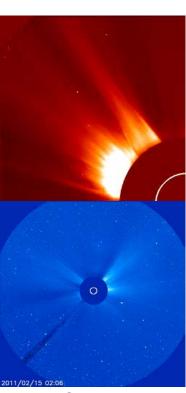
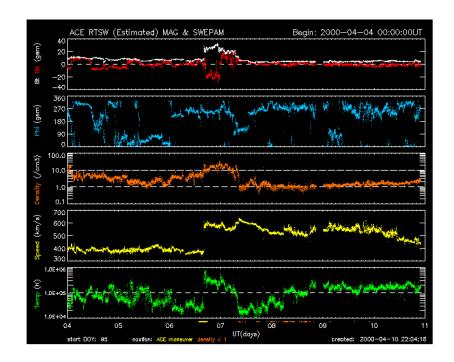

Outline

- → Space Weather Primer/Sequence of Events
- → The Need Space Weather Impacts on Aviation
- Services Within ICAO
 - Radiation
 - Communications
 - Satellite-based Positioning
- > Evolution of Services and Needs

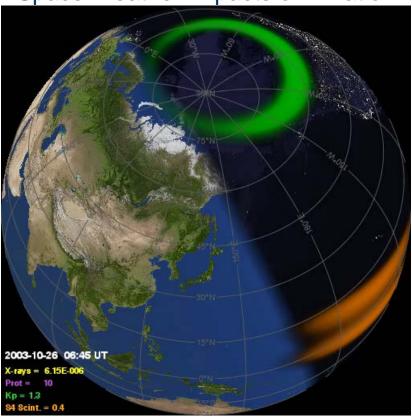


Conditions are Favorable for Activity

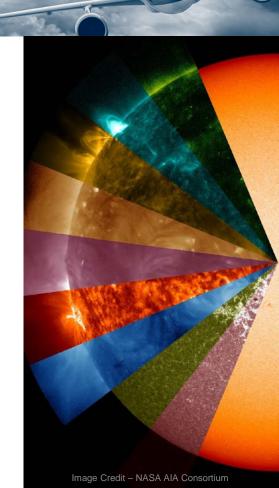


Event Occurs

Coronal Observations



In situ Solar Wind Observations


Space Weather Impacts on Aviation

Services Within ICAO

- Services proposed for inclusion in Amendment 78 to Annex 3
 - → HF Communications (propagation, absorption)
 HF COM
 - → Communications via satellite (propagation, absorption) SATCOM
 - → GNSS-based navigation and surveillance (degradation) GNSS
 - Radiation at flight levels (increased exposure)
 RADIATION
- → Event-driven advisories for Moderate or Severe effects
- Applicability in November 2018
- Service model discussion still maturing

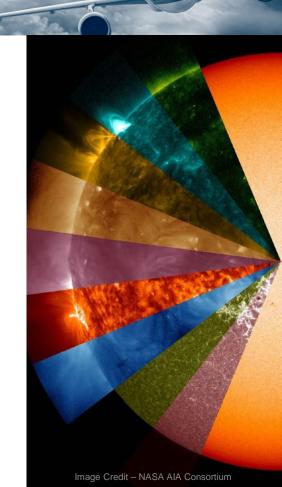
Services Within ICAO – Example Products

Example A2-4: Space weather advisory message (RADIATION effects)

(communication header)	
SWX ADVISORY	
DTG:	20161108/0000Z
SWXC:	(to be determined)
SWX EFFECT:	RADIATION MOD
ADVISORY NR:	2016/2
S. THE COM (S. 4)	20161108/0100Z HNH HSH E18000 – W18000 ABV FL350
S and HF COM effects)	20121108/0700Z HNH HSH E18000 – W18000 ABV FL350

Example A2-3: Space weather advisory message (GNSS and HF COM effects)

(communication header)	
SWX ADVISORY	
DTG:	20161108/0100Z
SWXC:	(to be determined)
SWX EFFECT:	GNSS MOD AND HF COM MOD
ADVISORY NR:	2016/1
OBS SWX:	20161108/0100Z HNH HSH E18000 – W18000
FCST SWX +6 HR:	20121108/0700Z HNH HSH E18000 – W18000
FCST SWX +12 HR:	20161108/1300Z HNH HSH E18000 – W18000
FCST SWX +18 HR:	20161108/1900Z HNH HSH E18000 – W18000
FCST SWX +24 HR:	20161109/0100Z NO SWX EXP
RMK:	LOW-LEVEL GEOMAGNETIC STORMING IS CAUSING
	INCREASED AURORAL ACTIVITY AND SUBSEQUENT MOD
	DEGRADATION OF GNSS AND HF COM AVAILABILITY IN THE
	AURORAL ZONE. THIS STORMING IS EXPECTED TO SUBSIDE


RADIATION MOD
2016/2
20161108/0100Z HNH HSH E18000 – W18000 ABV FL350
20121108/0700Z HNH HSH E18000 – W18000 ABV FL350
20161108/1300Z HNH HSH E18000 – W18000 ABV FL350
20161108/1900Z HNH HSH E18000 – W18000 ABV FL350
20161109/0100Z NO SWX EXP
RADIATION LEVELS HAVE EXCEEDED 100 PERCENT OF
BACKGROUND LEVELS AT FL350 AND ABOVE. THE CURRENT
EVENT HAS PEAKED AND LEVELS ARE SLOWLY RETURNING
TO BACKGROUND LEVELS. SEE
WWW.SPACEWEATHERPROVIDER.WEB
NO FURTHER ADVISORIES

Services Within ICAO - Timeline

Schedule for Establishing Space Weather Information Capability

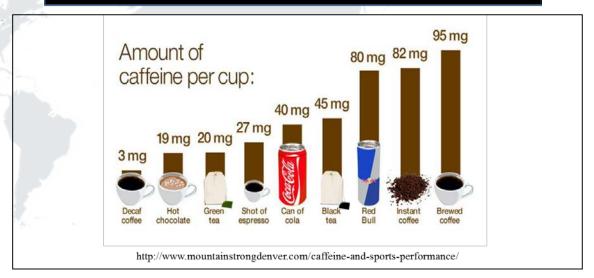
Start Date	End Date	Description	Responsibility
May 2017	June 2017	Issue State Letter requesting interest in providing the space weather information service.	ICAO
May 2017 September 2017	June 2017 October 2017	a) Request WMO assistance to evaluate candidate Provider States through site assessment visits and audits (without list of candidates States); and; b) Provide WMO with a list of candidates States.	ICAO
September 2017	October 2017	b) Frovide wivio with a list of candidates states.	
June 2017	September 2017	Respond to State Letter indicating ability to meet criteria for space weather information providers, including funding for site assessment visit and audit (to be conducted by WMO).	Candidate Provider States
October 2017	February 2018	Conduct site assessment visits and audits of candidate Provider States for space weather information capability.	WMO
March 2018	April 2018	Complete report to ICAO on candidate Provider States for space weather information capability.	WMO
April 2018	April 2018	Review of WMO audits report and recommend optimal number of space weather information providers.	METP
May 2018	June 2018	Review METP recommendations and provide proposals for designation of providers of space weather information for Council consideration.	ICAO ANC
June 2018	July 2018	Designate provider(s) of space weather information capability.	ICAO Council
July 2018	November 2018	Commence production and dissemination of space weather information.	Space Weather Provider(s)

Radiation Information – Understanding Exposure

A common substance example:

Median Lethal Dose (LD_{50})

- 192 milligrams per kilogram in rats
- (Estimated) ~150-200 milligrams per kilogram in humans Holmgren, et al. 2004



Radiation Information – Understanding Exposure

A common substance example: **Caffeine**

Median Lethal Dose (LD_{50})

- 192 milligrams per kilogram in rats
- (Estimated) ~150-200 milligrams per kilogram in humans Holmgren, et al. 2004

GNSS and Communications

→ GNSS

- Nowcasting fairly mature where observational data is available
- Skill improving in short-term forecasting (10's of minutes)
- Longer range forecasts remain challenging, both pre-eruption and when awaiting commencement of a storm

Communications

- High Frequency (HF) blackout can be nowcast and forecast probabilistically
- → Limited skill in satellite communications, both in nowcast and forecast phases
- → Longer range forecasts remain challenging, both pre-eruption and when awaiting commencement of a storm as well

Ionospheric Service Challenges – An Example

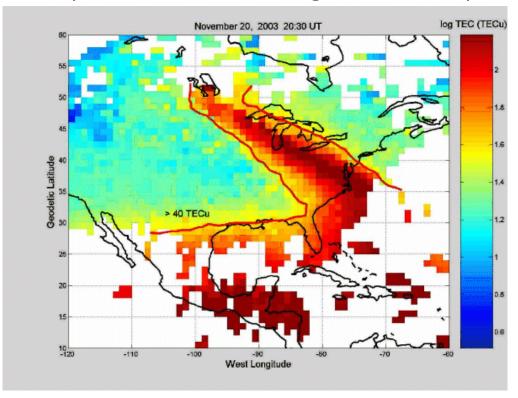


Image: Anthea Coster/John Foster/MIT

Adding Value...

Radiation

- → In September, 2017 "The solar storm we saw on September 10th was very strong... In a storm of this magnitude we will encounter increased radiation levels domestically"
- → Operations were affected, but should they have been? For a flight over the pole, timed to see all of the event, exposure *may* have been double the daily background

→ GNSS

Augmentation systems generally monitor performance and shut down accordingly, but knowing that ahead of time may lead to different flight planning

> Communications

- → For the same September period, ATC in Miami had issues with lost communications for aircraft flying oceanic routes around Hurricane Irma
- → Lack of awareness caused confusion and exacerbated the situation

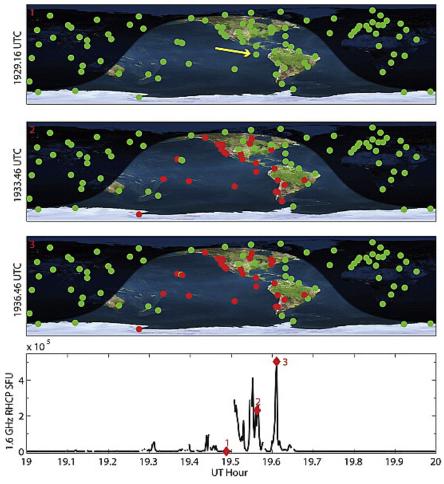
Evolution of Services and Needs

Radiation

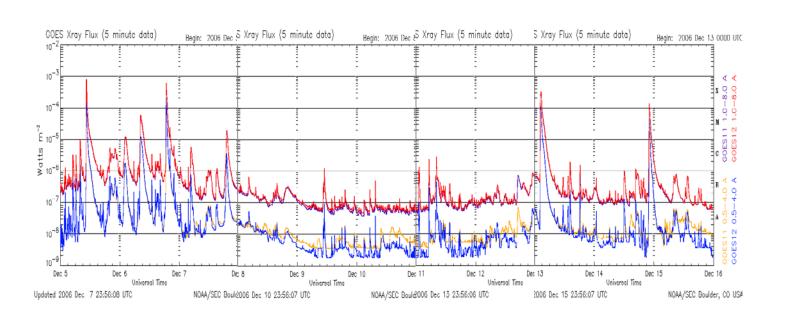
- → As aircraft fly farther and longer, exposures will increase
- → In situ observations will help with model validation, data assimilation, and operational decision making

→ GNSS

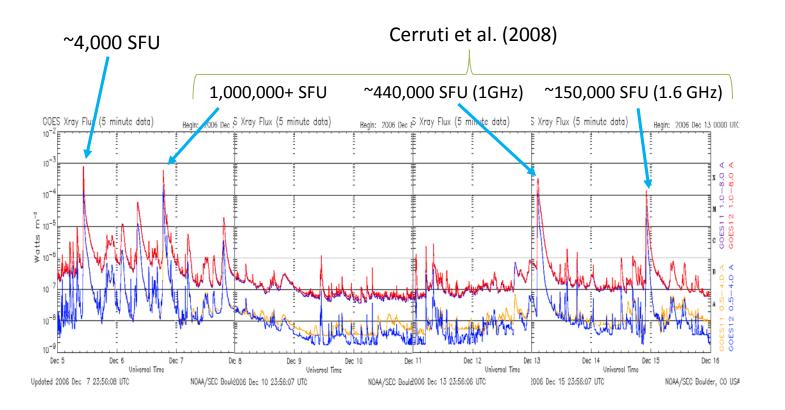
- → Additional GNSS frequency adoption can largely eliminate ionospherically-induced position errors
- → Engineers with time and money can engineer around some challenges, but some will remain
- Scintillation will likely remain the primary issue


Communications

- → Application of HF is changing. HF datalink use still increasing...
- → Geosynchronous and LEO-based satellite communications evolving
- → Short-term forecasting gains are coming in the 3-5 year timeframe
- → However, no paradigm shifts in longer-term forecasting are likely in the foreseeable future
- Given the chaotic, eruptive nature of the phenomena, space weather may never be like weather, but we can try...


Thank You

robert.rutledge@noaa.gov



Cerruti, A. P., P. M. Kintner Jr., D. E. Gary, A. J. Mannucci, R. F. Meyer, P. Doherty, and A. J. Coster (2008), Effect of intense December 2006 solar radio bursts on GPS receivers, Space Weather, 6, S10D07, doi:10.1029/2007SW000375.

December 2006 – 1415MHz Radio Bursts

December 2006 – 1415MHz Radio Bursts

