Training requirements:
 - For ATC and pilots.
- Additional requirements:
 - Contingency procedures (flight crew);
 - ATC procedures.

The PBN Components

Navigation specifications

Defined in terms of:

Performance: Accuracy, integrity, continuity and availability of the signal.

Specifies:

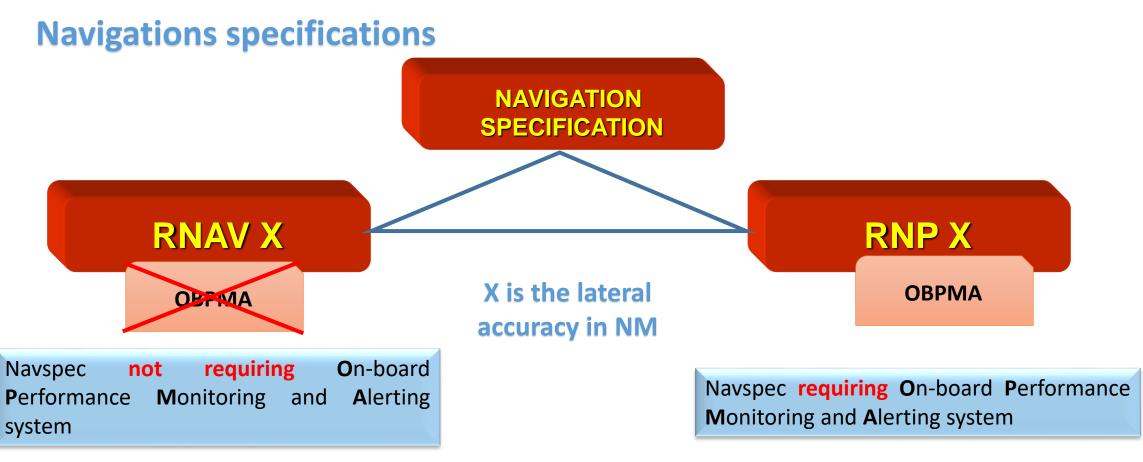
The required functionalities;

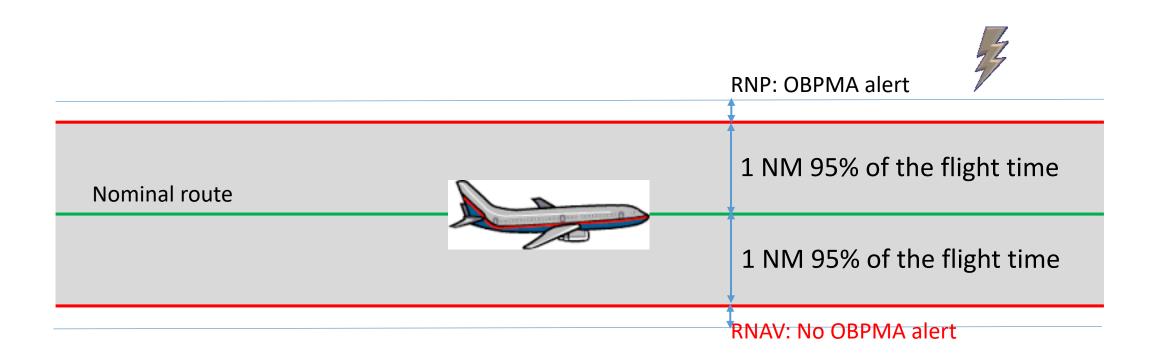
The navigations sensors;

The aircrew and ATC requirements;

The approval process.

Developed for all areas of operation: En-route, Terminal and Approach.


Navigation specification: Functionalities


- In addition to the performance requirements, PBN also requires certain functionalities:
 - **Examples:**
 - Continuous display of the deviation;
 - Display parameters: moving map, bearings and distances, active waypoint;
 - Radius to Fix (RF) or other leg types;
 - Parallel Offsets;
 - Baro-VNAV.

PBN concept

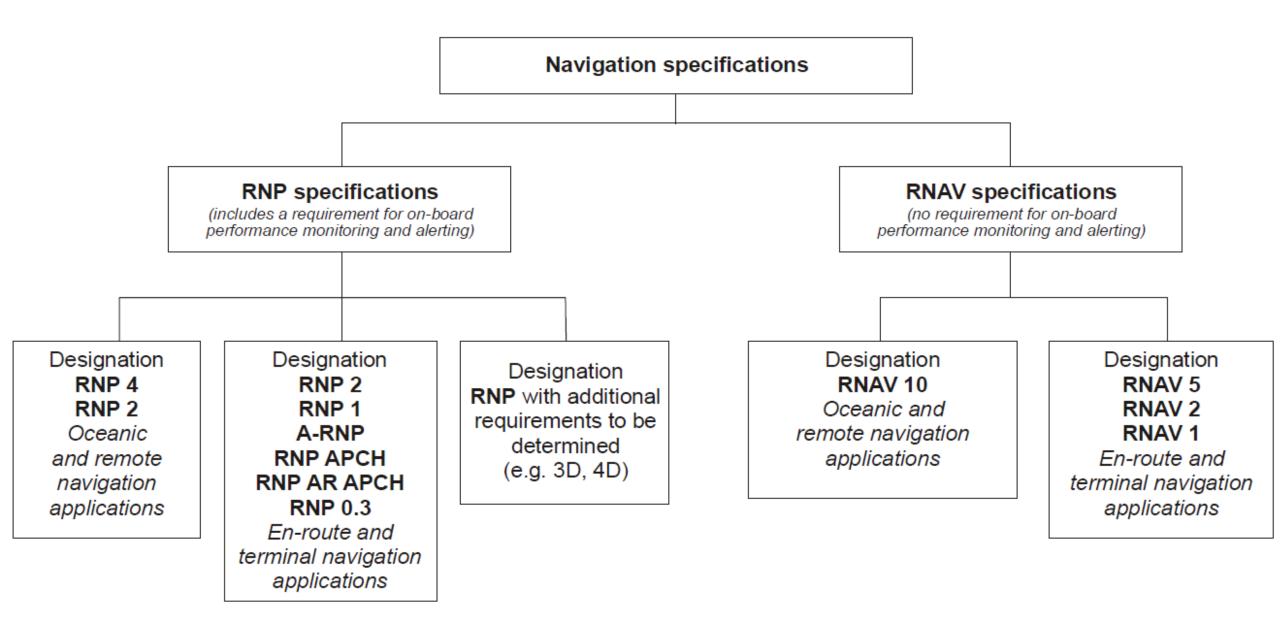
African Flight Procedure Programme (AFPP)

OBPMA allows the Crew to DETECT that the RNAV/RNP system no longer meets the REQUIRED PERFORMANCE defined in the navigation specification.

May 2023

23

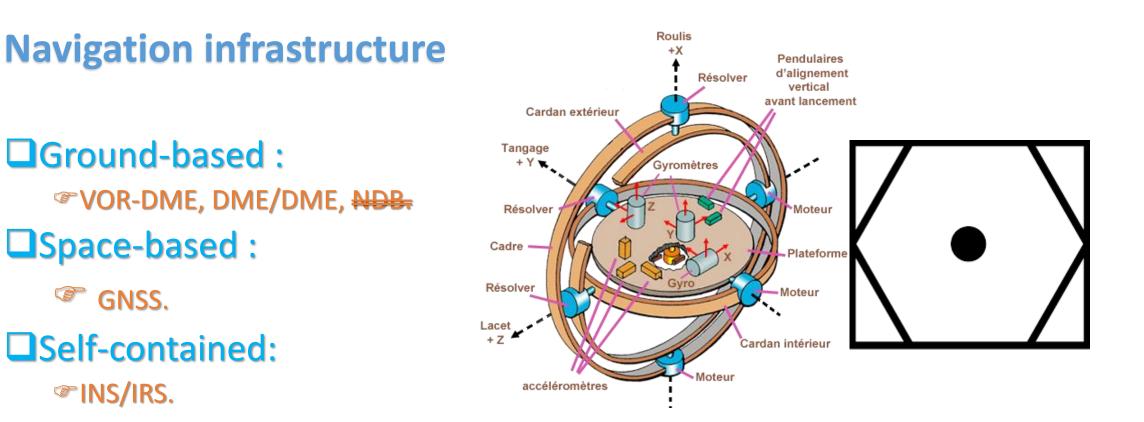
African Flight Procedure Programme (AFPP)


PBN concept

- Training and additional requirements are addressed in Doc. 9613, volume II for each navspec.
- Operational approval requirements are provided in Doc. 9997.

Ground-based :

Space-based :


GNSS.

Self-contained:

☞INS/IRS.

25

PBN concept

PBN concept

African Flight Procedure Programme (AFPP)

Navigation application

PBN application :

- Use of PBN navigation specification and PBN infrastructures on a given area of operation:
 - Eg: Use of RNP 1 navspec based on GNSS, in terminal operation (SID/STAR).

Four (04) areas of operation (flight phases):

- Oceanic or remote continental;
- Continental;
- Terminal;
- Approach.

Navigation Application

Some Navspecscan be "applied" in more than one area of operation:

- **RNAV 5** can be applied on ATS routes in (Continental), airspace or in Terminal airspace beyond 30 NM from the Aerodrome Reference Point (ARP) and above MSA;
- RNP 2 can be applied on ATS routes in Oceanic/Remote, or in (Continental) en-route airspace;
- **RNAV 2** can be applied on ATS routes in (Continental) en-route, or on STAR or SID segments beyond 30 NM from ARP;
- A-RNP can be applied on ATS routes in en-route, or in Terminal Areas on STARs or SIDs and in Approach;
- **RNP 1** or **RNAV 1** can be applied on inter-city ATS routes of short distances or in Terminal Area on STARs or SIDs.

Navigation applications

Navigation Specification		
RNP	RNAV	
RNP 4, RNP 2, A-RNP	RNAV 10	
RNP 2, A-RNP, RNP 0.3	RNAV 5, 2, 1	
RNP 1, A-RNP, RNP 0.3, RNP AR	RNAV 5, 2, 1	
RNP APCH, <mark>RNP 0.3, A-RNP 0.3,</mark> RNP AR		
	RNP RNP 4, RNP 2, A-RNP RNP 2, A-RNP, RNP 0.3 RNP 1, A-RNP, RNP 0.3, RNP AR	

UNITING AVIATION

Review of the PBN concept RELATIONSHIPS BETWEEN THE PBN COMPONENTS

African Flight Procedure Programme (AFPP)

Oceanic & Remote applications

PBN APPLICATION		RNP 4	RNP 2	RNAV 10
NAVAID		GNSS	GNSS	Dual* independent LRNS (GNSS, INS, .)
Sensor		OBPMA	ΟΒΡΜΑ	GNSS, INS
NAVPEC	Performance	TSE ≤ 4 NM	TSE ≤ 2 NM	TSE ≤ 10 NM
	Leg type	CF – DF – TF	DF - TF	-
Functionalities		Offset – FB turn, DB	Offset – FB turn, DB	-
	Surveillance	Non radar	Non radar	Non radar
Communication		Voice, CPDLC+ADS-C, or CPDLC+ADS-B		Voice*
Route spacing		Doc. 4444	Doc. 4444	50 NM
Publication		RNP 4	RNP 2	RNAV 10 *

African Flight Procedure Programme (AFPP)

En-route continental applications

PBN APPLICATION		RNP 2	RNP 0.3	RNAV 5		
NAVAID			GNSS	VOR-DME, DME/DME, GNSS, INS or IRS		
Sensor		See Previous slide	OBPMA	VOR-DME, DME/DME, GNSS, INS/IRU		
NAVPEC Leg type	TSE ≤ 0.3 NM		TSE ≤ 5 NM			
	IF-CF-CA-DF – TF-VA-VM-VI		-			
Functionalities Surveillance			DB – FB turn	Offset		
			-	Non radar	Radar*	
Communicat	Communication		-	Voice		
Route spacing			Doc. 4444	30 NM**max		
Publication			-	RNAV 5		

African Flight Procedure Programme (AFPP)

En-route continental (Contd)

PBN APPLICATION		RNAV 2	RNAV 1		
NAVAID		DME/DME, GNSS, INS	DME/DME, GNSS, INS		
Sensor		DME/DME, GNSS, INS	DME/DME, GNSS, INS		
NAVPEC	Performance	TSE ≤ 2 NM	$TSE \leq 1 NM$		
NAVPEC	Leg type	IF CF TF DF VA VM VI CA FA FM	IF CF TF DF VA VM VI CA FA FM		
	Functionalities	Data base (LOA) – FB turn	Data base (LOA) – FB turn		
Surveillance		Radar	Radar or FOSA		
Communication		Voice	Voice		
Route spacing		Radar (at least 8 NM)	Radar		
Publication		RNAV 2 (Critical DME*)	RNAV 1 (Critical DME*)		
N4 2022					

En-route and terminal applications : Advanced-RNP

RNP values (NM)	Application	
2	En-route Oceanic – Remote and continental	
1	En-route continental	
0.3	Arrival, Initial, Intermediate and Departure Note: The final approach segment is excluded	
1	Missed approach	

Note 1.— In an IAP, the A-RNP application is only used in the initial and intermediate segments and then in the missed approach. The final approach segment of IAP is defined using the RNP APCH specification. Alternatively, a non- performance-based navigation (PBN) final approach segment may be defined using instrument landing system (ILS) or ground-based augmentation system (GBAS) landing system (GLS).

African Flight Procedure Programme (AFPP)

En-route and terminal applications

PBN APPLICATION		A-RNP
NAVAID		GNSS, DME/DME*
Sensor		OBPMA
NAVPEC	Performance	$0.3 \le TSE \le 2 NM$
Leg type Functionalities		IF-CF-DF-TF-RF-CA-FA-VA-FM-VM-VI-HM
		Data base (LOA) – Parallel offset- RNP holding-FB turn
Surveillance		Radar or not
Communication		Voice (SIDs/STARs)
Route spacing		Doc. 4444 – Annex 11
Publication		-
May 2022		© 2023 African Elight Procedure Programme

African Flight Procedure Programme (AFPP)

Terminal applications (SIDs and STARs)

PBN APPLI	PBN APPLICATION RNAV		RNAV 1	RNP 1
NAVAID				GNSS
	Sensor			OBPMA
NAVPEC	Performance	See previous		TSE \leq 1 NM
NAVPEC	Leg type			IF CF CA DF TF VA VM VI
	Functionalities			Data base – FB turn
Surveilland	се			Non radar
Communication				Voice
Route spacing				Doc 4444
Publication				RNP 1

May 2023

African Flight Procedure Programme (AFPP)

PBN APPLICATION		RNP APCH down to LNAV & LNAV/VNAV minima	RNP APCH down to LP & LPV minima		
NAVAID		GNSS, DME/DME, DME/DME-INS*	SBAS		
Sensor		OBPMA	GNSS SBAS		
	Performance	Final 0.3 NM			
NAVPEC Leg type Functionalities			CF-CA-TF-IF-DF	DF	
	Functionalities	Data base, (LOA) FB turn	Data base, LOA		
Surveilland	e	Radar or not	Radar or not		
Communication		Voice	Voice		
Separation minima		Doc 4444	Doc 4444		
Publicatior	1	RNAV (GNSS) or RNP RWY XY	RNP RWY XY ()**		
May 2023		© 2023. African Flight Procedure Pro	gramme		

Approach applications

© 2023, African Flight Procedure Programme

Relationship between the PBN components

African Flight Procedure Programme (AFPP)

Approach applications						
PBN APPLICATION		RNP AR APCH and RNP AR DP				
NAVAID		GNSS				
NAVPEC	Sensor	OBPMA				
	Performance	From 0.3 to 0.1				
	Leg type	IF-CF-TF-DF-CA-RF (Optional VM)				
	Functionalities	Data base (LOA*) FB turn VNAV				
Surveillance		Radar or not				
Communication		-				
Route spacing		-				
Publication		RNP RWY XY (AR)				
May 2023		© 2023, African Flight Procedure Programme				

Approach applications

May 2023

UNITING AVIATION

Review of the PBN concept **PBN BENEFITS**

D PBN:

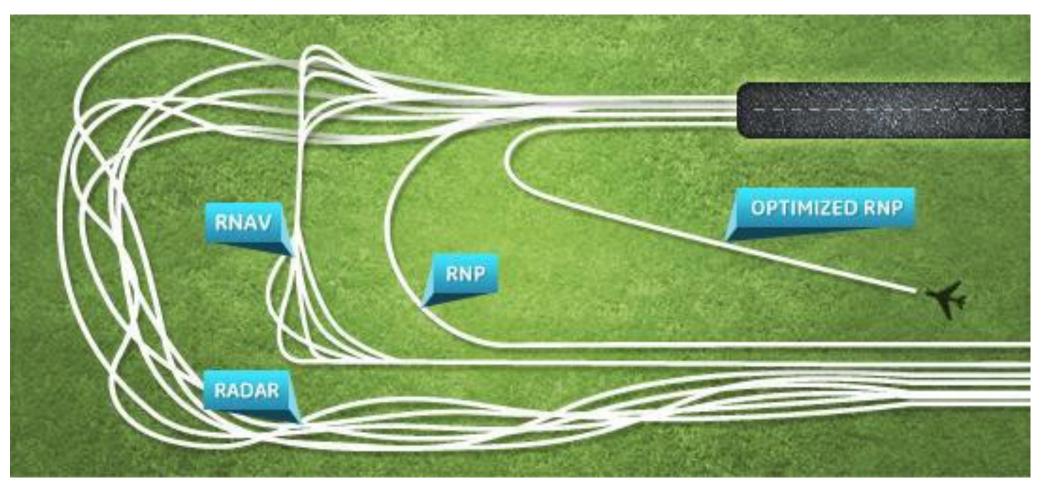
- Clarifies RNP and RNAV operations;
- Facilitates operational approval process;
- Improves safety:
 - Reduces CFIT;
 - Consistent and predictable flight path;
 - Stabilized approach paths.
- Timproves operating returns by reducing:
 - Fuel costs;
 - Investment in ground-based system and their maintenance;
 - Flight time through direct routes.
- Thereases airspace capacity:
 - More efficient direct routes;
 - Reduces airspace conflicts.
- The servironmentally friendly:



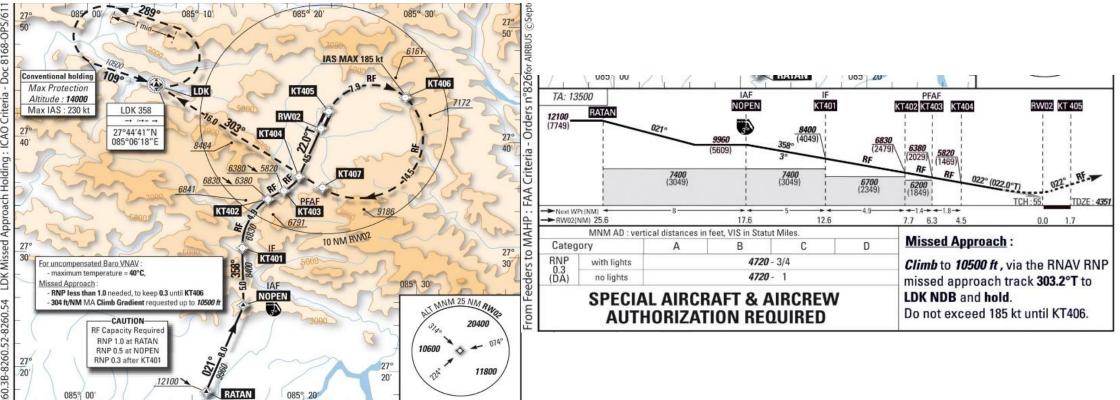
ATC and aircrew benefits:

- Safety culture;
- Greater predictability;
- Airspace containment;
- Fewer go-arounds;
- Less transit occupancy time;
- Best practices involving stakeholders in design.

PBN benefits



Radar / Conventional vs. PBN flight paths



African Flight Procedure Programme (AFPP)

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION

Review of the PBN concept THE AFI PBN ROADMAP

African Flight Procedure Programme (AFPP)

Near-term strategy (2008-2012)

Application	Preferred Navspecs	As required Navspecs	
Oceanic and Remote	RNAV 10	RNP 4	
En-route continental	RNAV 5	RNAV 2, RNAV 1	
Terminal Area	RNAV 1 with surveillance		
	RNP 1 in non-surveillance environment		
Approach	RNP APCH with baro-VNAV	RNP AR APCH	
	RNP APCH with LNAV only*		

Note*:

• Where altimeter setting does not exist or aircraft of maximum certificated take-off mass of 5 700 kg or more, using an aerodrome are not suitably equipped for APV.

African Flight Procedure Programme (AFPP)

Near-term implementation targets

Navspecs	Milestones	Application
RNP APCH with baro-VNAV	30% of the instruments RWYs by 2010	Airports with operational benefits
	50% of the instruments RWYs by 2012	Airports with operational benefits
RNAV 1*	30% for international airports by 2010	SIDs/STARs (Terminal)
KNAV I.	50% for international airports by 2012	SIDs/STARs (Terminal)
Transition to RNAV 5 or to RNAV 2/1	-	where operationally required

African Flight Procedure Programme (AFPP)

Mid-term strategy (2013-2016)

Application	Preferred Navspecs	As required Navspecs
Oceanic and Remote	RNAV 10	RNP 4
En-route continental	RNAV 5, RNAV 2	RNAV 1
Terminal Area	Expand RNAV 1 or RNP 1 applications	
	Mandate RNAV 1 or RNP 1 in high-density TMAs	
Approach	Expand RNP APCH with (Baro-VNAV or Augmented GNSS), supplemented with LNAV* only procedures	RNP AR APCH

Note*:

• Where altimeter setting does not exist or aircraft of maximum certificated take-off mass of 5 700 kg or more, using an aerodrome are not suitably equipped for APV.

African Flight Procedure Programme (AFPP)

Mid-term implementation targets

Navspecs	Milestones	Target	Application
RNP APCH with baro-VNAV or augmented GNSS	100% of the instrument RWYs	2016	Where practical
RNP APCH LNAV only	100% of instrument runway	2016	Approach
RNAV 1 or RNP 1	100%	2016	International airports
RNAV 1 or RNP 1	100%	2016	Domestic airports with operational benefits
RNP 10, RNAV 5/1/2	As required	-	Oceanic, remote, en-route continental

Long strategy (2023 and beyond):

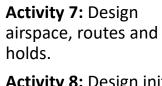
- GNSS augmentation expected to be a primary navigation infrastructure; States encouraged to:
 - Cooperate for implementation of seamless and inter-operable systems;
 - Consider segregating traffic according to navigation capability.
- Navpecs and target to be defined in due course.

CELEBRATING 70 YEARS OF THE CHICAGO CONVENTION

PBN implementation process

African Flight Procedure Programme (AFPP)

Activity 1: Agree on operational requirements


Activity 2: Create an airspace design team РГ

Activity 3: Agree on objectives, scope and timelines.

Activity 4: Analyse reference scenario.

Activity 5: Select safety criteria, safety policy and performance criteria.

Activity 6: Agree on ATM/CNS assumptions, enablers and constraints.

Activity 8: Design initial procedure.

- Activity 9: Design
- DESIGN airspace volumes and sectors.

Activity 10: Confirm **ICAO** navigation specification.

Activity 11: Validate airspace concept.

Activity 12: Finalize procedure design.

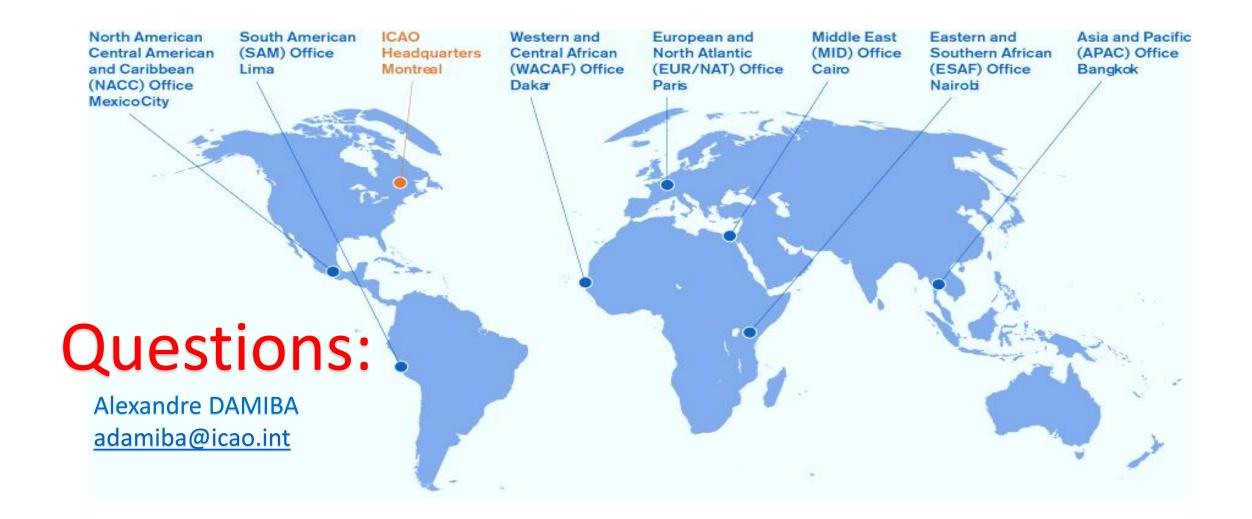
Activity 13: Validate VALIDATE procedure.

Activity 14: Integrate ATC system.

Activity 15: Develop awareness and training material.

Activity 16: Implement.

Activity 17: Conduct


post-implementation

IMPLEMENT review.

- What is PBN about?
 - Area Navigation, Globally Harmonized, Implementing Nav Specs
- Navspecs and Application / Airspace Concept
 - All the RNAV and RNP Navspecs/ Nav Application, Nav Spec, Nav Infrastructure
- PBN Terminology
 - Please don't use the abbreviation RNAV for area navigation
- PBN defines aircraft RNP or RNAV performance in terms of?
 - Accuracy, Integrity, Continuity and functionality
- Difference between RNAV and RNP
 - RNP requires on-board performance monitoring and alerting

