WORKSHOP ON THE DEVELOPMENT OF NATIONAL PERFORMANCE FRAMEWORK FOR AIR NAVIGATION SYSTEMS KENYA

Presented by; Carolyn Mbiti

Industry Characteristics

Aircraft movements;

- 2009/10; 308,130
- Projected movements 2010/11; 317374
- Current growth: 5.6 % per annum
- Projected growth: 3% per annum

Efficiency Challenges: Airport capacity: runways and taxiway configurations, parking and passenger handling, Airspace restrictions, Equipment costs, Staffing, Improvement of infrastructure

Air navigation Service Provider

Institutional format and management:

- Autonomous Civil Aviation Authority run by a Board of Directors and managed by a Director General.
- It provides both Regulatory and Air Navigation Services. The Air Navigation Services is a Directorate headed by a Director.

ANSP cont.

- This Directorate is responsible for the operation and delivery of a range of air navigation services which include:
- Air Traffic Management :
- Aeronautical Information Services:
- Engineering Services (CNS)

ANSP cont.

Capital structure

- The ANSP derives its revenue almost entirely from user Charges
- Principal shareholders: Government of Kenya

Major stakeholders/partners

Partners:

Kenya Government, ICAO, IATA, EAC, AFCAC, Kenya Airports Authority, Kenya Meteorological Department, Kenya Air force, Kenya Army, Kenya Airways, Jet Link, East African, Fly 540, Kenya Wildlife Services, Kenya Association of Air Operators, Kenya Police, Kenya Maritime Authority, Communication Commission of Kenya, Kenya Power & Lighting.

Potential funding sources

- Government of Kenya
- World Bank
- Commercial and Development Banks
- Other Development Partners

Problem definition

Limitations of Conventional Air Navigation Systems:

- Availability, reliability and integrity of facilities
- Unreliability of Power Supply
- High maintenance costs
- Inadequacy of skilled Staff
- Inadequate coverage

Geographical scope

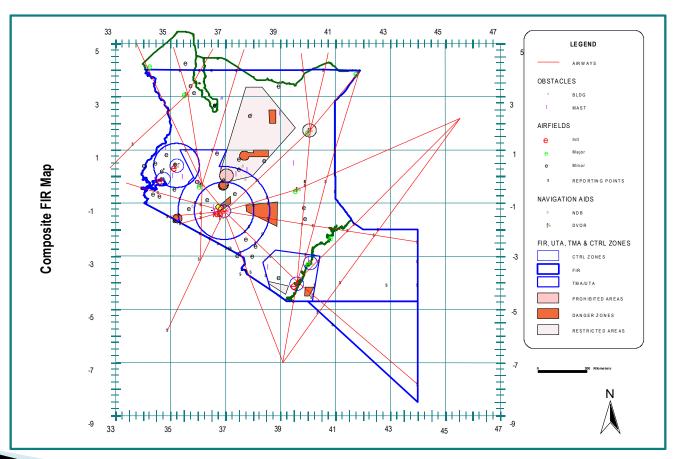


Fig 4.1: Map showing the Airspace Zones, Control Areas, Obstacles, Airways, Reporting Points and Navigation Aids.

Geographical scope cont.

The geographical scope of the National Air Navigation Plan:

Nairobi Flight Information Region

The major traffic flows:

- Nairobi Europe
- Nairobi -West Africa
- Nairobi Middle East
- Nairobi Southern Africa
- Nairobi- Mombasa

Vision

To achieve an interoperable national air traffic management system for all users during all phases of flight, that;

- meets agreed levels of safety;
- provides for optimum economic operations;
- is environmentally sustainable; and
- meets national security requirements.

National Performance Objective

Improvements to the Air Navigation System that considers operating environments and priorities specific to Kenya;

- Restructure the Airspace
- Modernize CNS/ATM facilities
- Implement new Flight Plan
- Implement electronic AIS System
- Improve runway and terminal capacity
- Improve on content, format and timeliness of Aeronautical Meteorological Information

Current air navigation systems

VHF, HF, AFTN, ATS-DS, AIDPS, ILS, VOR, DME, NDB, VDF, GNSS, SSR and PSR, and AWOS, SADIS and Alphanumeric Codes

Future air navigation systems

Data links, PBN, ADS, Multilateration Systems, ATN, DATIS, GBAS, SBAS, WAFS, TCAC, VAAC, SADIS/ISCS, XML Codes, Wind shear and Aerodrome Weather warning System Surface Movement Radar

Gap(s)

Data links, PBN, ADS, Multilateration Systems, ATN, DATIS, GBAS, SBAS, WAFS, TCAC, VAAC, SADIS/ISCS, XML Codes, Wind shear and Aerodrome Weather warning System, Surface Movement Radar

Near term operational improvements

- DATIS, ADS-C,
- CPDLC
- Wind shear and Aerodrome Weather warning System
- Surface Movement Radar

Medium term operational improvements

- Data links
- PBN
- ADS-B
- Multilateration Systems
- ATN, GBAS, SBAS, WAFS, TCAC, VAAC, SADIS/ISCS
- XML Codes.

END THANK YOU/AHSANTENI

STRATEGIC OPERATIONAL IMPROVEMENT/ NATIONAL PERFORMANCE OBJECTIVE

RESTRUCTURE THE AIRPSACE TO ENHANCE CAPACITY

Performance Benefits

Safety	1. Safety level improved				
Environment	1. Reduced emissions through use of optimum routing				
	2. Noise abetment through improved procedures				
Capacity	1. Enhanced capacity through optimum utilization of airspace				
	2. Reduced flight delays				
	Performance Measurement				
Metrics	Performance Measurement 1. Number of PBN routes implemented				
Metrics					
Metrics	1. Number of PBN routes implemented				
Metrics	 Number of PBN routes implemented Percent difference between optimal and actual route 				

Strategy

Medium term (2010 - 2015)						
ATM		Timeframe			Status	
Operational	Projects/Tasks	Start/End	Responsib	oility	ity (as of)	
Concept						
Components	D			1 1 2 2 2 2		
AOM, DCB,	1. Review ATS rou	ites	January	ANSP	Implemented 5 new route	
TS and CM	structure		2010 -		as of Dec 2010	
			December			
			2014			
	2. Implement new PBN routes					
	3. Develop new instrument					
	flight procedures					
	4. Implement enroute RADAR		January	ANSP	Personnel training on-going	
	services		2011-June			
			2011			
	5. Implement flexib	ole use of	January	ANSP and	Discussions initiated	
	airspace, improv	e	2010-June	DOD		
	civil/military co-	ordination.	2011			
	6. Improve demand	d and	Jan2012-	ANSP		
	capacity balanci	ng through	Dec 2015			
	ATFM process					
Supporting	1. Technology evaluation and gap analysis					
tools	2. Safety case and safety analysis					
	3. Business case and cost benefit analysis					
	4. Regional worksh					

ATM	Aerodrome operators, Airspace users, ATM support industry, Regulatory authorities				
Community	and ICAO				
members					
	1. Right of access to ATM resources and equity for all users				
	2. Capacity to meets peak demands, while minimizing restrictions				
ATM	3. Cost effective air navigation services				
Community	4. Minimize environmental impact				
expectations	5. Flexibility in adapting flight trajectories				
	6. Technical and operational interoperability and harmonization				
	7. Consistent and dependable levels of service				
	8. Safety is highest priority				
Project	National performance plan for implementation of air navigation system elements that				
Output	are operationally suitable, technically feasible and economically viable.				
Project	Enhanced capacity and efficiency of airspace				
Outcome					
	Risk factors: Inadequate funding; Inadequate staff; insufficient data				
Risk	Risk mitigation: identification of different funding sources; involvement of aircraft				
Management	operators in the decision making; collect and store data: recruit and train staff				
	7.				
	Risk factors: lack of funding; delay in aircraft equipage; Insufficient databases				
Risk	Risk mitigation: identification different funding sources; involvement of aircraft				
Management	operators in the decision making;				
Linkage to	GPI/1: Flexible use of airspace; GPI/5: performance-based navigation; GPI/6:Air traffic				
GPIs	flow management :GPI/7: dynamic and flexible ATS route management; GPI/8:				

collaborative airspace design and management; GPI/9: situational awareness; GPI/10:
Terminal area design and management; GPI/12: FMS-based arrival procedures;

STRATEGIC OPERATIONAL IMPROVEMENT/ NATIONAL PERFORMANCE OBJECTIVE – 2 IMPROVE RWY AND TERMINAL CAPACITY Performance Benefits Safety 1. Safety level improved Environment 1. Reduced emissions through shorter runway occupancy time and taxi time Capacity 1. Increased aerodrome capacity through better utilization of airside infrastructure

Cost	1 Cost no du sti on the	marrale aleantan	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•40	
Cost	1.Cost reduction through shorter ground movements				
effectiveness					
	Performa	nce Measure	ement		
Metrics	1. Number of operations per hour				
	2. Arrival/departure	e delay i.e. mi	nutes per flight		
	3. Amount of fuel b	ourn per opera	tions		
		Strategy			
	Medium	term (2010	2015)		
ATM		Timeframe	,	Status	
Operational	Projects/Tasks	Start/End	Responsibility	(as of)	
Concept					
Components					
AO, DCB,	1.	August	States	Database	
TS and CM		2010 -	/Territories	under	
		October		preparation	
		2010			
	1.Improve surface	Oct 2010-	ANSP	Installation	
	movement and	Feb2011		on-going	
	guidance control				
	systems through				
	SMGCS				
	2.Maximize	Jan2011-	KAA	Design stage	
	runway capacity	Dec2015			

j	in all weather			
	operations			
7	3.Implement	Jan2011-	ANSP	Planning
	ground control	Dec2013		_
	service			
	4.Separate	June2010-	KAA	On-going
	departing	Dec2013		
	passengers from			
	arriving			
	passengers			
	5.Increase	Jan2011-	KAA	Planning
	capacity for	Dec2013		
	immigration and			
	check-in			
	8.Improve	Nov2010-	KAA	On-going
	passenger utilities	Dec2015		
	9.Enhance	July2011-	KAA	Procurement
	aerodrome ground	July2013		stage
]	lighting			
	10 Construct rapid	Jan2011-	KAA	Design stage
	exit taxiways and	Dec2013		
	parallel runways			
	11.Improve	Jan2010-	KAA	On-going
	signage	Dec2013		
	4.Technology evalu	ation and GA	AP analysis	

Supporting	1.Safety case and safety analysis		
tools	2.Business case and cost benefit analysis		
	3. National workshops and seminars		
ATM	ANSP, Airspace provider-Kenya government, Airspace users,		
Community	ATM support industry, Regulatory authorities, ICAO and		
members	Aerodrome operators		
	1.Right of access to resources and equity for all users		
	2.Capacity to meets peak demands,		
ATM	3.Cost effective aerodrome operations		
Community	4.Minimize environmental impact		
expectations	5.Consistent and dependable levels of service		
	6.Safety is highest priority		
	7. Technical and operational interoperability and harmonization		
Project	National performance plan for implementation of air navigation		
Output	system elements that are operationally suitable, technically		
	feasible and economically viable.		
Project	Enhance capacity and efficiency of aerodrome operations.		
Outcome			
	Risk factors: lack of funding; insufficient data		
Risk	Risk mitigation: identification of different funding sources;		
Management	involvement of aircraft operators in the decision making; access		
	to commercial databases		
Linkage to	GPI/5: performance-based navigation; GPI/9: situational		
GPIs	awareness; GPI/9:Situational awareness; GPI/12:Functional		

integration of ground systems and airborne systems ;GPI/13:
Aerodrome design and management; GPI/14: Runway
operations; GPI/15: Matching IMC and VMC operating
capacity

STRATEGIC OPERATIONAL IMPROVEMENT/ NATIONAL PERFORMANCE OBJECTIVE – 3					
	MODERNIZE CNS/ATM FACILITIES				
	Performance Benefits				
Safety	1. Safety level improved				
Environment					
Capacity	1. Increased aerodrome capacity through better utilization of				
	CNS/ATM infrastructure				
Cost	1. Cost reduction through less maintenance expenses				
effectiveness	effectiveness				
	Performance Measurement				
Metrics	1. Number of operations per hour				
	2. Arrival/departure delay i.e. minutes per flight				
	3. Number of aircraft entering a specified volume of airspace/hr				
	4. Amount of fuel burn per operations				

Strategy Medium term (2010 - 2015)

ATM		Timeframe		Status
	D • 4 // 1		D 11.114	
Operational	Projects/Tasks	Start/End	Responsibility	(as of)
Concept				
Components				
AO, DCB,	1 Formulate	August	ANSP	COMPLETED
TS and CM	airspace	2004 -		
	concept and	October		
	determine near	2005		
	term			
	operational			
	improvements			
	2 Install	July 2010-	ANSP	On-going
	DATIS at	March		
	JKIA and	2011		
	Mombasa			
	3 Implement	October	ANSP	Contract
	ADS-C and	2010-		preparation
	CPDLC	March		
		2011		
	8. Install Surface	October	ANSP	On-going
	Movement	2010-		

	Radar	March		
	Radar	2011		
	9. Improve data	January	ANSP	Planning
	and voice	2011-		Tallining
	communication	December		
	S	2012		
	10. Install ADS-B	2012-2015	ANSP	Planning
	11. Install	2012-2015	ANSP	Planning
	Multiliteration	2012-2013		Tamming
	Systems			
	12. Implement	2013-2015	ANSP	Planning
	ATN	2013 2013	THIST	Tallining
	13. Implement	2013-2015	ANSP	Planning
	SBAS	2013 2013		
Supporting	5. Technology evaluation and gap analysis			
tools	6. Safety case and s			
	7. Business case an			
	8. National workshops and seminars			
ATM	Aerodrome operators ATM support industry, Regulatory			
Community	authorities and ICAO			
members				
	9. Right of access t	o ATM resou	rces and equity f	or all users
	10. Capacity to m	eet peak den	nands, while min	imizing
ATM	restrictions			
Community	11. Cost effective	air navigatio	n services	

1	-			
expectations	12. Minimize environmental impact			
	13. Flexibility in adapting flight trajectories			
	14. Technical and operational interoperability and			
	harmonization			
	15. Consistent and dependable levels of service			
	16. Safety is highest priority			
Project	National performance plan for implementation of air navigation			
Output	system elements that are operationally suitable, technically			
	feasible and economically viable.			
Project	Enhanced capacity and efficiency of ATM operations.			
Outcome				
	Risk factors: Inadequate funding; delay in aircraft equipage;			
Risk	insufficient data			
Management	Risk mitigation: identification of different funding sources;			
	involvement of aircraft operators in the decision making; access			
	to commercial databases			
Linkage to	GPI/9: situational awareness; GPI/15: Matching IMC and VMC			
GPIs	operating capacity; GPI/17: Data link applications; GPI/21:			
	Navigation systems; and GPI/22: Communication infrastructure.			

STRATEGIC OPERATIONAL IMPROVEMENT/ NATIONAL PERFORMANCE OBJECTIVE – 4

IMPROVE THE CONTENT, FORMAT AND TIMELINESS IN THE PROVISION OF MET SERVICES.

Performance Benefits

Safety	1. Safety level improved			
Environment				
Capacity	1. Increased traffic capacity through improved situation awareness			
Cost	1. Cost reduction through improved flight planning.			
effectiveness				
Performance Measurement				
Metrics	1. Number of operations per hour in low visibility conditions			
	2. Number of aircraft deviation due to weather			
	3. Number of runway excursions due to MET related reasons			

Strategy Medium term (2010 - 2015)

ATM Operational	Projects/Tasks	Timeframe Start/End	Responsibility	Status (as of Dec
Concept Components				2010)
AOM, AO,	1.Install wind	JAN 2011 – DEC	KMD	Design stage
DCB, TS,	shear and	2013		

AUO, ATM	aerodrome			
SDM and	weather			
CM	warning			
	systems			
	2.Implement	JAN 2011 – JUN	KMD	Planning stage
	the XML codes	2014		
	3.Implement	JAN 2010 – DEC	KMD	Design stage
	electronic	2012		
	MET provision			
	for airspace			
	users			
	4.implement	JAN 2011 – DEC	KMD	Planning stage
	TCAC and	2015		
	WAFS			
	5.VAAC	JAN 2011 – DEC	KMD	Planning stage
		2015		
	6.Enhance	JAN 2011 – DEC	KMD	Implementation
	situational	2015		is On-going
	awareness			
	7.Implement	JAN 2011 – DEC	KMD	Implementation
	meteorological	2015		is On-going
	down links at			
	MET and ATS			
	units			

Supporting	1.Technology evaluation and gap analysis	
tools	2.Safety case and safety analysis	
	3.Business case and cost benefit analysis	
	4. National workshops and seminars	
ATM	ANSP, Aerodrome operators, Airspace providers, Airspace users,	
Community	ATM support industry, Regulatory authorities, and ICAO	
members		
	1. Right of access to authorised MET information rapidly.	
	2. Capacity to meet peak demands and reduce delays	
ATM	3. Cost effective air navigation services	
Community	4. Minimize environmental impact	
expectations	5. Flexibility in adapting flight trajectories	
	6. Technical and operational interoperability and harmonization	
	7. Consistent and dependable levels of service	
	8. Safety remains the highest priority	
Project	National performance plan for implementation of air navigation	
Output	system elements that are operationally suitable, technically feasible	
	and economically viable.	
Project	Increase availability of MET information for the improvement in the	
Outcome	provision of air navigation service.	
	Risk factors: lack of funding; insufficient data; inadequate MET	
Risk	equipage; lack of qualified staff.	
Management	Risk mitigation: identification different funding sources; involvement	
	of aircraft operators in the decision making; recruit, train and retain	

	staff; access to Global MET databases; purchase required equipment.
Linkage to	GPI/7 Dynamic and flexible ATS route management; GPI/9:
GPIs	situational awareness; GPI/10 Terminal Area design and
	management; GPI/13: Aerodrome design and management; GPI/14:
	Runway operations; GPI/15: Matching IMC and VMC operating
	capacity; GPI/18: Aeronautical information; GPI/19: Meteorological
	systems.