

METEOROLOGY PANEL

Space Weather Radiation Mitigation in Low Earth Orbit

*Presented by Alessandro Bucci
ENAC - Italian Civil Aviation Authority*

METP SWX User Workshop, 20 October 2025, Rome, Italy

Low Earth Orbit (LEO), ranging from 160 to 2000 km, is vital for satellites and the ISS (International Space Station) but presents a challenging radiation environment increasing health risks for astronauts and threatening spacecraft reliability.

This research evaluates radiation dose rates in LEO at ISS altitude (400 km) under varying space weather conditions to highlight the need for integrated monitoring and mitigation strategies to enhance radiation protection and ensure safe human operations in orbit.

Solar Wind

Characteristic	Solar Wind
Definition	Continuous plasma flow from the solar corona
Frequency	Permanent
Speed	300 – 900 km/s
Composition	Protons (H ⁺) ~95% ; Helium nuclei (He ²⁺) ~5%; Free electrons; Heavy ions (C, O, Fe) traces
Origin	Slow wind: equatorial corona; Fast wind: coronal holes
Duration	Constant
Arrival on Earth	~1–5 days
Ejected Mass	Continuous flow (~5–10 particles/cm ³ near Earth)
Main Effects	Constant pressure on magnetosphere

METEOROLOGY PANEL

Coronal Mass Ejection

Characteristic	Solar Wind
Definition	Continuous plasma flow from the solar corona
Frequency	Permanent
Speed	300 – 900 km/s
Composition	Protons (H ⁺) ~95% ; Helium nuclei (He ²⁺) ~5%; Free electrons; Heavy ions (C, O, Fe) traces
Origin	Slow wind: equatorial corona; Fast wind: coronal holes
Duration	Constant
Arrival on Earth	~1–5 days
Ejected Mass	Continuous flow (~5–10 particles/cm ³ near Earth)
Main Effects	Constant pressure on magnetosphere

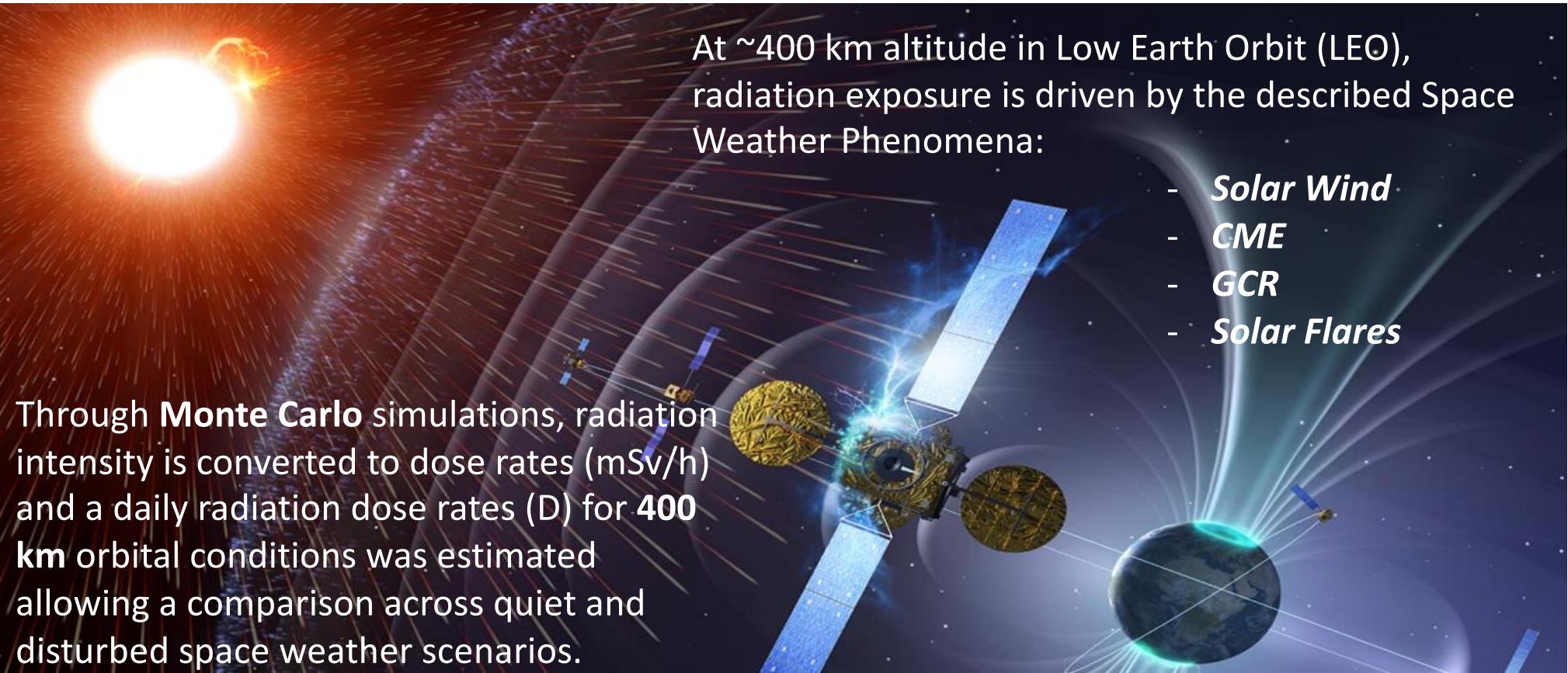
METEOROLOGY PANEL

Solar Flares

Characteristic	Solar Flares
Definition	Sudden burst of electromagnetic radiation
Frequency	Episodic
Speed	300,000 km/s (EM radiation)
Composition	Photons (X-rays, UV, γ -rays) No massive particles
Origin	Magnetic reconnection in active regions (often with CMEs)
Duration	Minutes–hours
Arrival on Earth	8 minutes
Ejected Mass	No mass (only photons, EM radiation)
Main Effects	- Radio disruptions (shortwave); - Immediate ionization increase

METEOROLOGY PANEL

Galactic Cosmic Rays (GCR)


Characteristic	Galactic Cosmic Rays (GCR)
Definition	Extremely high-energy particles from outside the solar system
Frequency	Permanent
Speed	~300,000 km/s
Composition	Protons (H ⁺) ~85%; Helium nuclei (He ²⁺) ~12% Free electrons <1%; Heavy ions (C, O, Fe) traces
Origin	Supernovae, galactic nuclei accelerators, extragalactic sources
Duration	Constant
Arrival on Earth	~8 minutes
Ejected Mass	Minimal mass per unit volume (ultra-energetic particles)
Main Effects	Ionizing radiation risk for astronauts & crews; Effects on cells and space tech

METEOROLOGY PANEL

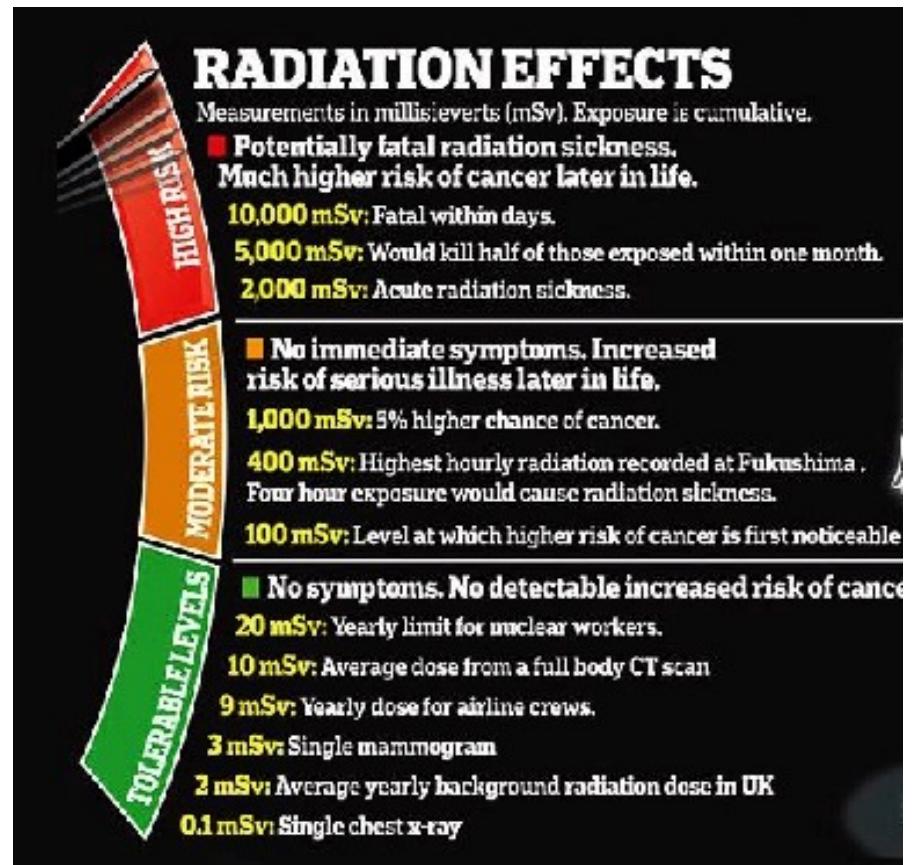
Materials and Methods

At ~400 km altitude in Low Earth Orbit (LEO), radiation exposure is driven by the described Space Weather Phenomena:

- ***Solar Wind***
- ***CME***
- ***GCR***
- ***Solar Flares***

Through **Monte Carlo** simulations, radiation intensity is converted to dose rates (mSv/h) and a daily radiation dose rates (D) for **400 km** orbital conditions was estimated allowing a comparison across quiet and disturbed space weather scenarios.

$$D = I \times \alpha \times f(h) \times t$$


I: radiation intensity, which varies depending on the solar event;

α : conversion factor that standardizes radiation intensity into dose equivalents;

f(h): shielding factor, which varies depending on the specific altitude (h);

t: time spent at a specific altitude.

$$\text{Cumulative Total Dose} = \sum_{i=1}^N D_{\text{event},i}$$

Input Parameters

Solar radiation intensity quantifies the energy flux emitted by solar events and received at a specific location:

$$I = \frac{P}{A}$$

Conversion Factor streamlines the relationship between radiation intensity and biological effects:

$$\alpha = \frac{D}{I}$$

Shielding Effect represents the protective effect of the Earth's atmosphere:

$$f(h) = \frac{D_{actual}}{D_{unshielded}}$$

METEOROLOGY PANEL

Input Parameters - Shielding Effect of Earth's Atmosphere $f(h)$

Altitude	Shielding Factor $f(h)$	Radiation Penetration	Description
Ground Level	~ 0.01	1% of incoming radiation reaches the surface	The atmosphere effectively blocks most cosmic and solar radiation.
Aviation Altitudes (9–12 km)	0.1 – 0.2	10–20% of solar radiation penetrates	Radiation exposure increases as shielding from the atmosphere decreases.
Lower Thermosphere (~100 km)	0.5 – 1.0	Nearly all incoming radiation reaches this altitude	The atmosphere becomes very thin, providing minimal shielding against radiation.
Low Earth Orbit (~400 km)	~ 2.0	Twice the unshielded radiation dose compared to Earth	Virtually no atmospheric shielding, exposing astronauts to significant radiation.

Altitude	No Solar Storm	G1 (Minor)	G2 (Moderate)	G3 (Strong)	G4 (Severe)	G5 (Extreme)
$f(h) @ 400 \text{ km}$	2.0	~2.2	~2.5	~3.0	~4.0	≥ 5.0

METEOROLOGY PANEL

Scenarios Comparison – Active regions

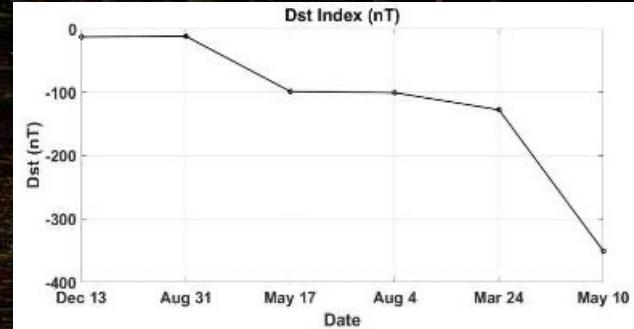
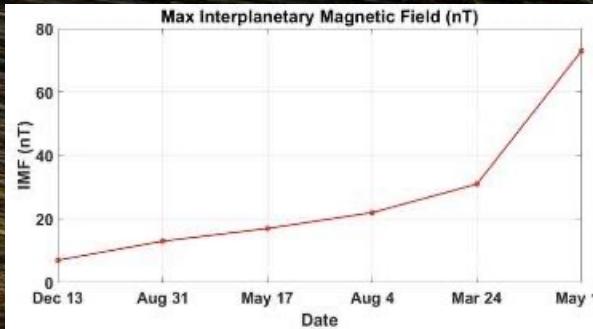
Reference Scenario
Dec 13th, 2024

Scenario 1 - Aug 31st, 2024
(G1 Class)

Scenario 2 – May 17th, 2024
(G2 Class)

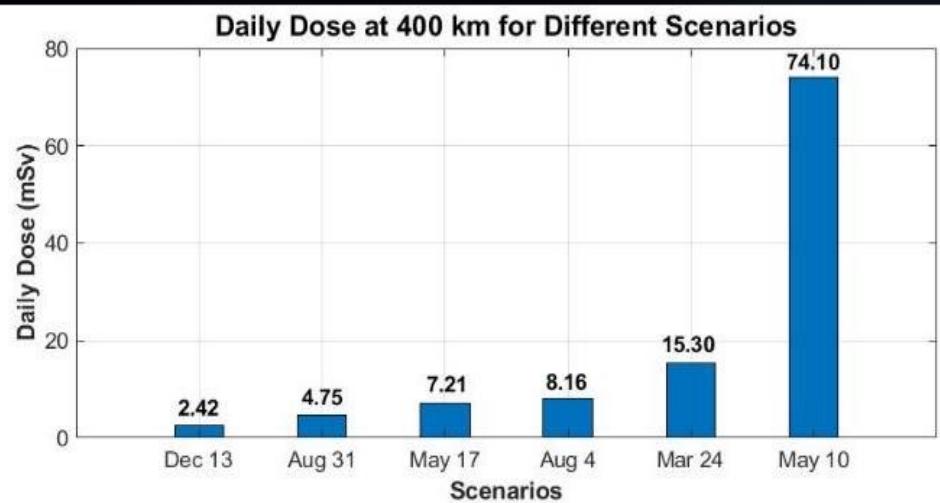
Scenario 3 – Aug 4th, 2024
(G3 Class)

Scenario 4 – Mar 24th, 2024
(G4 Class)



Scenario 5 – May 10th, 2024
(G5 Class)

METEOROLOGY PANEL

Scenarios Comparison – Parameters



Scenario	Day	G Class	Max Solar Wind Speed (km/s)	Max IMF (nT)	Southward Bz (nT)	Dst Index (nT)	Kp Index
Reference Scenario	Dec 13 th , 2024	-	362	7	- 7	-13	~2
Scenario 1	Aug 31 st , 2024	G1	411	13	-12	-12	~5
Scenario 2	May 17 th , 2024	G2	491	17	-15	-99	~6
Scenario 3	Aug 4 th , 2024	G3	415	22	-17	-101	~7
Scenario 4	Mar 24 th , 2024	G4	886	31	-24	-128	~8+
Scenario 5	May 10 th , 2024	G5	796	73	-50	-351	~9-

METEOROLOGY PANEL

Monte Carlo Simulations – Output

	Day	G Class	Daily Dose @ 400 km (mSv)
Reference Scenario	Dec 13 th , 2024	-	2.424
Scenario 1	Aug 31 st , 2024	G1	4.752
Scenario 2	May 17 th , 2024	G2	7.212
Scenario 3	Aug 4 th , 2024	G3	8.158
Scenario 4	Mar 24 th , 2024	G4	15.302
Scenario 5	May 10 th , 2024	G5	74.100

METEOROLOGY PANEL

Time Allocation – (hrs/day)

Activity	Module(s)	Time Allocation (hrs/day)	Shielding Factor (% Dose Reduction)	
Extravehicular Activities	EVAs	Outside ISS	0,50	0%
Work and Research Activities	WRAs	Destiny, Columbus, Kibo	8,50	15%
Exercise Activities	EAs	Tranquility	3,00	25%
Sleep and Rest Activities	SRAs	Harmony and Zvezda	8,00	40%
EVA Preparation Activities	EPAs	Quest Airlock, Pirs	0,50	15%
Meals & Personal Time Activities	MPTAs	Unity, Zvezda	2,50	40%
Transit and General Movement Activities	TGMAs	All modules	1,00	25%

#EuropeanRoboticArm

METEOROLOGY PANEL

Zvezda Shielding Variability during Geomagnetic Storm

No Geomagnetic Storm

prevalent

Geomagnetic Storms (G1–G5)

prevalent

Zvezda's shielding factor varies according to the geomagnetic storm class and shielding response as follows

Galactic Cosmic Rays are

Solar Flares and CME are

G Class	Typical External Dose (mSv/day)	Zvezda Dose (mSv/day)	% Shielding Factor	% Mean Shielding Factor	% Change
No Storm	1.3–1.5	0.8–1.0	33–46%	39.5%	-
G1 (Minor)	1.7–2.0	1.0–1.2	41–50%	45.5%	+15.2%
G2 (Moderate)	2.5–3.0	1.3–1.5	40–50%	45%	-1.1%
G3 (Strong)	3.5–5.0	2.0–2.5	43–50%	46.5%	+3.3%
G4 (Severe)	6.0–8.0	3.5–4.5	44–53%	48.5%	+4.3%
G5 (Extreme)	9.0–12.0+	6.0–7.0	38–50%	44%	-9.2%

METEOROLOGY PANEL

Daily Dose Comparison in LEO for Different Activities

All pressurized modules were modeled with Zvezda-like shielding properties and for each module, it was assumed:

- a % mean shielding factor typical for each module;
- a Zvezda module % mean shielding factor change from G1 to G5;
- the time spent in every module.

Scenario	G Class	Effective Daily Dose (mSv)								TOTAL
		EVA	WRAs	EAs	RSAs	MPTAs	EPAs	TGMAs		
Reference	-	0.0505	0.7309	0.2272	0.4891	0.1529	0.0429	0.0757	1.7692	
Scenario 1	G1	0.0990	1.3950	0.4234	0.8637	0.2700	0.0819	0.1411	3.2741	
Scenario 2	G2	0.1503	2.1215	0.6451	1.3222	0.4133	0.1245	0.2150	4.9919	
Scenario 3	G3	0.1708	2.3859	0.7206	1.4553	0.4559	0.1400	0.2402	5.5687	
Scenario 4	G4	0.3188	4.4324	1.3258	2.6263	0.8224	0.2601	0.4419	10.2277	
Scenario 5	G5	1.5438	21.9326	6.6794	13.8320	4.3115	1.2863	2.2265	51.8121	

METEOROLOGY PANEL

Analysis of Events

Year 2024 was characterized by days with the following Kp values:

Kp Matrix	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Jan 24	4	3-	3+	3-	2	1	0+	2	2+	2+	2	1+	1-	2	2+	3-	1+	2+	3-	2+	2	3+	3-	3+	2+	2	2+	3	3-	2+	2+
Feb 24	2	1	1-	3	3-	3	1+	2-	3	2+	4+	2+	4-	3	1+	2	2	3+	0+	2+	1+	2-	1+	2+	3	3	4+	2	2-		
Mar 24	3-	2+	6+	4	3-	3	4-	4-	4	2+	2	2+	3+	3	3+	1-	0+	3-	3-	2+	5-	3+	6-	8+	5	3	3	3-	2-	2-	4-
Apr 24	4-	3-	3-	3+	3+	3	2+	3+	3+	3-	3-	2+	2	2-	3-	5+	3	2-	2-	3-	4	2+	3-	1	1-	5	3+	4-	3-	4+	
May 24	4-	7-	4	3	4+	5+	3-	2	2+	9-	9	7	6	2+	3	6	6	4	3-	2+	3-	2-	3+	3	2+	3-	3	2	2+	3+	4
Jun 24	2+	2+	4+	3-	2+	2	6+	5-	2	4	4	1+	1	2+	5-	4	3+	3+	3+	2+	1+	1+	3+	2-	3-	3-	3+	8-	4	4-	
Jul 24	2-	1+	1+	3	3	1	3-	3+	2+	2-	2	2	1+	1+	3	3+	2+	1+	1+	1+	3-	2-	3-	2-	3+	5	4	3-	2	5+	5-
Aug 24	5+	3-	3-	7	3	2-	2+	3-	2	2+	5	8	4+	4-	2	3-	6+	4-	3	3+	3+	3	2+	3	2+	2-	3+	6-	2	5-	5-
Sep 24	4-	3-	2	4+	2-	3	2+	2+	3-	2+	4-	7	6	4+	4	4	7+	4-	4+	3+	2	2	4+	4+	5	4	2+	3	4-	4	
Oct 24	2	2	3	3	2+	5-	6+	7	4+	9-	8+	5-	2-	4-	3+	3	3	4-	5	3	2	3	3	4+	1	4	3-	5-	4	4	4-
Nov 24	3-	4	4	4+	3-	3+	3	4-	5	6-	3	2-	3-	4-	3+	3+	3-	2	3-	3-	3	3+	3-	4	3+	3	2+	2-	3-	4+	
Dec 24	3-	2+	3+	2	2+	2+	2-	2+	4+	2+	2	2+	2-	3+	3	4-	5+	4-	4-	4-	3+	3+	4-	3+	2	0+	1+	1+	2-	2+	4

METEOROLOGY PANEL

Analysis of Events

It was estimated the 2024 astronauts yearly dose rate:

Kp Value	Classification	G Class	Events
Kp \leq 4	No Storm	-	320
Kp = - 5, 5, + 5	Minor	G1	21
Kp = - 6, 6, + 6	Moderate	G2	10
Kp = - 7, 7, + 7	Strong	G3	7
Kp = - 8, 8, + 8	Severe	G4	4
Kp = - 9, 9	Extreme	G5	3

Scenario	Day	G Class	Events	Unshielded Yearly Dose @400km (mSv)	Effective Yearly Dose @400km (mSv)
Reference	Dec 13 th , 2024	-	320	775,5200	566,1440
Scenario 1	Aug 31 st , 2024	G1	21	99,7920	68,7561
Scenario 2	May 17 th , 2024	G2	10	72,1200	49,9190
Scenario 3	Aug 4 th , 2024	G3	7	57,1032	38,9809
Scenario 4	Mar 24 th , 2024	G4	4	61,2080	40,9108
Scenario 5	May 10 th , 2024	G5	3	222,3000	155,4363
2024 Yearly Dose Rate				1288,0432	920,15

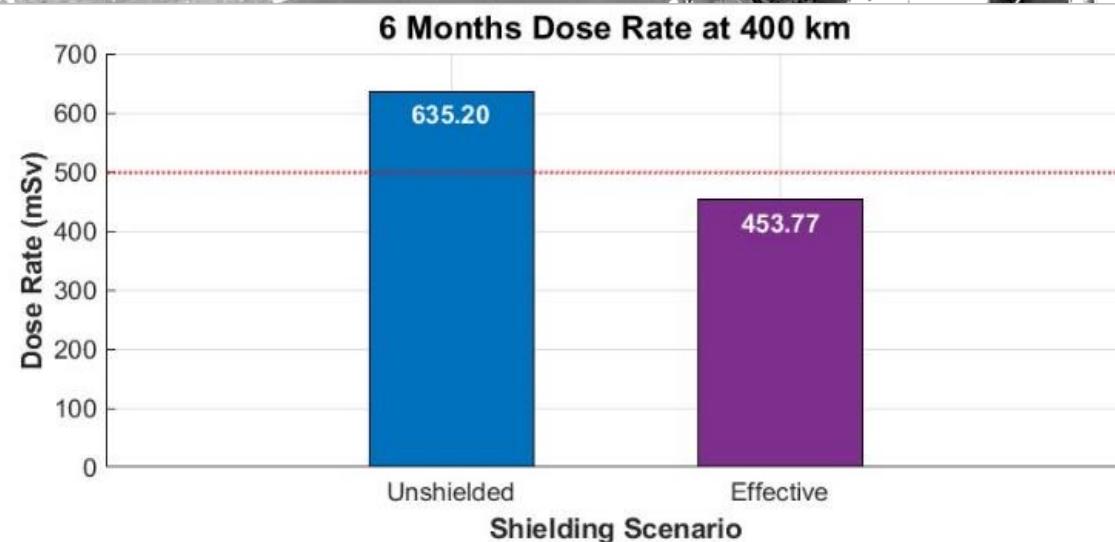
METEOROLOGY PANEL

Exposure Limits

Category	LEO Crew
Monthly Regulatory Limit	250 mSv
Annual Regulatory Limit	500 mSv
Regulatory Agencies	NASA, ESA, Roscosmos

ROSCOSMOS

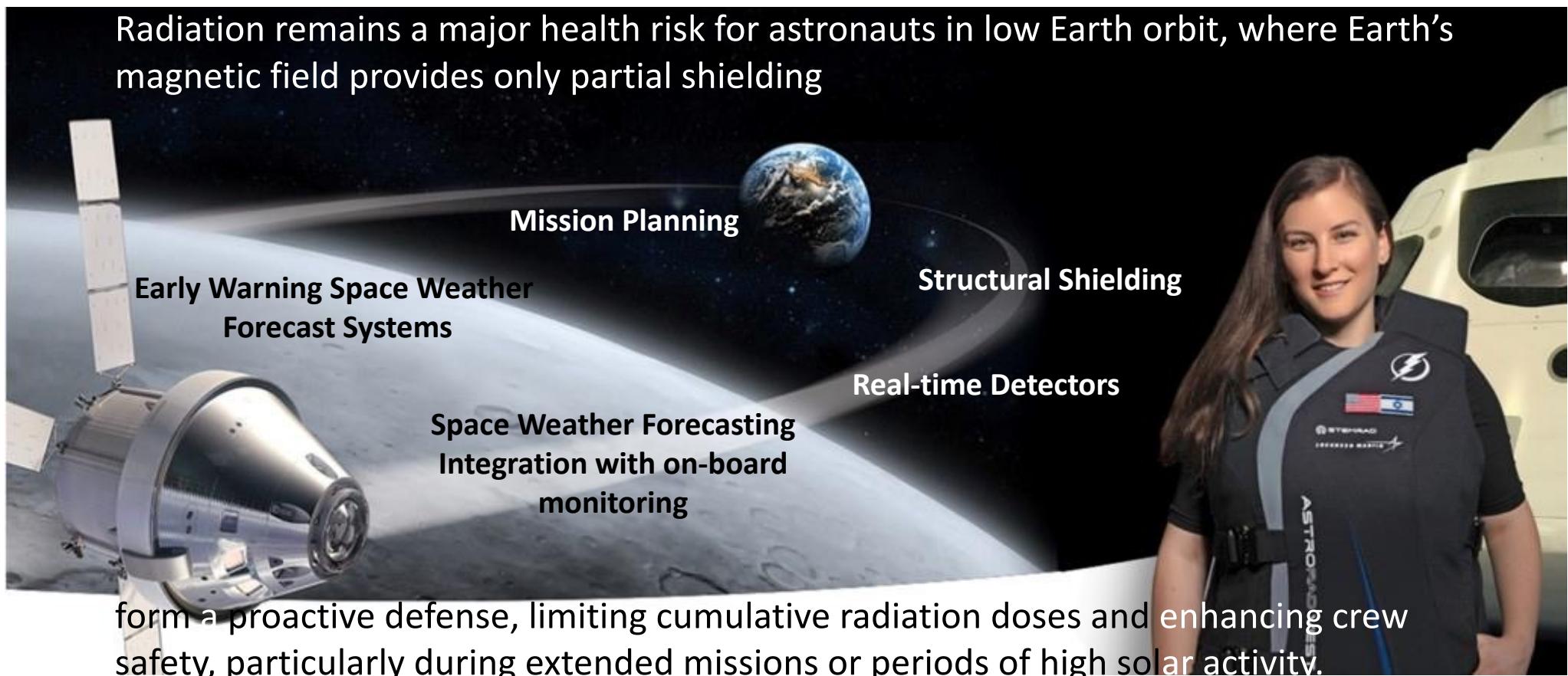
	Unshielded Dose (mSv)	Effective Dose (mSv)
2024 Annual Dose Rate	1288,0432	920,15
Annual Regulatory Limit Dose Rate	500	500
Difference	+157.61%	+84.03%



Mitigation - Mission Duration

6 months - 182,5 Days

	Unshielded Dose (mSv)	Effective Dose (mSv)
2024 Semesterly Dose Rate	635,1994	453,7700
Annual Regulatory Limit Dose Rate	500	500
Difference	+27.04%	-9.25%



Conclusions

Radiation remains a major health risk for astronauts in low Earth orbit, where Earth's magnetic field provides only partial shielding

form a proactive defense, limiting cumulative radiation doses and enhancing crew safety, particularly during extended missions or periods of high solar activity.

METEOROLOGY PANEL

Mitigation Mission Duration

Frank
Rubio

Mark
Vande Hei

Scott
Kelly

Christina
Koch

Peggy
Whitson

Butch Wilmore
Suni Williams

Andrew
Morgan

Jeanette Epps
Matthew Dominick
Mike Barratt

371
days

355
days

340
days

323
days

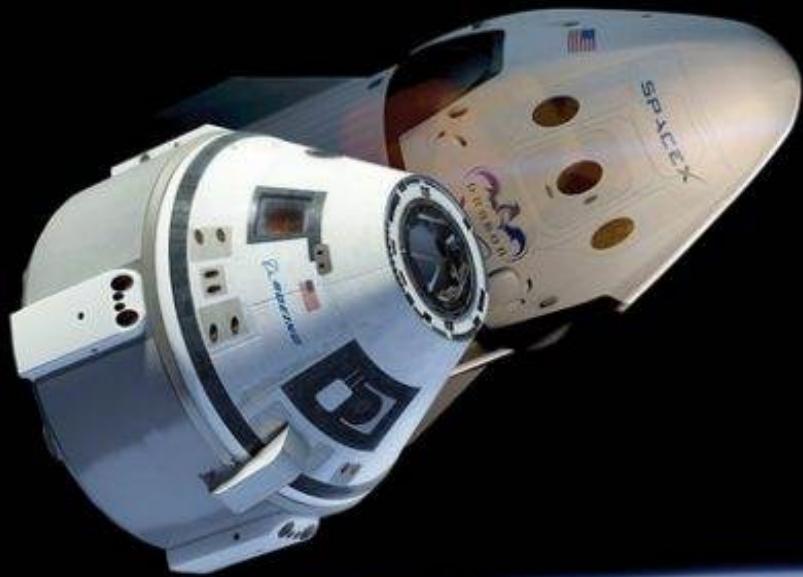
289
days

286
days

272
days

235
days

**NASA Astronaut
Single Spaceflight
Record Holders**


<https://www.nasa.gov/international-space-station/space-station-astronaut-record-holders/>

<https://sandrarose.com/2025/03/nasa-astronaut-suni-williams-aged-10-years-after-being-stranded-in-space-for-9-months-she-is-unable-to-walk/>

METEOROLOGY PANEL

Mitigation Mission Duration

Suni Williams
286 days (9 months) in Space

METEOROLOGY PANEL

METP SWX User Workshop, 20 October 2025, Rome, Italy

Questions?

THANK YOU!