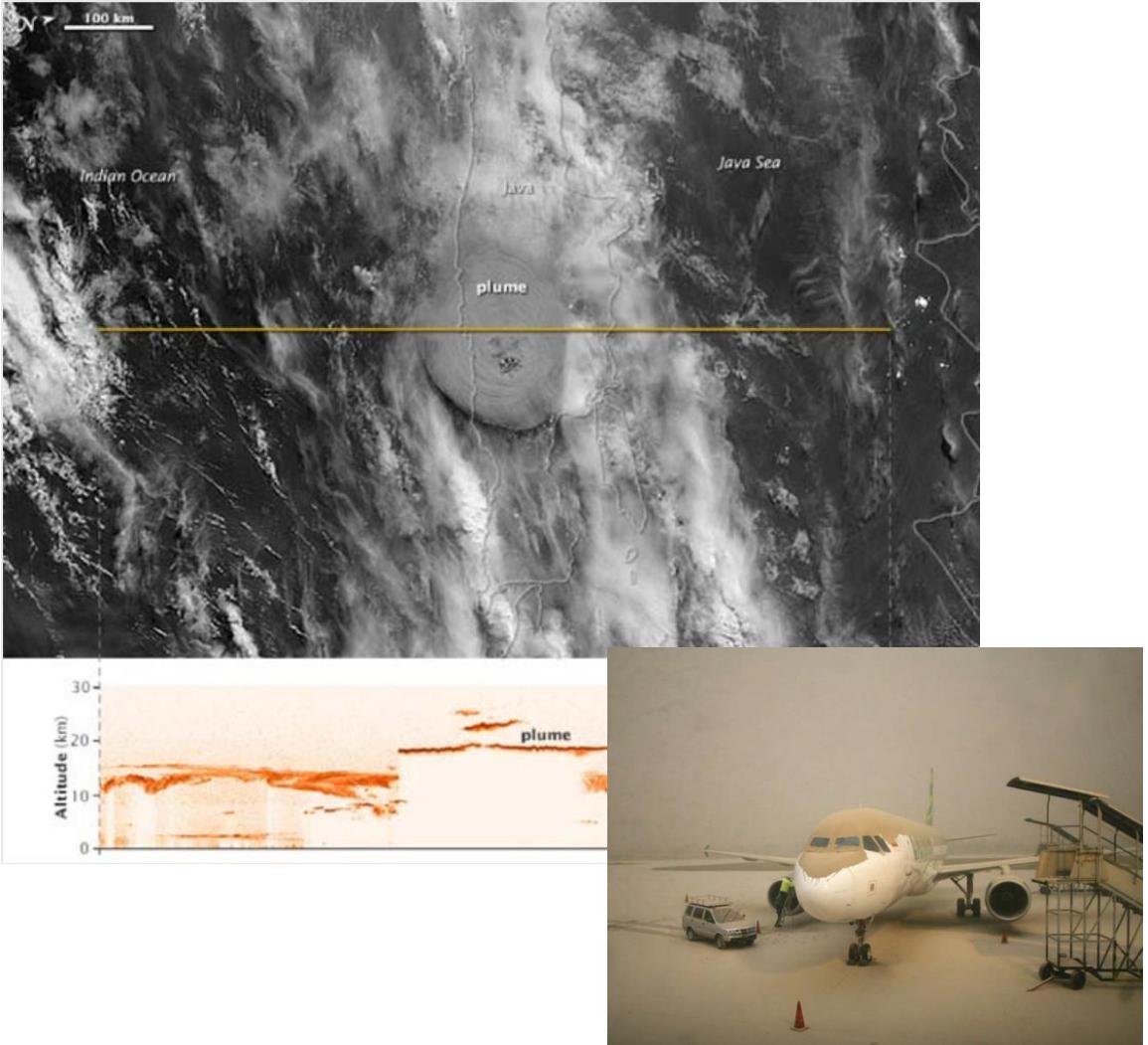


FL/GHTKEYS

DUST ECONOMICS

Cost-based approach
to flight operation in contaminated air


Entering ash clouds can be costly

FLIGHTKEYS

Kelut (Indonesia) ash encounter 14 February 2014:

- A320 unexpectedly enters volcanic ash plume
- ca 8 minutes of exposure
- no abnormal engine indications
- Safe landing in Jakarta
- Engine inspection:
 - Evidence of ash deposit in combustor and HP turbine
 - Engines removed for strip and repair

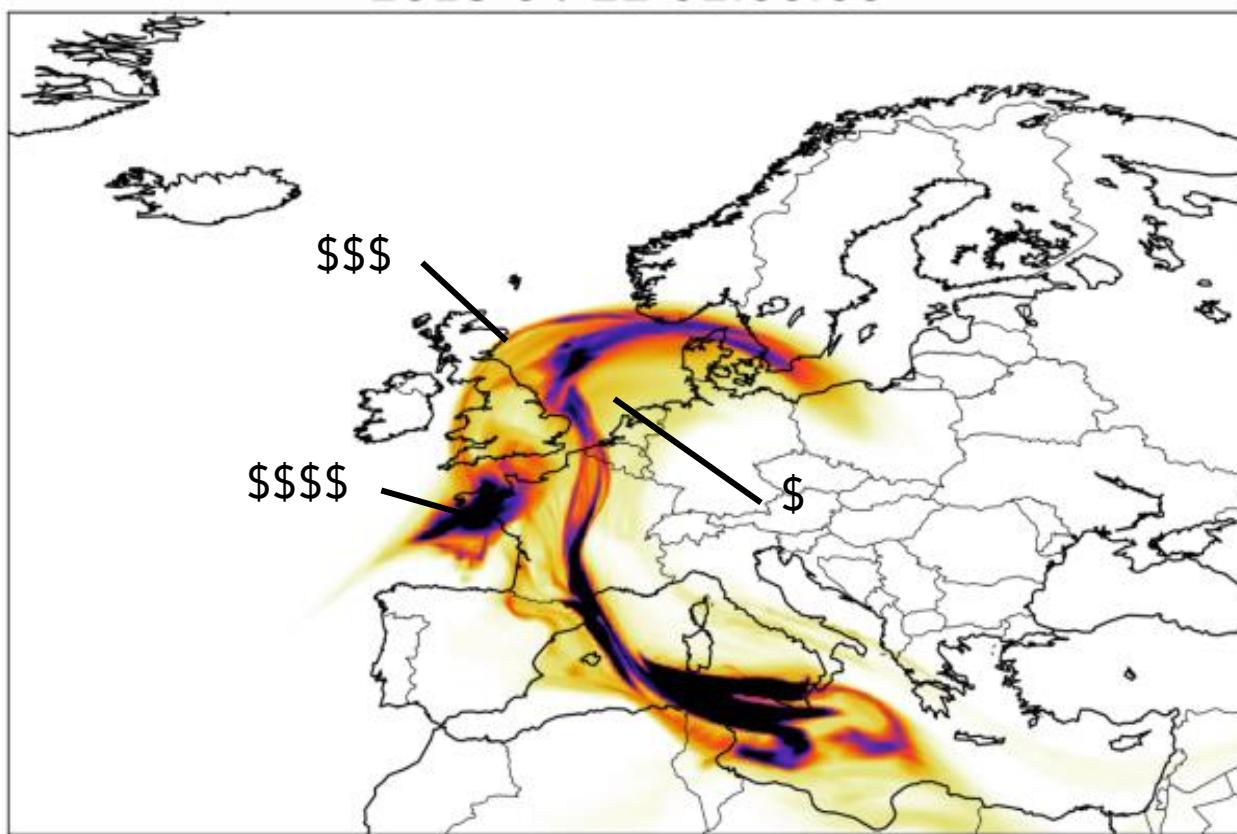
Estimated cost: **several million USD**

Avoiding ash clouds can be costly, too

FLIGHTKEYS

2010 eruptions of Eyjafjallajökull:

- Closing EU airspace for 6 days
- Ca 100.000 flights cancelled
- Estimated cost: 1.3 billion €



SN 2823 BUDAPEST	-	A	CANCELLED	ANALYSE NH 61/0 18 05	LH
SN 2283 OSLO	-		CANCELLED	KLM KL 1732 18 20	KL
EK 184 DUBAI	-		CANCELLED		
TB 1753 TENERIFE	-		CANCELLED		
AZ 149 MILAN LIN	-		CANCELLED		
N 2905 VIENNA	-		CANCELLED		
S 726 CAIRO	-	B	CANCELLED		
I 2317 GOTEBORG	-		CANCELLED		
2611 NADOR	-		CANCELLED		
2063 EDINBURGH	-		CANCELLED		
3125 BOLOGNA	-	A	CANCELLED		
643 LISBON	-		CANCELLED		
259 COPENHAGEN	-	A	CANCELLED		
397 LONDON LHR	-		CANCELLED		
587 BERLIN BER	-		CANCELLED		
94 DOHA	-		CANCELLED		
49 MILAN LIN	-		CANCELLED		
7 BIRMINGHAM	-		CANCELLED		
1 VALENCIA	-		CANCELLED		
easyJet EJU 1538					
SAS SK 2590					
FINNAIR AY 1546					
TURKISH AIRLINES TK 1940					
brussels SN 2647					
brussels SN 2907					
SWISS LX 4563					
BRITISH AIRWAYS BA 399					

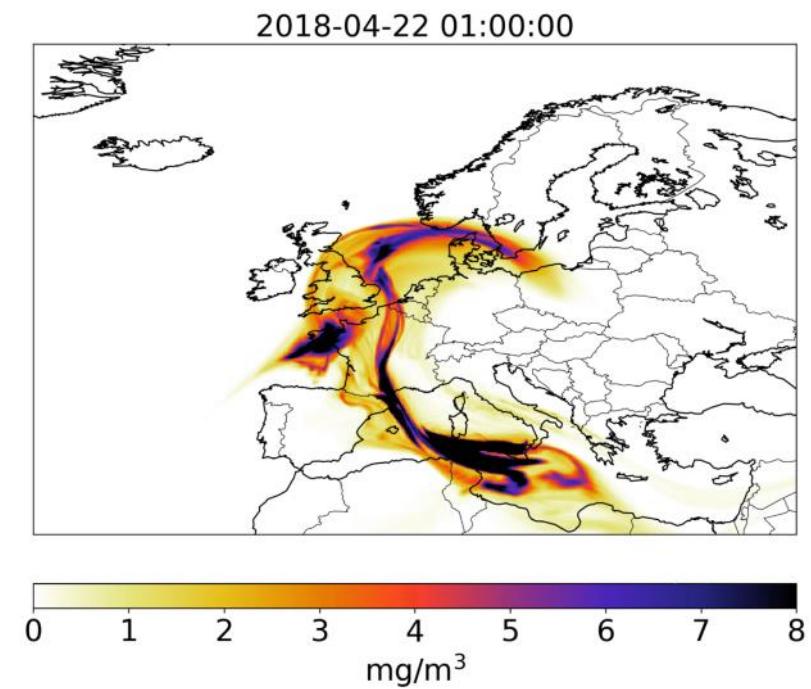
Balanced Approach: Cost-based

FLIGHTKEYS

FLIGHTKEYS found a way to add „price tags“ to ash clouds

Latest studies and developments show that cost-based ash-cloud avoidance is feasible and much more efficient than strict avoidance.

Flight operations through contaminated air


FL/GHTKEYS

Recent studies show (Clarkson, Rolls-Royce):

- Flight through contaminated air is not a safety risk, but rather a matter of increased cost in most cases.
- Only very few small areas require strict avoidance.
- Modern jet engines are sensitive even to low levels of air contamination, well below the safety limits defined by regulators and risk management strategies implemented by airlines

Solution by FLIGHTKEYS (demonstrated in EUNADICS-AV project 2019):

- To minimize the economic impact and continue safe and economic operation in **volcanic ash release events**, the methods presented here will allow full integration into state-of-the-art trajectory optimizer systems.
- The basic concept of this method is to project future cost onto contamination-exposed trajectory segments. The following slides describe the basic assumptions and conclusions that form this method.

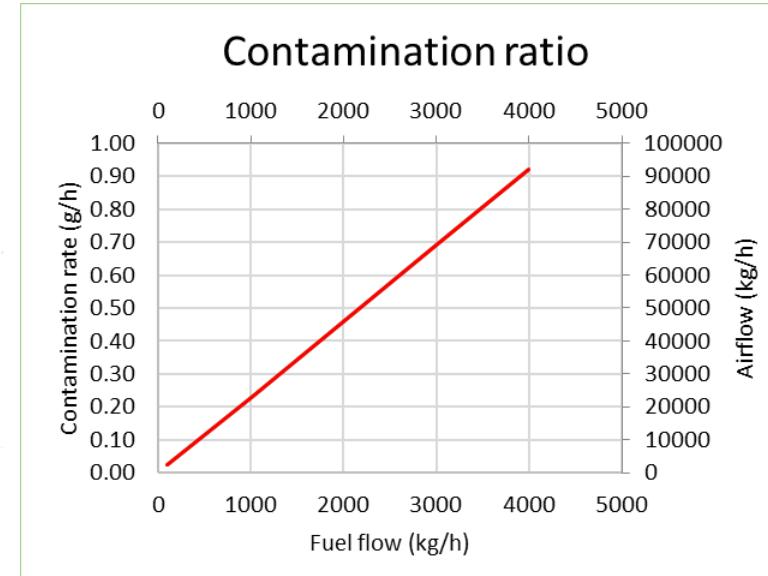
Contaminants:

- Sand / dust
- Volcanic ash
- Sulphur oxides
- Ice crystals

Primary Damage:

- Self-repairing
Material deposition in compressor and turbine
Irrecoverable
Compressor erosion – aerofoils and rotor tips
Turbine erosion

Secondary Effects:

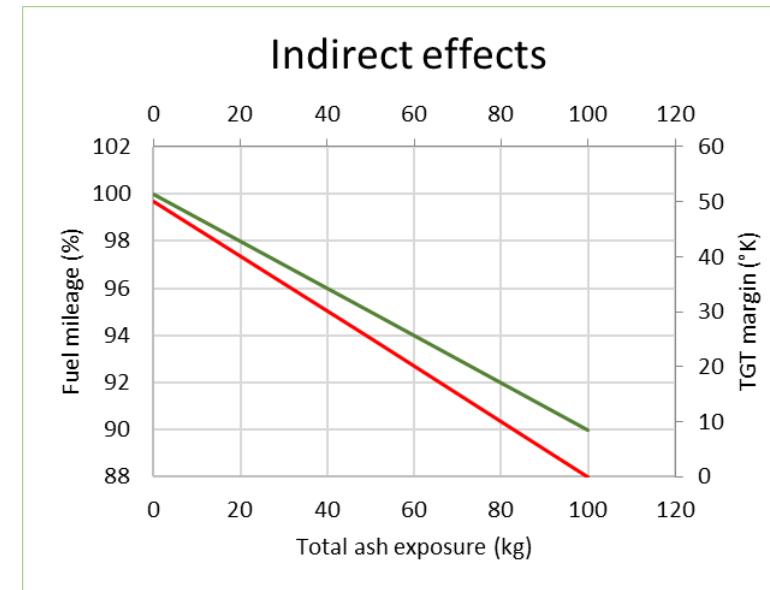

1. Fuel consumption increase
2. Lifetime reduction (reduced time on wing)

Assumption 1

Copyright (C) FLIGHTKEYS 2024

Mass of ingested contaminant is proportional to Fuel Flow

- We assume that air ingested into the engine core is determined by a fixed air/fuel ratio, thus in effect linking contaminant ingested into the core to the contaminant/air mass ratio and engine fuel flow.



Assumption 2

Copyright (C) FLIGHTKEYS 2024

In low concentrations, engine core damage and hence additional cost is proportional to accumulated mass of ingested contaminant

- For fuel mileage, we assume a linear decrease per kg of core-ingested contaminant.
- For lifetime reduction, we assume a fixed number of hours per kg of core-ingested contaminant.

Conclusion

Additional cost is a **linear function** of
fuel flow, contaminant mass ratio and
exposure time

Advantages

Simply linking contamination effects to available aircraft performance parameters makes the method extremely suitable to high-performance trajectory optimization algorithms, like FLIGHTKEYS 5D.

At the same time, a level of detail down to tracking individual engines can be achieved without much effort.

Vertical Example A320neo, 67t

FL/GHTKEYS

Distance Cost [€/NM] over Altitude and Mach													
Cvashmax	1 mg/m3												
altCloud	33000 ft												
vgradient	10% /1000ft												
Mach													
	0.7	0.71	0.72	0.73	0.74	0.75	0.76	0.77	0.78	0.79	0.8	0.81	0.82
39000					9.0	8.8	8.8	8.7	8.7	8.9	9.2		
38000			10.0	9.9	9.8	9.7	9.6	9.6	9.6	9.7	10.1	10.9	
37000	11.0	10.8	10.7	10.6	10.5	10.5	10.4	10.4	10.4	10.6	10.9	11.7	
36000	11.6	11.5	11.4	11.4	11.3	11.3	11.3	11.2	11.3	11.4	11.7	12.4	13.1
35000	12.4	12.3	12.2	12.1	12.1	12.1	12.1	12.1	12.2	12.3	12.6	13.3	14.0
34000	13.1	13.0	13.0	12.9	12.9	12.9	13.0	13.0	13.1	13.2	13.5	14.2	14.9
33000	13.7	13.8	13.8	13.8	13.7	13.8	13.8	13.9	14.0	14.1	14.4	15.1	15.8
32000	12.6	12.6	12.7	12.7	12.8	12.8	12.8	12.8	12.9	13.1	13.3	13.9	14.5
31000	11.5	11.6	11.6	11.7	11.8	11.9	12.0	11.9	11.9	12.1	12.3	12.8	13.4
30000	10.6	10.6	10.6	10.7	10.8	10.9	11.1	11.0	11.0	11.1	11.3	11.8	12.3
29000	9.8	9.8	9.8	9.8	9.9	10.0	10.2	10.1	10.1	10.2	10.4	10.8	11.3
28000	8.9	8.9	9.0	9.0	9.0	9.1	9.3	9.3	9.3	9.5	9.9	10.3	
27000	8.1	8.2	8.2	8.2	8.2	8.3	8.4	8.5	8.5	8.5	8.6	9.0	9.3
26000	7.3	7.3	7.4	7.4	7.4	7.5	7.6	7.6	7.7	7.7	7.8	8.1	8.4
25000	6.5	6.6	6.6	6.6	6.7	6.7	6.8	6.8	6.9	6.9	7.0	7.2	7.5

Vertical Example A380, 350t

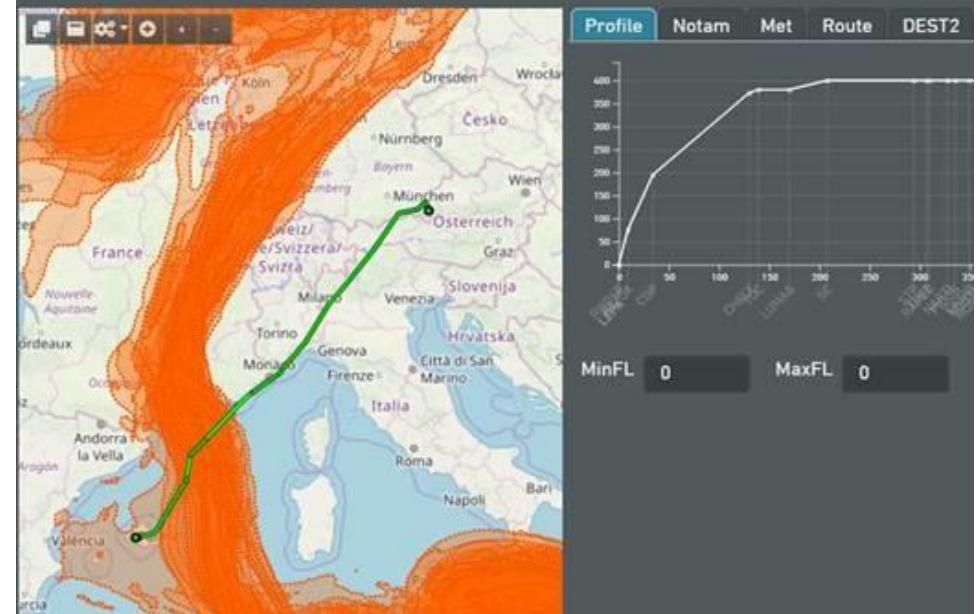
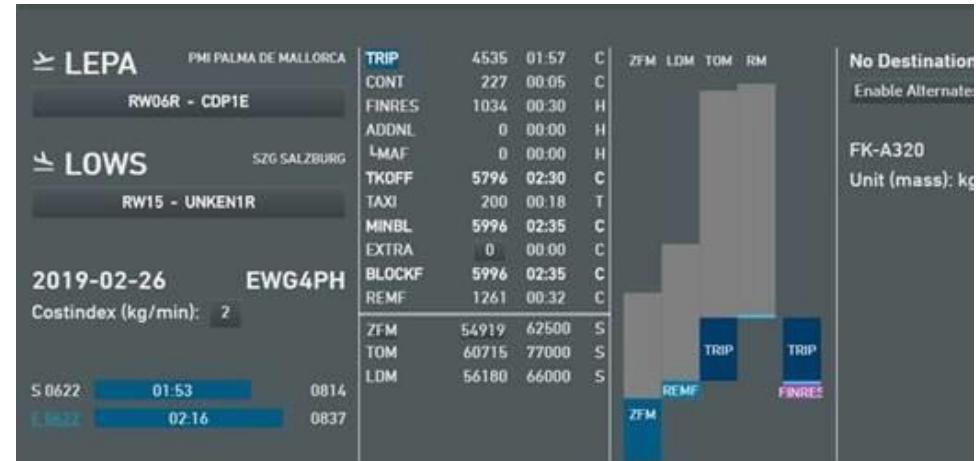
FL/GHTKEYS

Distance Cost [€/NM] over Altitude and Mach															
Cvashmax	1	mg/m3													
altCloud	33000	ft													
vgradient	10%	/1000ft													
Mach														Cvash	
	0.7	0.72	0.74	0.76	0.78	0.8	0.81	0.82	0.83	0.84	0.85	0.86	0.87	0.88	mg/m3
41000		31.4	30.6	29.8	29.2	28.8	28.7	28.7	28.7	28.7	29.0	29.4	30.4	32.3	0.20
40000	38.0	37.0	36.0	35.2	34.7	34.4	34.4	34.3	34.4	34.6	34.9	35.4	36.5	38.4	0.30
39000	49.6	48.2	47.1	46.4	45.9	45.7	45.7	45.7	45.9	46.2	46.7	47.5	48.7	51.2	0.40
38000	54.5	53.2	52.3	51.8	51.4	51.3	51.4	51.5	51.7	52.1	52.8	53.8	55.3	58.1	0.50
37000	59.0	57.9	57.2	56.7	56.5	56.6	56.8	57.0	57.3	57.8	58.6	59.9	61.7	64.8	0.60
36000	63.3	62.4	61.8	61.5	61.5	61.8	62.0	62.3	62.7	63.3	64.2	66.0	68.1	71.5	0.70
35000	67.8	67.1	66.7	66.6	66.7	67.2	67.6	68.0	68.4	69.2	70.3	72.4	75.2	78.8	0.80
34000	72.3	71.7	71.5	71.6	71.9	72.5	73.0	73.6	74.2	75.1	76.5	79.0	82.3	86.2	0.90
33000	76.6	76.3	76.3	76.5	77.0	78.0	78.6	79.3	80.0	81.1	82.6	85.5	89.5	93.7	1.00
32000	69.8	69.7	69.9	70.2	70.9	71.9	72.6	73.3	74.0	75.0	76.4	79.4	83.3	87.5	0.90
31000	63.5	63.6	63.9	64.4	65.1	66.2	66.8	67.5	68.2	69.2	70.5	73.4	77.3	81.3	0.80
30000	57.5	57.8	58.2	58.8	59.6	60.7	61.3	62.0	62.6	63.5	64.8	67.6	71.3	75.1	0.70
29000	52.0	52.4	52.9	53.5	54.3	55.3	55.9	56.6	57.2	58.0	59.2	61.9			0.60
28000	46.7	47.2	47.7	48.4	49.2	50.2	50.7	51.3	51.9	52.7	53.8				0.50
27000	41.7	42.3	42.8	43.5	44.2	45.1	45.6	46.1	46.7						0.40
26000	36.9	37.5	38.1	38.7	39.4	40.2	40.7	41.1							0.30
25000	32.4	32.9	33.4	34.0	34.6	35.4									0.20

Applications

FLIGHTKEYS

- Precise monitoring of total contamination exposure
- Prediction of engine lifetime impacts
- Bonus system for maintenance contracts
- Decision support in high-concentration events (volcanic activity, dust storms)
- Standardization of risk-assessment programs
- Full integration with cost-based trajectory optimization
- Automatic, cost-based avoidance of high-concentration events (volcanic activity, dust storms)



Win-win situation:

- Engine providers save on improved engine lifetime
- Aircraft operators save on fuel consumption and maintenance bonuses

Current Status

- Cooperation with Rolls-Royce on cost impact of aerosols in engine operations
- Basic algorithms and KPIs developed by FLIGHTKEYS
- Initial integration of algorithm into FLIGHTKEYS trajectory generator
- Import of 4D ash cloud simulation data into FLIGHTKEYS trajectory generator
- Large-scale simulation of European traffic in EUNADICS-AV exercise March 2019: 98000 flights re-optimized in ash scenario showing significantly reduced impact in cases of major volcanic eruptions
(<https://nhess.copernicus.org/articles/20/1719/2020/>)

FLIGHTKEYS

Tactical avoidance with EFB tools

FL/GHTKEYS

- Integration into EFB/FPO systems like Skykeys Loretta
- Using same cost-based algorithms as in flight planning
- Nowcasting possible with satellite connectivity
- Visualisation of vertical ash distribution

Next Steps

FLIGHTKEYS

- Validate assumptions with engine and aircraft manufacturers (ongoing cooperation with Rolls-Royce)
- Calibrate engine damage parameters by recalculating flights from QAR data with contamination data and FLIGHTKEYS Zeta function
- Develop key parameters for most common engines (e.g. core contamination/damage ratios)
- Cost-Benefit analysis based upon large-scale simulations
- Full integration of contaminant concentration forecasts into FLIGHTKEYS trajectory generator
- Integration into EFB/FPO systems like Skykeys Loretta

Contact us:

Raimund Zopp
Director Innovation, FLIGHTKEYS
raimund@flightkeys.com

FL/GHTKEYS

A wide-angle aerial photograph of a vast, rugged mountain range covered in snow and ice. The mountains are numerous and of varying heights, creating a complex, undulating landscape. In the background, a thick layer of clouds is illuminated by the warm, golden light of a setting or rising sun, transitioning into a darker blue-grey at the top of the image. The overall scene is one of natural, untouched beauty.

The fast road from vision to operation