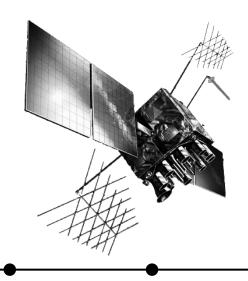


Name: Stuart Deathridge Title: GNSS Resilience


DATE: November 2025

EVOLUTION OF GNSS NAVIGATION

ENHANCED NAVIGATION PERFORMANCE

July 1977 First GNSS signal received and decoded in Cedar Rapids, at Collins

1998

GPS approved for sole means of navigation

2000

Selective availability turned off

2003

GLU-925

First **SBAS LPV** approach

2005

 GBAS Cat I implemented

GPS-4000A

2015

GPS-4000S

Implementation of RNP/RNAV in global aerospace

GNSS req.

2023

RF Robustness

Dual-

frequency/ MultiPBN **Mandates**

2025+

political

mandates

■ Geo-

VED GLOBAL ABILITIES

GLU-920

)RE EFFICIENT AIRSPACE

RFI Threats

■ US ADS-B

GLU-2100

GLS Cat II/III

constellation

Navigation Challenges Being Faced

Evolving Airspace

 The challenges being solved today are different than what we'll face tomorrow

Aging Ground Infrastructure and Regional Changes

 Legacy solutions are aging and being phased out in favor of PBN requirements

Increased Jamming & Spoofing

 Intentional RFI has expanded at exponential rates in recent years

Landing globally is non-optional

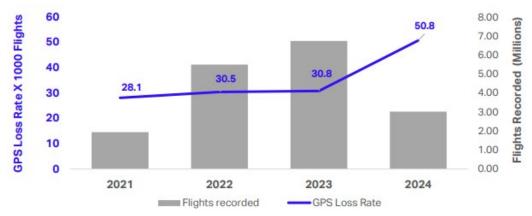
GNSS threats

70% of Commercial Air customers experience Radio Frequency Interference (RFI) on a <u>weekly</u> basis

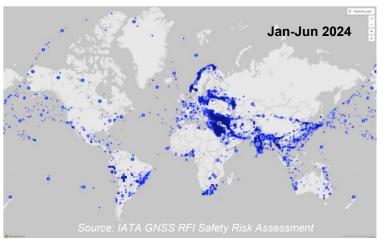
RFI reports from the Field in the last 2 years:

- Loss of GNSS for over 2 hours on flights over the Middle East
- Time jumps on flights over the Syria/Iraqi Airspace
- Corruption of GPS almanac on flights near the Baghdad airport
- Repeater based attacks on flights in Chinese Airspace
- GPS interference observed in the Dallas Area
- Spoofer attacks in the Baltic Region

Impacts of RFI:

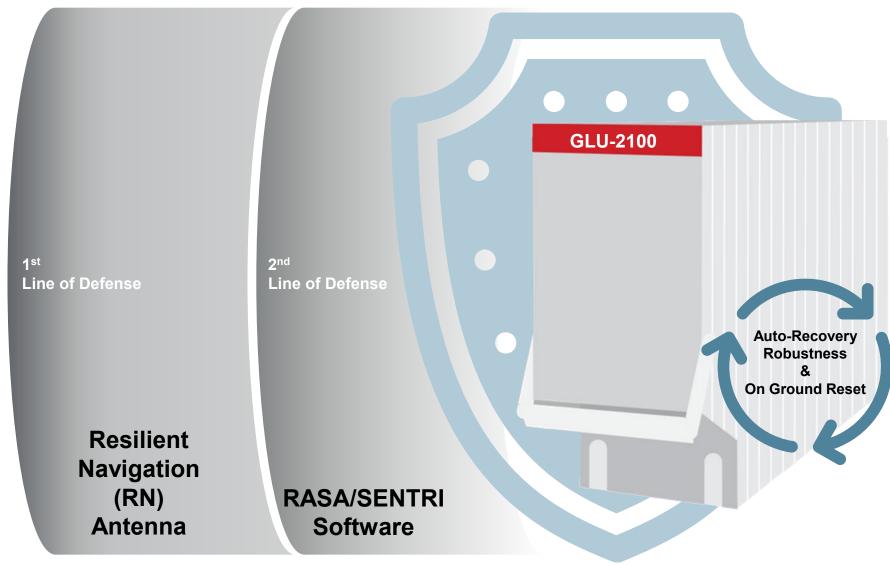

Severity

No impact


Loss of GPS that recovers autonomously after flying out of RFI region Loss of GPS that recovers after power cycle Loss of GPS that recovers after NVM (non-volatile memory) reset

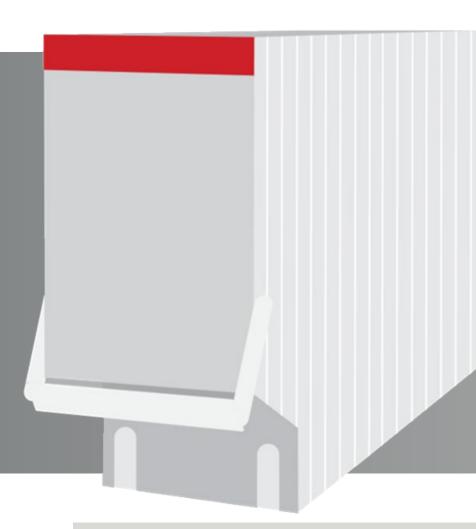
Erroneous GPS position, velocity and time outputs

GPS loss is becoming more prevalent on commercial flights


RFI is increasingly a worldwide concern

Jamming and Spoofing are real world issues demanding real solutions

Layered Approach



Collins GLU-2100 Multi-Mode Receiver (MMR)

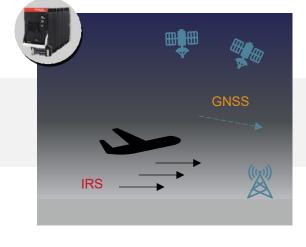
- Growth Focused
 - Field-loadable, software-configurable packages
 - Adaptable to meet today and future needs: SBAS, LPV/SLS, RFI, DFMC, etc.
 - Future Development Capability Proven
 - Flew on <u>B777 Eco Demonstrator</u>
 - GLAD Global ARAIM for Dual Constellation
 - MUGG <u>Multi-Mode GPS and Galileo Project</u>
- Drop-in replacement for most existing MMRs
- Robust, DAL A hardware
- Reduced size, weight, & power requirements

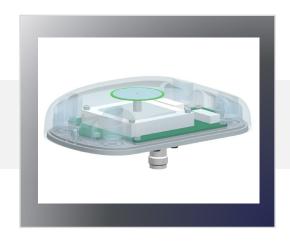
Built for today – designed for tomorrow

GLU Software Capability Progression

			Culterit Software -		
	GLU-925	GLU-2100 Initial Version	GLU-2100 V2.6 (Boeing) L4.2 (Airbus)	GLU-2100 Next SW With Optional Detection and Mitigation feature	GLU-2100 Planned Future SW
Field Loadable SW	No	Yes	Yes	Yes	Yes
SBAS	A350 GLU-925S Only	Yes*	Yes*	Yes*	Yes*
GLS CAT 1	Yes	Option Enabled	Option Enabled	Option Enabled	Option Enabled
VOR and Marker Beacon	No	Yes*	Yes*	Yes*	Yes*
GLS CAT 2/3	No	No	Option Supported*	Option Supported*	Option Supported
LPV	A350 GLU-925S Only	No	Option Enabled	Option Enabled	Option Enabled
DO-229E	No	No	Yes	Yes	Yes
RFI Improvement Robustness Improvements	No	No	Good	Better	Best
RFI Detection and Mitigation	No	No	No	Option Enabled	Option Enabled
DFMC	No	No	No	No	Option Enabled

- Current Software -




An evolving software solution for evolving needs

Resilient GNSS Technology Current solutions for Commercial Aviation

GLU-2100 MMR

Multi-Mode Receiver

- Software-defined GNSS receiver
- Supports Satellite-Based Augmentation System (SBAS)
- Supports Ground-Based Augmentation System (GBAS)

RASA

Receiver Autonomous Signal Authentication

 Monitors receiver clock stability to detect spoofers

SENTRI

Staggered Examination Of Non-trusted Receiver Information

 Uses nav-grade Inertial Reference System (IRS) units on the aircraft together with GNSS data to detect spoofing

Concentric CRPA

2-Element Controlled Reception Pattern Antenna

- Meets ARINC 743 footprint and connectivity
- Retrofit compatible
- Power Compatible
- I/O to report Nulling Status
- · Field loadable

Addresses jamming and spoofing challenges in commercial aviation

RFI Detection and Mitigation Software In Development

UPCOMING SOFTWARE UPGRADE PACKAGE

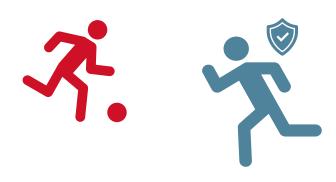
- RFI Detection and Mitigation features introduced via field-loadable software update
- Utilizes the following techniques:
 - SENTRI (IRS-Aided Spoofer Detection)
 - RASA (Effect of Spoofer on receiver clock estimate)
 - Miscellaneous robustness improvements that handle corrupted time, ephemeris and almanac.
- Position error bounds (integrity levels) computed during coasting and when protecting against Spoofers
- Fine control of RFI detection and mitigation features using the OSS
- An antenna change is not required

Next Software Package Introduces RFI Detection and Mitigation capability

Prototyping: RFI First Line of Defense

Resilient Navigation (RN) Antenna Solution

- Resilient Navigation antenna prototype underway at Collins
 - Prototypes are being tested for effectiveness in spoofing and jamming scenarios
 - Viability currently being determined
 - Navfest 2025 positive results
 - Jammertest 2025 positive results
 - Operator installing prototypes performance data expected by early 2026
- Expected to be a drop-in replacement of existing GPS antenna
 - Dependent on regulatory and OEM design requirements


More information + timeline coming soon

Two-Fold Approach: Strong Defense

Defenders: RN Antenna

- Will keep RFI (jamming & spoofing) from reaching the receiver most of the time
 - No anti-jam or CRPA antenna is foolproof

Goalie: RASA/SENTRI

- Last defense to defend the receiver from a spoofed signal
 - Prevents corrupt PVT from being used and distributed to the flight deck

Need both for a solid defense against RFI

MUlti mode GPS and Galileo project MUGG

GLU-2100 Future Potential Options

Evaluating & Prototyping -

- Dual Frequency / Multi-Constellation Option (DFMC)
 - Upgradable via software and dual-frequency antenna
 - Additional navigation modes
 - Further RFI improvements
- MUGG Project
 - Extensive DFMC work being done by Collins in support of the European Global Navigation Satellite System Agency (GSA)

Exploration

- Alternate Position Navigation and Timing (APNT)
 - Use of non-GNSS APNT sources
 - Dependent on industry alignment, regulatory acceptance, and OEM Integration

GLU-2100 designed to grow for continued future flexibility

MUGG Project: GLU-2100 -> DFMC Prototype

- The MUGG DFMC Prototype is built from Collins GLU-2100 Product and includes:
 - New navigation modes: DFMC SBAS PA/NPA, DFMC H-ARAIM, L5 H-ARAIM
 - Implementation of ED-259A MOPS acquisition and tracking requirements
 - Optimizations to DSP functions and resource re-allocations
 - Specific forced modes for test purposes...

Why DFMC?

- GPS L1/L5 and Galileo E1/E5a
- Integrity of the GNSS solution is increased, meaning more trust can be placed in the accuracy of the PVT
- Accuracy is improved thanks to less noisy measurements and the ability to remove some error sources such as ionospheric delay
- Specifically in aviation, there is the possibility to operate at more airports in locations with limited or no ground-based landing systems or SBAS coverage
- Increased resilience in case of an L1/E1 outage

Project main achievements

HARAIM

- For the first time on the certified platform GLU-2100, H-ARAIM developed in the scope of MUGG have been demonstrated in a representative operational conditions
- With improved Poonst for the Galileo constellation, a significant improvement for the Protection Levels performance would be achieved: down to 20 meters

SBAS DFMC

- MUGG project demonstrated the implementation of DFMC SBAS capability on an Avionics certified hardware platform
- Comparison of L1 SBAS, GPS L1L5 SBAS and DFMC SBAS shows significant improvement for LPV and CAT1 coverage
- Implementation of MOPS in a representative avionics receiver is key to mature/consolidate
 MOPS requirements

For further information...

• MUGG project website:

Multi-Mode Global Positioning
System and Galileo Project |
Collins Aerospace

Committed to air travel safety

ommitment to current and future air travel safety, the MUGG project continues to pursue avigation excellence adapting technology and performing flight trials.

Request information

I would like more information about this capability

Thank You!