GPS L5 FREQUENCY INTERFERENCE

URGENT REGULATORY ACTION REQUIRED

Critical Infrastructure Conflict Threatening Aviation Safety

CNS/SG14 Abu Dhabi, UAE, 19 – 23 October 2025 KAVEH PARTO/ IRAN

Executive Summary

- 16 DME channels operate directly within GPS L5 protected spectrum (1164.45-1188.45 MHz)
- 487 DME facilities worldwide affected across all major aviation regions
- High-power terrestrial navigation aids effectively jamming next-generation satellite signals
- Power disparity: DME signals 10^13 (130 dB) stronger than GPS L5
- Threatens entire GPS modernization program and safety-of-life applications
- Requires immediate coordinated international action

URGENT: Window for proactive resolution is rapidly closing

The Problem: Frequency Overlap

GPS L5 Signal Spectrum

DME Conflicting Channels

- Center Frequency: 1176.45 MHz
- Bandwidth: ±12 MHz
- Protected Band: 1164.45-1188.45 MHz
- ITU-designated for ARNS
- Designed for safety-of-life operations

- Channels 60X-75X: 1173-1188 MHz
- 16 channels in GPS L5 band
- Channel 63X (1176 MHz): Only 0.45 MHz offset
- Channel 64X (1177 MHz): IKIA case
- 487 facilities globally on these channels

FUNDAMENTAL REGULATORY CONTRADICTION

ICAO Annex 10 Volume I Contains Conflicting Standards:

Chapter 3.7.3.1.1.8.3 (GPS L5):"L5 signal power shall be contained within ±12 MHz bands centred on 1176.45 MHz: 1164.45-1188.45 MHz"VERSUSChapter 3.5, Table A (DME):Authorizes 16 channels (60X-75X) operating at 1173-1188 MHz.

RESULT

Same ICAO standard both:

✓ Protects 1164.45-1188.45 MHz for GPS L5 (Chapter 3.7)

X Authorizes DME in 1173-1188 MHz (Chapter 3.5)

Most Critical:

DME Channel 63X (1176 MHz) is only 0.45 MHz from GPS L5 carrier defined in paragraph 3.7.3.1.1.8.2

Technical Background: GPS L5 Signal

Key Technical Specifications

- Carrier Frequency: 1176.45 MHz (L5 band)
- Minimum Received Power: -157.9 dBW at Earth's surface
- Signal Power: 3 dB stronger than L1/L2 legacy signals
- Bandwidth: 24 MHz (±12 MHz from carrier)
- Chipping Rate: 10.23 Mcps (10× faster than C/A code)
- Dual-Channel Architecture: I5 (data) + Q5 (pilot channel)
- Forward Error Correction: Enhanced robustness
- Design Intent: Safety-of-life aviation operations

Technical Background: DME System

Pulse Pair Characteristics

- Pulse interval: 12 μs
- Pulse width: 3.5 μs (half-amplitude)
- Rise time: < 3 μs
- Peak power: 50W to 1000W
- Rate: Up to 2700 pulse pairs/second
- Duty cycle: 4.32% (at peak)
- Location: Ground-based transponders

Antenna Pattern

- Peak Gain: +9.5 dBi
- Maximum at 4° elevation
- 3 dB beamwidth: 6° elevation
- Omnidirectional in azimuth
- Vertical linear polarization

Signal Power Disparity: The Core Problem

Power Level Comparison

DME (near facility)

-40 dBm

GPS L5 received

-157 dBm

- Power Difference: ~117 dB (Factor of 10^13)
- Result: Receiver AGC desensitization
- GPS L5 signal buried below receiver sensitivity
- Complete loss of tracking in strong DME environments

Case Study:

<u>Imam Khomeini International Airport</u>

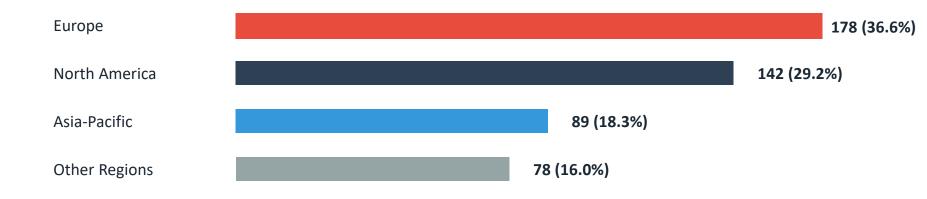
Investigation (Jan-Mar 2024)

 Authority: Iran CAOPurpose: GBAS certificationEquipment: R&S FSW43 analyzerMethod: Systematic facility shutdown & signal correlation

References

RTCA DO-229E: GPS/SBAS
 MOPSICAO Annex 10 Vol I Chapter
 3.5Working Paper Section 3.1

Key Finding:


Definitive identification of DME as interference source through controlled testing methodology

Findings

 Interference: 1177 MHzPower: -65 to -42 dBmThreshold exceeded: -111 dBmSource: DVOR/DME Channel 64X

Global Distribution of Affected DME Facilities

487 Facilities Operating on Conflicting Channels (60X-75X)

- Major hubs affected where GPS L5 benefits most critical
- Multiple overlapping interference zones in metro airspace
- Recent infrastructure investments require premature replacement

Interference Mitigation: Current Limitations

Pulse Blanking

Advantages:

- Simple implementation
- Fast processing

Limitations:

- Removes GPS + DME
- 20-40% accuracy loss
- Leaves pulse tails

Notch Filtering

Advantages:

- Filters frequency channels
- Better than blanking

Limitations:

- Removes GPS at DME freq
- Still lossy

Hybrid Method

Advantages:

- Time + freq domain
- Preserves more data

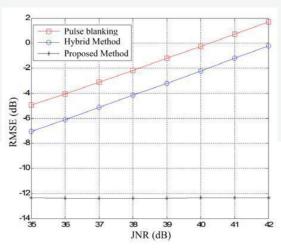
Limitations:

- Complex
- Still causes data loss

Advanced Mitigation: Nonlinear Least Squares (NLS) Method

Novel Approach: Reconstruct & Subtract

- Treats DME as 'signal of interest'
- Estimates parameters under NLS criterion:
 - Doppler frequency shift Complex amplitude
- Reconstructs DME signal from parameters
- Subtracts estimated interference


Result: Preserves more GPS data

Performance Advantage

Lower RMSE than traditional methods across all JNR levels

Significantly outperforms:

- Pulse blanking
- Notch filtering
- Hybrid methods

Impact on Aviation Modernization Programs

PBN Initiatives

- RNP AR approaches with vertical guidance compromised
- Trajectory-based operations require reliable dual-freq

GBAS CAT II/III Operations

- Precision autoland systems degraded
- Ionospheric correction unavailable

A-SMGCS Low-Visibility Operations

- Surface navigation unreliable at DME-equipped airports
- Enhanced multipath mitigation unavailable

Investment at Risk: Billions in GPS L5 infrastructure and avionics

Safety Implications

Near-Term Risks

- Inconsistent L5 performance creates operational confusion
- No DME interference warnings in current receivers
- Pilot training assumes reliable dualfrequency
- Intermittent interference creates unpredictable performance

Long-Term Strategic Risks

- 2040 traffic doubling requires enhanced navigation
- Autonomous aircraft depend on multifrequency GNSS
- Urban air mobility safety case compromised
- Global harmonization requirements

Critical Operational Scenarios

- CAT II/III approaches: Require stringent accuracy/integrity DME interference forces single-freq with reduced integrity
- RNP AR procedures: Integrity alerts may force missed approaches, negating PBN benefits
- Low-visibility surface ops: Enhanced multipath mitigation unavailable where most needed

Economic Analysis

Resolution Costs

Global total: \$2.5-3.0 billion

- Equipment procurement: \$1.2B
- Installation & commissioning: \$400M
- Flight inspection: \$150M
- Procedures & databases: \$100M
- Management & oversight: \$650M

Opportunity Costs

GPS L5 investments: \$10B+

- L5-capable avionics: \$3B unrealized
- Annual DME maintenance: \$30M (487 facilities)
- Efficiency benefits:
- Reduced flight distances
- Decreased weather delays
- Fuel savings

Net Present Value: Strongly Positive

Benefit-Cost Ratio: >5:1 over 20 years

Case Studies: Success Stories

Germany DME Rationalization

- Timeline: 2015-2020 (5 years)
- Decommissioned: 23 DME facilities
- Conflicting channels: 3 facilities

Result: Confirmed GPS L5 quality improvement

 Approach: Extensive stakeholder consultation, alternative procedures, phased transition

Singapore 'GNSS-First' Policy

- Implemented: 2018
- Decommissioned: 4 DME facilities
- Conflicting channels: 2 facilities
- Strategy: Prioritize satellite navigation with minimal ground backup

Leadership: Strong regulatory mandate + equipage requirements

Key Lessons:

- ☐ Long-term planning essential
- ☐ Stakeholder engagement critical
- ☐ Leadership drives success

Recommended Actions: Immediate (0-6 months)

ICAO State Letter acknowledging DME-GPS L5 incompatibility

- Freeze new DME installations on channels 60X-75X
- Directive to States: Begin planning for transition

Publish Interim Operational Mitigations

- AIPs/NOTAMs: Identify areas with GPS L5 limitations
- Update flight operations manuals and training

Technical Requirements

- Mandate DME interference detection in new L5 receivers
- Real-time crew alerting for signal degradation

State Infrastructure Surveys

- Identify all facilities on conflicting channels
- Assess operational criticality and develop cost estimates

Recommended Actions: Short-Term (6-24 months)

Establish GPS L5 Protection Task Force

- Navigation Systems Panel + GNSS Panel + Frequency Spectrum Management Panel
- Develop comprehensive SARP for DME transition

Develop New DME Channel Allocations

- Coordinate with ITU for frequencies outside GPS L5 spectrum
- Consider Galileo E5a/b and BeiDou B2a protection

Priority Channel Relocation: 63X and 64X

- Most critical due to proximity to L5 carrier (1176 MHz)
- Leading states commit to 24-month transition

Establish Global Navigation Transition Fund

- Initial capitalization: \$500M minimum
- Assist developing nations with transition costs

Recommended Actions: Long-Term (2-5 years)

Complete Global DME Transition

- All 487 facilities relocated off conflicting channels
- Coordinated regional implementation
- Maintain operational safety throughout transition

Establish Protected GNSS Frequency Bands

- Prevent future conflicts with new systems
- Proactive spectrum protection philosophy

New ICAO Standards

- GNSS-DME compatibility testing procedures
- Interference monitoring networks
- Enforcement mechanisms for frequency compliance

Integration with PBN Modernization

Align DME transition with broader navigation infrastructure evolution

Implementation Timeline Overview

Phase 1: Foundation (0-12 months)

- Task force
- Surveys
- Interim mitigations
- Draft standards

Phase 2: Priority (13-36 months)

- Channels 63X/64X
- 100+ facilities
- Fund establishment
- Regional plans

Phase 3: Global (37-60 months)

- All facilities
- Monitoring
- Validation
- FOC declaration

Success Metrics:

- 99% L5 availability
- Improved approach minima
 - Fuel savings
 - Enhanced accuracy

Funding Mechanisms

Innovative Financing Approaches

Global Navigation Transition Fund

- ICAO/regional organization administered
- State contributions + industry investments + development financing
- Cost-recovery model: Early adopters receive priority funding

Public-Private Partnerships

- Private sector finances implementation for long-term contracts
- World Bank & regional development banks support

Industry Contributions

• Temporary surcharge on L5-capable avionics sales

Carbon Credit Mechanisms

- GPS L5 efficiency improvements reduce emissions
- Credits sold to offset implementation costs

Cost Mitigation Strategies

- ~30% of facilities can be decommissioned without replacement
- Transition to RNAV procedures instead of DME
 - VOR-only operations where appropriate
 - Potential savings: \$500-700 million globally
- Regional Bulk Procurement Programs
 - 20-30% savings through economies of scale
 - Standardized transition packages eliminate redundant engineering
- Phased Implementation
 - Prioritize high-traffic areas for early benefits
 - Spread costs over extended periods for affordability
- Network Optimization Studies
 - Comprehensive analysis before replacement decisions

Technical Standards Requirements

Updated Receiver MOPS

RTCA DO-229F / EUROCAE ED-75E updates

- DME interference tolerance specifications
- Detection algorithms for pulse patterns
- Mandatory crew alerting requirements
- Certification test procedures
- Performance logging for monitoring

DME Equipment Standards

- Improved spectral containment
 - Advanced pulse shaping & filtering
- Adaptive power control
 - Reduce power for nearby aircraft
- GPS-disciplined timing
 - Synchronized quiet periods
 - Network-wide coordination

Integrated Navigation System Requirements

- Proper handling of degraded L5 signals in solution algorithms
- Specific DME interference pattern detection beyond traditional RAIM
- EMC testing at operational DME power levels

Call to Action: What ICAO Must Do

1. FORMALLY ACKNOWLEDGE THE CRISIS

- Issue State Letter declaring DME-GPS L5 incompatibility
- Classify as URGENT SAFETY CRITICAL issue

2. PROVIDE STRONG REGULATORY LEADERSHIP

- Establish GPS L5 Protection Task Force immediately
- Set clear requirements and enforceable timelines
- Drive international consensus and coordination

3. FACILITATE FUNDING MECHANISMS

- Establish Global Navigation Transition Fund
- Enable PPP models and development financing

4. DEVELOP NEW STANDARDS

- Updated receiver MOPS with DME interference tolerance
- DME frequency reallocation outside GNSS protected bands

Call to Action: What States Must Do

1. ACCEPT INFRASTRUCTURE TRANSITION RESPONSIBILITY

- Acknowledge that DME facilities on channels 60X-75X must transition
- Allocate budget resources despite fiscal constraints

2. CONDUCT COMPREHENSIVE FACILITY SURVEYS

- Identify all DME installations on conflicting channels
- Assess operational criticality and alternatives
- Develop detailed cost estimates and transition plans

3. PRIORITIZE MOST CRITICAL FACILITIES

- Begin with channels 63X and 64X (closest to L5 carrier)
- Focus on major international hubs first

4. SHARE IMPLEMENTATION LESSONS

- Document transition process and outcomes
- Share best practices with international community

The Choice Before Us

PROACTIVE ACTION

- Coordinated global transition
- Adequate resources and planning
- Realize GPS L5 benefits
- Enable aviation future

CONTINUED INACTION

- Degraded capabilities
- Increased safety risks
- Stranded investments
- Aviation growth constrained

CONCLUSION

The technical evidence is conclusive.

The solutions are defined.

The economic case is compelling.

What remains is the WILL TO ACT.

487 DME facilities worldwide threaten the GPS modernization program.

Every day of delay increases costs and risks.

ICAO leadership and State commitment are essential NOW.

DISCUSSION

Contact Information:

KAVEH PARTO

[kavehpartoo@gmail.com]

Key References

Key Publications:

- [11] RTCA DO-229E: Minimum Operational Performance Standards for GPS/SBAS
- [16] Wolff et al. (2014): Potential RF interference with GPS L5 for RO measurements
- [19] Chen et al. (2016): DME interference suppression based on NLS
- [26] IATA (2023): Global Aviation Infrastructure Requirements 2023-2040
- [30] Dekker (2011): Drift into Failure Complex Systems

Standards & Regulations:

- [8] ICAO Annex 10 Volume I: Aeronautical Telecommunications (Radio Navigation Aids)
- [4] GPS IS-GPS-705 Rev E: L5 Interface Specification
- [5] ITU Radio Regulations Article 5.328B: ARNS band allocation