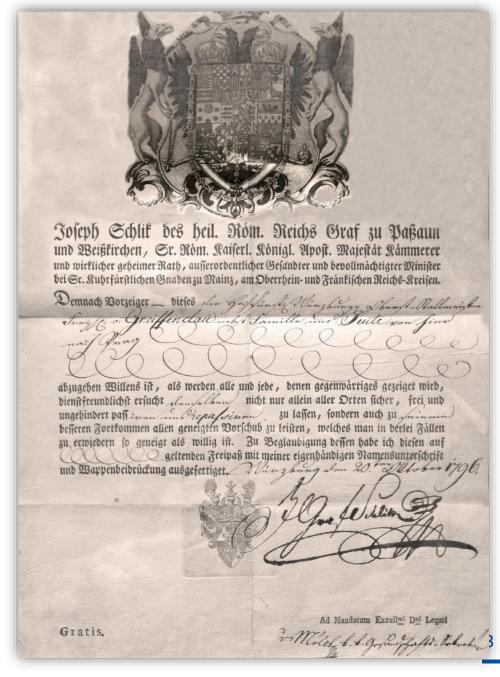
Updates to Doc 9303

R Rajeshkumar

Convener – ISO/IEC JTC1 SC17/WG3

1. History



Passport 1796

- Limited document security features – good enough for it's time
- Binding to Holder restricted to name – no biometrics
- No electronics
- Not globally interoperable

Improvements – Physical Security Features

Substrate materials

• UV dull substrate, watermarks, sensitizers, fibers, threads ...

Security design and printing

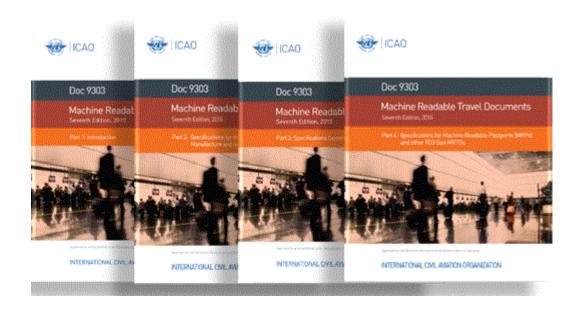
• Guilloche/rainbow printing, microprint, special inks, numbering ...

Protection against copying and alteration

Optically variable devices, multiple laser images, ...

Personalization techniques

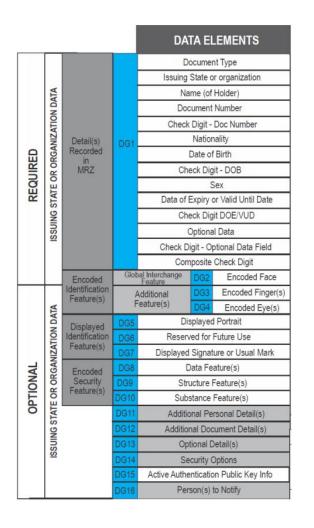
 Integration of personal data in the basis material of the document, e.g. by laser engraving



Improvements - ICAO MRTD

- Part 1: Introduction
- Part 2: Specifications for the Security of Design, Manufacture and Issuance of MRTDs
- Part 3: Specifications common to all Machine Readable Travel Documents
- Part 4: Specifications specific to TD3 size MRTDs, Machine Readable Passports

- Good Physical Security
- Binding to holder Biographic and Biometric information
- No electronics
- Standardised data elements and fields
 Global interoperability



Further Improvements – chip in passport

DataGroup 1

- Document Type
- Issuing State
- Name of Holder
- Document Number
- Nationality
- Date of Birth
- Check Digit DOB
- Sex
- Date of Expiry
- ...

DataGroup 3

EU mandatory

• 2 Fingerprints

DataGroup 2

TRIP 2025

ICA0

ICAO eMRTD

Part 1: Introduction

Part 2: Specifications for the Security of Design, Manufacture and Issuance of MRTDs

Part 3: Specifications common to all Machine Readable Travel Documents

Part 4: Specifications specific to TD3 size MRTDs, Machine Readable Passports

Part 9: The Deployment of Biometric Identification and Electronic Storage of Data in MRTDs

Part 10: Logical Data Structure for storage of Biometrics and Other Data in Contactless Integrated Circuit (IC)

Part 11: Security Mechanisms for MRTDs

Part 12: Public Key Infrastructure for Machine Readable Travel Documents

- Good Physical Security
- Binding to holder –
 Biographic and
 Biometric
 information
- Standardised data elements and fields
 Global interoperability
- Electronic SecurityeMRTD PKI, Clone detection

Further Improvement - Digital Travel Credentials (DTC)

DataGroup 1

- Document Type
- Issuing State
- Name of Holder
- Document Number
- Nationality
- Date of Birth
- Check Digit DOB
- Sex
- Date of Expiry
- ...

To proof integrity and authenticity of the data, the chip contains the Document Security Object

DataGroup 2

EF.SOD

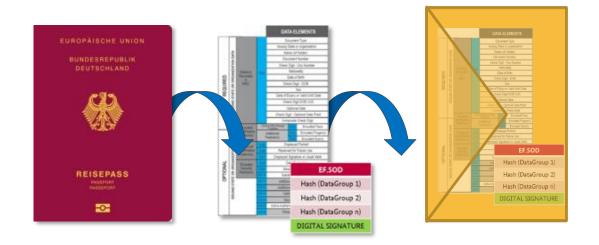
Hash (DataGroup 1)

Hash (DataGroup 2)

Hash (DataGroup n)

DIGITAL SIGNATURE

TRIP 2025


ICA0

AO TRIP 2025

ICAO

Digital Travel Credentials

- No Physical Security
- Binding to holder Biographic and Biometric information
- Standardised data elements and fields – Global interoperability
- Electronic Security- eMRTD
 PKI, Clone detection

The DTC will be covered in detail in Session 6

2. Current Landscape

- It is currently not possible to determine the type of passport from the MRZ
- This can cause issues at eGates as the visa requirements may differ depending on type of passport
- ICAO has specified the second letter and all issuers must switch to them by 2028

- National Passport PP
- Emergency Passport PE
- Single Sheet ETD PU
- Diplomatic Passport PD
- Official/Service Passport PO
- Refugee Passport PR
- Alien Passport PT
- Stateless Passport PS
- Laissez-passer type documents PL (UN, EU, Interpol, CARICOM, ECOWAS etc)

- VIZ contains date of issue
- MRZ contains only date of expiry
- Knowing the date of issue allows a few possibilities:
 - Detecting the generation of passport for lookup of Physical Security feature template
 - Knowing date of issue can assist some verification workflows at border
- Completely optional

TRIP 2025

39794-5 Application Profile

- New encoding for DG2 agreed by NTWG and endorsed by TAG/TRIP
- Inspection Systems need to be ready by 2026 to handle the new encoding
- Issuers to switch to new encoding by 2030

ISO/IEC 39794-5 Application Profile

- SC37 has published 39794 in 2021
- NTWG agreed to transition from 19794 to 39794 for DG2, DG3 and DG4
- TF5 worked on Application Profile for Facial image
 - Applicable only to the first facial image stored in DG2
 - DG3 and DG4 encoding currently out of scope
 - Some metadata elements have additional restrictions.
 - Gender (Sex) Male, Female, Other in line with Doc 9303
 - Image representation block only 2D representation allowed
 - Image data formats JPEG, JPEG2000 lossy and JPEG2000 lossless
 - 2D Face Image Kind restricted to MRTD
 - 3D shape representation block MUST NOT be used
 - ASN1 for 39794-1 and 39794-5 published to WG3 Github page

Interop tests

- Interoperability event for testing readiness of Issuers and Inspection Systems
- Sydney, October 2024
- Singapore, February 2025
- Silver dataset created and published to WG3 github site
- Additional test data created to simulate future extensions that might be defined by SC37
- Negative test cases purposefully introduce encoding errors to test how Inspection Systems behave

Why negative tests?

- Encoding errors happen in ePassports
- Finland DTC pilot defect analysis part of the pilot
- 13 defects detected in a one month trial

★In the attached table, the three columns are: Will fail PA, Can Fail PA, Will Not fail PA

★PA = Passive Authentication

	Will	Can	Will not
Wrong length encoding (security object of the document - SOD)		×	
Wrong criticality of certificate extensions (certificates)		×	
Country code in lower case (certificates)		×	
Wrong key usage (document signer certificate - DS)			×
Wrong encoding of eContentType (SOD)		×	
Wrong basicConstraint (DS certificate)			×
Wrong encoding of DocumentTypeList (certificate)		×	
Missing authority key identifier (DS certificate)	×		
Wrong Signer Identifier (SOD)	×		
Missing country code in issuer/subject distinguished name (certificates)	×		
Wrong encoding of key usage (document signer certificate - DS)		×	
Wrong Digest Algorithm (SOD)		×	
DH parameter encoding		×	

TRIP 2025

Participation

- Sydney
 - 13 eMRTD participants
 - 12 Inspection systems
- Singapore
 - 10 eMRTD participants
 - 10 Inspection Systems
 - 14 observers from governments and international organizations

Test Method

Sydney

- 5 eMRTDs encoded as follows:
 - All mandatory elements
 - All elements
 - Some optional elements
 - Fictitious future extensions
- Reference implementation of an Inspection System that can handle both 19794 and 39794

- 7 eMRTDs encoded as follows:
 - All mandatory elements
 - Some optional elements
 - Fictitious future extensions
 - Deliberate errors in encoding
- Reference implementation of an Inspection System that can handle both 19794 and 39794
- Emulator based test environment from two test labs

TRIP 2025

eMRTD specimens

Sydney

- Correctly encoded 52%
- Wrongly encoded 48%
- Re-use silver data set 56%
- Correct encoding from scratch 25%

- Correctly encoded 86%
- Wrongly encoded 14%
- Re-use silver data set 19%
- Correct encoding from scratch 82%

Inspection system – positive tests

Sydney

- Read success 79%
- With simulated extensions 54%

- Read success 95%
- With simulated extensions 95%

TRIP 2025

Inspection system – negative tests

Sydney

- Full success 4%
- Displayed image without warning 33%
- So, total success = 37%

- Full success 16%
- Displayed image without warning 46%
- Total success = 62%

Summary

- Huge improvement in the ability of Inspection systems to handle 39794-5 AP with future extensions as well – 95%
- Serious issues with encoding errors
 - Doc 9303 does not have specifications for Inspection systems
 - BUT, there is a test specification for Inspection Systems
 - Requires IS to fail if there is an encoding error !!!!!!!!!!
 - NTWG has endorsed creating specifications for Functional Requirements for **Inspection Systems**

3rd Interop test - Montreal

- November 6-7, 2025
- Participants 19 States/Vendors
- Observers 9 States/Organizations

Day 1 – Smoke test of passports and one on one debug sessions

Day 2 – Actual interop event

| ICAO TRIP 2025

Doc 9303 9th edition

- Integration of Technical Reports into the 8th edition
- Removing ambiguity in Parts 3-8
- New part 14 on Biometrics
- Possible new Part 15 on Functional Requirements for Inspection Systems

3. Future Challenges

Post Quantum Cryptography

- ICAO compliant eMRTDs heavily rely on 'classical' public key cryptography (RSA, ECC algorithms), considered reliable and robust against 'classical' computational attacks
- A Quantum Computer will be able to break 'classical' cryptography; consequently, undermining the current security mechanisms
- Biggest Threat is to Passive Authentication
- Current work on "Quantum safe mechanisms for the Document Issuing PKI and Passive Authentication"- will include the migration strategy

ICA0

Thank You R.Rajeshkumar@auctorizium.com RRaj88@gmail.com www.linkedin.com/in/rraj88

