

AVIATION INFRASTRUCTURE FOR AFRICA GAP ANALYSIS WORKSHOP

Abuja, Nigeria 19-21 MARCH 2019

ASECNA INFRASTRUCTURE

SUMMARY

- 1. INTRODUCTION
- 2. STATUS OF IMPLEMENTATION
- 3. SERVICE AND EQUIPMENT PLAN
- 4. CONCLUSION

SUMMARY

1. INTRODUCTION

2. STATUS OF IMPLEMENTATION

3. SERVICE AND EQUIPMENT PLAN

4. CONCLUSION

1. INTRODUCTION

CONTEXT

Founded on December 12, 1959 in Saint-Louis (Senegal)

Political will of Member States

 Cooperative management of their airspace and aeronautical utility platforms

A true instrument of South-South and North-South integration and cooperation

1. INTRODUCTION

MISSION OF ASECNA

- Provide air navigation services to users that ensures the safety, regularity and efficiency of general air traffic
- Organize airspace and air routes
- Publish aeronautical information
- Realize the forecasts of aeronautical meteorology
- Provide firefighting and aircraft rescue services
- Ensure the maintenance in operational condition and the operation of equipment and facilities
- Develop specifications for functions, systems and means

1. INTRODUCTION

EXTERNAL CHALLENGES

- An average annual change of 4% in global air traffic, notwithstanding the effects of international economic and financial fluctuations
- Increasing requirements for the quality and cost of air navigation services
- African leadership in ATS service supplies
- The ICAO Strategic Objectives of the Global Air Navigation Plan (GANP)
- ➤ The Air Navigation Plan of the AFI Region in particular the declaration of Abuja
- The implementation of the PBN concept

SUMMARY

1. INTRODUCTION

2. STATUS OF IMPLEMENTATION

3. SERVICE AND EQUIPMENT PLAN

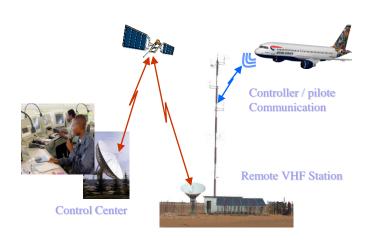
4. CONCLUSION

- Airspace of 16.1 million km2 including:
 - 6 Regions of Flight Information (FIR)
 - 10 regional control centers,
 - 57 control towers,
 - 25 international airports
 - 76 national and regional airports.
- Staff
 - About 6000 agents (controllers, engineers, senior technicians, ...)
 - + 2500 agents of the national activities of the States

Les routes du ciel, notre métier

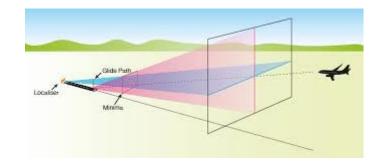
- Own telecommunications network
- Extensive experience in installation, calibration and maintenance of air navigation aids
- Three training centers for civil aviation professions
- > An ATR 42 calibration aircraft

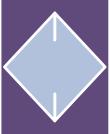
COMMUNICATION


- Mobile Service:
 - VHF (more than 81 VSAT stations installed)
 - HF
 - CPDLC
 - INMARSAT suitcase
- Fixed Service:
 - RSFTA / SMT / AMHS
 - AIDC

www.asecna.aero

Les routes du

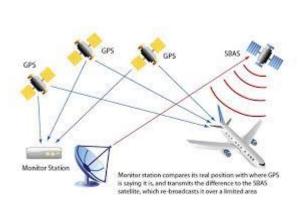

ciel, notre métier

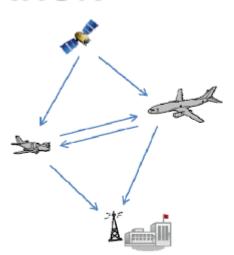


NAVIGATION

- NAVAIDS: Cat I on all major airfields
 - ILS Glide
 - VOR
 - Landing and En-route DME

Radar Guidance




SURVEILLANCE

- ➤ 17 Secondary Mono Pulse Surveillance Radars at Major Airfields Coupled with TOPSKY ATC System
- ADS-B Terrestrial
- ADS-B Satellite in Experimentation
- Radar data exchange

ENERGY BALISAGE

- Main aerodromes: CAT I markup
- Exception in Diass (Senegal) and Nouakchott (Mauritania) in CAT II
- Reinforcement by axial marking in Abidjan, Tananarive and Malabo
- Secondary aerodromes: Simplified approach system

Standalone power supply on all platforms with power station or solar system

METEOROLOGY

- Radiosonde Station
- Automatic observation system
- Synoptic Meteorological Observation Station
- Satellite weather data reception and processing system
- Wind station
- Classical instruments

SAFETY AND FIRE FIGHTING

- Fire station on each platform
- Level of protection depending on the number of visitors to the platform
- Number of vehicles and Quantity of water depending on the insured level

SUMMARY

1. INTRODUCTION

2. STATUS OF IMPLEMENTATION

3. SERVICE AND EQUIPMENT PLAN

4. CONCLUSION

- Multi-year strategic planning
- Attached to the ICAO Global Air Navigation Plan (GANP)
- Synchronization procedure with the different modules of the ASBU blocks


Les routes du ciel, notre métier

Strategic Vision 2018 - 2032:

Phase 1: 2018-2022 = 423,697 Mrds de FCFA

Phase 2: 2023-2027 = 249,030 Mrds de FCFA

Phase 3 : 2028-2032 = 221,505 Mrds de FCFA

INPUTS

Provisions of ICAO's global air navigation safety plans, including the GANP and the GASP

Needs of the Member States in satisfaction of their sovereign missions Provisions of the AFI regional plan integrating the modules of the four blocks of the ASBU

Deficiencies and shortcomings identified by different APIRG meetings

Revised Abuja targets for infrastructure implementation for the continent

INPUTS

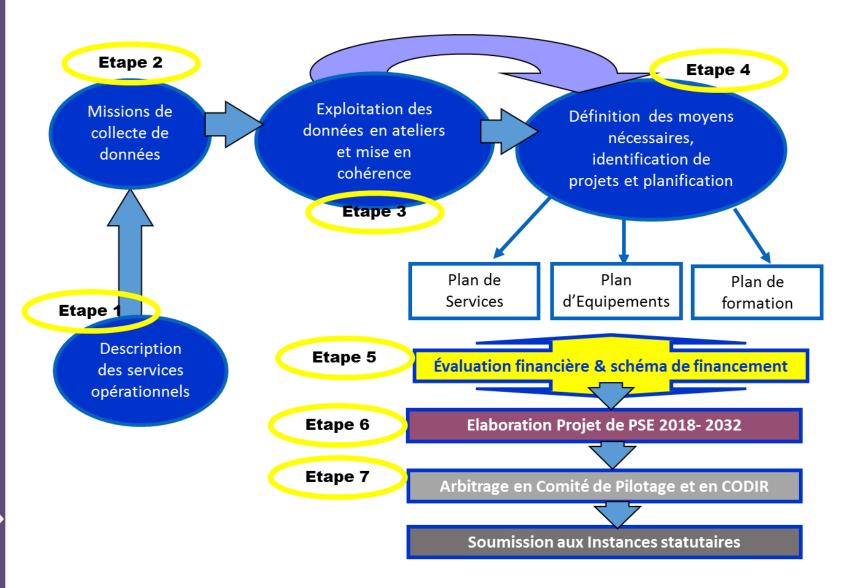
Economic **Opérationnal** considerations considerations Stratégic **Institutional** considerations considerations

INPUTS

Users expectations: IATA

Establishment of a memorandum of understanding covering several areas including flight safety

Taking into account the opinions of users in the preparation of the Agency's service and equipment plans in order to best meet users' expectations

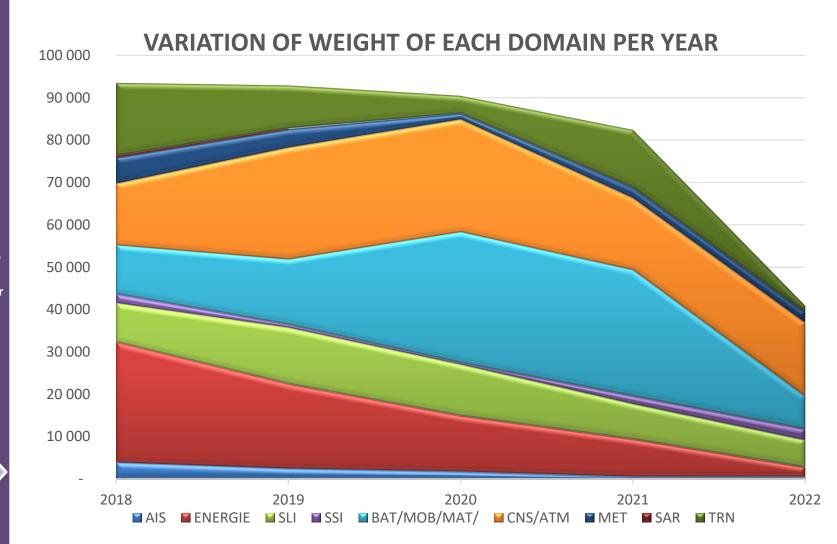

INPUTS

	Number of flights	Rate of growth
2013	536 253	3,76%
2014	543 439	1,34%
2015	575 040	5,82%
2016	585 234	1,77%
2017	597 905	2,17%

Evolution annuelle du trafic 620 000 10.00% 9,52% 9.00% 600 000 8.00% 580 000 7,00% 560 000 6,00% NB_vols 5.82% 5.00% 540 000 4,00% 520 000 3,00% 500 000 2,171 2,00% 1,77% 1.34% 480 000 1,00% 460 000 -0.00% 2013 2014 2015 2016 2017 2018

PSE 2018-2022 by Domain

Domains	Number of projects by domain and year					── Total			
Domains	2018	2019	2020	2021	2022	iotai			
AIS	12	1	1	0	0	14			
AOP	115	41	19	15	3	193			
ATM	10	8	2	1	4	25			
СОМ	12	14	1	3	1	31			
MET	8	3	1	1	3	16			
NAV	8	10	2	1	0	21			
SAR	2	1	0	0	0	3			
SUR	6	7	0	0	1	14			
TRN	52	13	11	3	2	81			
TOTAL	225	98	37	24	14	398			


PSE 2018-2022 by Domain

	2018	2019	2020	2021	2022
AIS	3 880	2 450	1 700	500	500
ENERGY	28 400	19 920	13 150	8 850	2 250
SLI	9 206	13 309	12 120	8 358	6 415
SSI	2 101	655	380	1 830	2 580
BAT/MOB/MAT	11 605	15 485	30 950	29 765	7 815
CNS/ATM	14 506	26 370	26 550	16 950	17 330
MET	6 075	4 260	1 400	2 520	2 500
SAR	450	300	-	-	-
TRN	17 192	10 050	4 100	13 530	1 550

PSE 2018-2022 by Domain

PSE 2018-2022 : Correspondence ASBU Block 0

Performance Improvement Areas	Module Description	Module	ASECNA implementation level	Comments
	Improved traffic flow thanks to sequencing (AMAN/DMAN)	BO RSEQ	Not implemented; Usually only one runway on our airports	Not applicable
	Optimization of approach procedures including vertical guidance	во арта	APV BARO/VNAV and LNAV achieved on 72% of airports	Experimentation on SBAS and GBAS
Aerodrome operations	Increased runway flow through application of optimized separation measurements based on wake turbulence	BO WAKE	Not implemented;	Non prioritaire sur terrain ASECNA
	Safety and efficiency of surface operations (A-SMGCS Level 1-2)	BO SURF	Not implemented;	Non-priority on ASECNA field but implemented on new airports (DIASS DONSE NKC)
	Improved airport operations thanks to the CDM-airport	B0 ACDM	Not fully implemented; But ongoing implementation of	

track safety teams

PSE 2018-2022 : Correspondence ASBU Block 0

	Performance Improvement Areas	Module Description	Module	ASECNA implementation level	Comments
	Interoperable	Increased interoperability, efficiency and capacity through ground floor integration	B0 FICE	AIDC in progress. Functional AMHS on some sites; Search in connectivity with OLDI	
	data systems	Improved service through digital management of aeronautical information	B0 DATM	AIXM and e-AIP being implemented as well as the AIMANT project	
		MTO Intelligence Supporting Enhanced Efficiency and Operational Security	BO AMET		
	ATM	Improved operations with better flight paths En-route	BO FRTO	Iflex available Implementation of AORA in Oceanic FIR	
	collaborative mondiale	Improved traffic flow through planning based on an overview of the network	B0 NOPS	Not implemented.	Not priority
•		Initial Ground Monitoring Functionality	B0 ASUR	SSR, ADS-C ADS-B	

PSE 2018-2022 : Correspondence ASBU Block 0

	Performance Improvement Areas	Module Description	Module	ASECNA implementation level
		Awareness of the situation of air traffic (ATSA)	BO ASEP	ASECNA not concerned
	ATM collaborative mondiale	Improved access to optimal flight levels through Climb/Descent procedures using ADS-B	B0 OPFL	ASECNA not concerned
ı	mondiale	ACAS Improvements	BO ACAS	ASECNA not concerned
l		Increased efficiency of ground safety nets	BO SNET	Implemented (FPCP, STCA, APW, DIAW, etc)
		Flexibility and efficiency in descent profiles (CDO)	B0 CDO	On going
	Effective flight	Improved security and efficiency with the initial application of En-route data links	во тво	CPDLC
•	trajectories	Improved flexibility and efficiency in starting and continuous profiles (CCO)	во ссо	On going

PSE 2018-2022 : Correspondence ASBU other Blocks

	Performance Improvement Areas	BLOC 1 (2019)	BLOC 2 (2025)	BLOC 3 (2031 and more)	ASECNA initiatives planned in PSE 2018-2022
	PIA 1 Aerodrome operations	B-APTA B1-RATS			 BO-APTA: VOR/DME, ILS, SBAS: Progressive deployment of SBAS CAT-I services from 2023 Start phase B study in 2018 GBAS: Continuation of research and development; Development of APV Baro-VNAV procedures; B1-RATS: Remote Towers.
		B1-FICE	B2-FICE		AIDC, AMHS-VSAT Network
	PIA 2 Interoperability	B1-DATM	B2-SWIM		AIMANT Project implementation ; Migration to AIXM 5.1
	of systems and data on a global	B1-SWIM			Implementation in progress
	scale	B1-AMET			Implementation of the SAOMA (Automatic Aerodrome Meteorological Observation System) and SAAPI projects

PSE 2018-2022 : Correspondence ASBU other Blocks

	Performance Improvement Areas (PIA)	BLOC 1 (2019)	BLOC 2 (2025)	BLOC 3 (2031 and more)	Initiatives de l'ASECNA prévues au PSE 2018-2022
		B1-FRTO			PBN, FUA, Iflex Optimization of Basic PBN-GNSS Approach Procedures as primary En Route and additional TMA areas;
	PIA 3				iFLEX Routes; RNAV5; PBN routes, RNP4
ro	Optimizing the capacity and flexibility of	city and bility of light B1-NOPS B2-	B2-NOPS	B3-NOPS	ATFM: implementation of an air traffic flow management center; ATN; AMHS
	trajectories				Projets RADARs, ADS-C/CPDLC, ADS-B Terrestre, ADS-B space based
		B1-SNET			Backup nets associated with ATM systems (FPCP, STCA, APW, DIAW, etc)
		B1-CDO	B2-CDO		Implementation of continuous descent procedures (CDO)
	PIA 4 Effectiveness of	B1-CCO			Implementation of continuous climb procedures (CCO)
	flight paths	B1-TBO		ВЗ-ТВО	ADS-C/CPDLC
		B1-RPAS	B2-RPAS	B3-RPAS	Specific procedures with the French army in Niamey

MAJOR PLANNED PROJECTS (1)

Optimization and modernization of AFISNET and CAFSAT networks

Interoperability with SADC and NAFISAT networks

CPDLC consolidation

Implementation of AIDC

Implementation of the AMHS

SBAS and GBAS experimentation

MAJOR PLANNED PROJECTS (2)

Implementation of PBN

Implementation of terrestrial and satellites ADS-B

Consolidation of the FDPS

Interconnection of surveillance systems

Implementation of Aeronautical Information Publication Automation Systems (e-TOD and AMDB)

MAJOR PLANNED PROJECTS (3)

Creation and Completion of a Geographic Database (GIS)

Implementation of the Integrated Meteorological Observation Data System (WIGOS) in the ASECNA Member States

Transition from MSG systems to the third generation METEOSAT system

Acquisition of appropriate systems for the detection of wind shear phenomena and stormy homes

MAJOR PLANNED PROJECTS (4)


Renewal of Rescue and Fire Fighting means

Implementation of the mixed electrical power supply systems of the centers (solar and thermal power plant)

Construction and rehabilitation of technical buildings (technical block, SLI bases, etc ...)

Improvement of training capacities of training centers (EAMAC, ERSI and ERNAM)

Acquisition of a new aircraft for calibration of facilities and control of established flight procedures

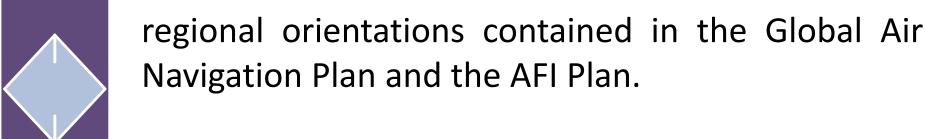
SUMMARY

1. INTRODUCTION

2. STATUS OF IMPLEMENTATION

3. SERVICE AND EQUIPMENT PLAN

4. CONCLUSION



4. CONCLUSION

Through its 2018-2022 Services and Equipment Plan (PSE), ASECNA plans to invest nearly 500 billion over five years to improve its aeronautical infrastructure to meet the operational needs of users and taking into account the objectives of the Statutory Instances.

Its PSE takes into account the international and

ciel, notre métier

4. CONCLUSION

The meeting is invited to:

- Take note of planning information for the implementation of ASECNA investment projects;
- Encourage interoperability of systems and harmonization of procedures for better coordination of services to be provided.

