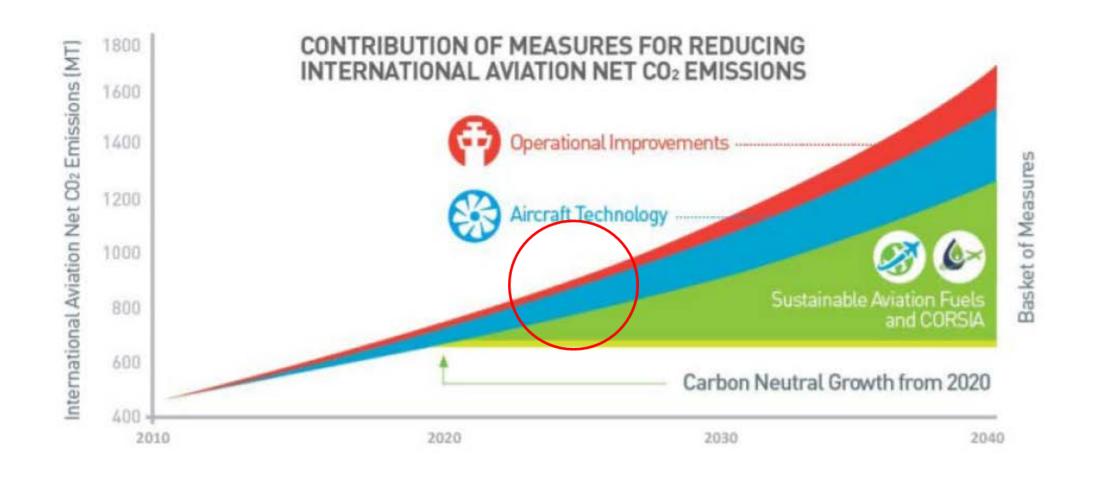
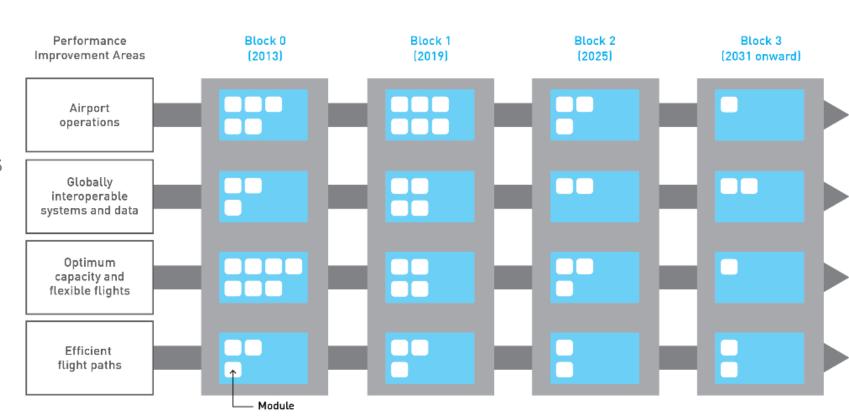
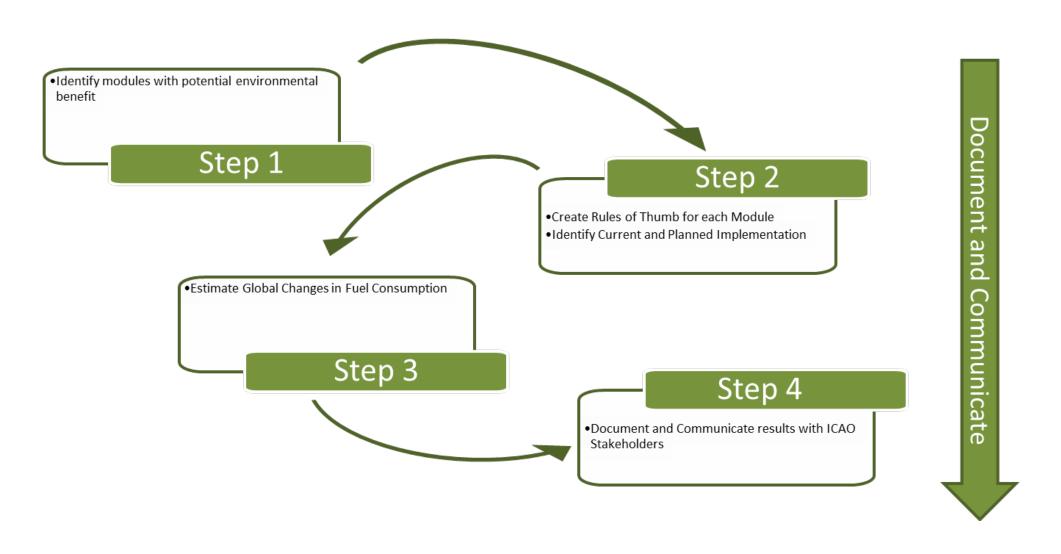


Operational Improvements / Fuel and emissions savings ICAO EUR ENV TF/2


David Brain
EUROCONTROL
9th October 2019


In 2019, ICAO-CAEP undertook a global environmental benefits assessment to identify the fuel / CO₂ emissions savings from the implementation of ASBU Blocks 0/1 out to 2025


ICAO initiated the Aviation System Block Upgrade (ASBU) initiative as a programmatic framework that:

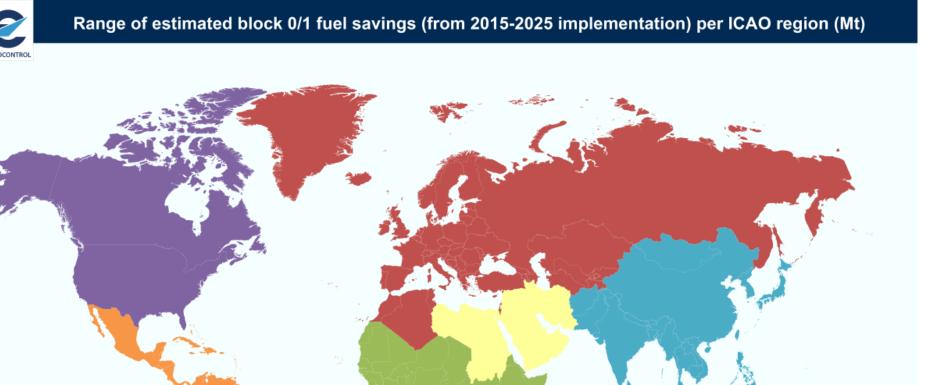
- Develops a set of Air Traffic Management (ATM) solutions or upgrades
- Takes advantage of current equipage
- Establishes a transition plan, and
- Enables global interoperability

Outlined in ICAO Global Air Navigation Plan (Doc. 9750)

Aligns with approach outline in ICAO Doc 10031, Guidance on Environmental Assessment of Proposed Air Traffic Management Operational Changes

• 53 rules of thumb (RoT) were developed for ASBU B0 / B1 generic implementations

AC Class	High Ave Kg Saved per taxi min Taxi-out	Low Ave Kg Saved per taxi min Taxi-in**	Fleet %	Now from the AIAA and Mitre papers and more realism Baseline arrivals/hr 24 Single Runway	on 20% FIM-S capable in Block 1 Ukely requires more equippage 30 32 34 37 4 5			AC Clas	p	er flight	t	Modified Fleet 74,	t%	
RJ	7	4.9	6,0	Time saving - min/airplane 0.12 0.10 0.16 0. seconds saved per A/C 7.1 6.0 9.9 12 Pounds saved per arrival	0.24 0.25	RI I	900- 1220 4030	1832	30,53	0,509	1832	31	0,51	6,0%
SA	14,4	10.1	71,0	Low Fuel benefit B737/A320 6.1 5.1 8.4 10 High Fuel benefit B737/A321 7.6 6.4 10.5 13 Low Fuel benefit B777/A350 26.2 22.1 36.4 45	12.0 13.0 15.0 16.2 52.0 56.0	SA 1	900- 1220 5815		44,05	0,734				
Small TA	20,5	14,4	12,9	High Fuel benefit 8777/A351 28.6 24.1 39.8 50 Low Fuel benefit 8747/A380 31.3 26.4 43.6 54 High Fuel benefit 8747/A381 35.4 29.9 49.3 62	56.8 61.2 62.2 67.0 70.3 75.7	SA 40	1900 5357		40,58 38,33	0,676	2460	41,0	0,68	71,0%
Med TA	34	23,8	8,8	Kg saved per arrival For 2020s and m Low Fuel benefit 8737/A320 2.8 2.3 3.8 4 High Fuel benefit 8737/A321 3.4 2.9 4.8 6		Small WB-1 9	900- 1220 8580		65,00	1,083				
Large TA	70	49	1,3 Class	* kg/secree Low kg/arr High kg/arr Low kg/d	p High kg/dep	Small WR-1	1900 7883	3583	59,72	0,995	4009	66,8	1,11	12,9%
Americas India/Southwest Asia 4 4,0% Composite 110 1.2% 75 2.2% Europe India/Southwest Asia 108 2.2% Europe Orler Asia/Pacific 91 1,5%	17,2	12,0	RJ SA	0.51gh fue 2,2 4,8 7,1 0.68 2,9 6,4 9,4	16,4	Small WB-2 40	9995	4543	75,72	1,262				
Europe Africa 418 1.5% Europe Middle East 275 1.8% North America South America 89 2.0% North America Central America and Carll 534 1.4%	103 60% 62 4774 50% 2.387 472 60% 23 8 10 10 10 10 10 10 10 10 10 10 10 10 10	52 0 LOW	Small TA Med TA	1,11 4,8 10,5 15,4 1,57 6,8 14,9 21,7	35,7 50,5	Medium WB 40	1000-	5 5393	89,88	1,498				
Middle East Other Asia/Pacific 53 2.2%	30 80% 18 3.351 50% 1.676 245 60% 147 1.396 20% 279 63 60% 38 3.716 70% 2.601 313 20% 63 733 80% 580	193 2 696 12,590 14,367 7 0 0 0 0 317 2 1140 43,251 49,149 48 0 0 0 0	Large TA	2,47 10,7 23,4 34,2	79,4	Medium WB 90	0000- 4000 1296 0	0 5891	98,18	1,636	5642	94,0	1,57	8,8%
Intra Europe 4370 1,4% Intra Latin America 407 1,9%	1876 0 631 0 475 0 622 0 326 0 500 0 428 0 673 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Composite	Fuel Savings (kgs) per	light from R	Large WB 40	1000-	9 7854	130,90	2,182				
China/Mongolia 2260 2,5%	1054 1988 555 0 300 0 2759 0 588 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		Setting Enabled by Pe			0000- 4000 21824	4 9920	165,33	2,756	8887	148,1	2,47	1,3%
Latin America 1861 1,7% Middle East 283 1,3% North America / Polar 9125 0,6%	1255 60% 1.953 319 5% 16 1122 0 385 0 293 0 354 0 1606 96% 9,225 579 0,25% 1 663 0 372 0	2 1 4 7.470 8.488 0 0 0 0 0 0 0 0 0 0 0 0 2 1 6.406 7.280 0 0 0 0		Aircraft Class >>	>	Savings (k	(gs)				2986	49,8	0,829	100%
Other Asia/Pacific 2056 1,6%	2343 0 354 0 860 0 374 0 2478 11178	0 0 0 0 0 0 0 0 13.876 15.768		Range:			11-95				gs (NM) 1-5			
Global [International + Domestic] 30145 1,3%	2332 13166 704 Low High 1,0% 2,0% 90 150	### ### ##############################		RoT high		40-187					7-27			



- Global annual fuel burn savings from ASBU Block 0/1 elements
- 5.4-10.7Mt fuel burn or 17.2-33.7Mt CO₂

		Fuel /				
	Fuel	CO ₂	CO ₂	Cost	Cost	
	savings	savings	savings	savings	savings	
ICAO Region	(Mt)	(%)	(Mt)	(\$billion)*	(€billion)	
Africa	0.2-0.3	1.5-2.7	0.5-1.0	0.1 - 0.2	0.1 - 0.2	
Asia/Pacific	2.2-4.2	1.7-3.2	6.9-13.3	1.3 - 2.5	1.2 - 2.2	
Europe	1.4-2.6	1.8-3.3	4.4-8.2	0.8 - 1.5	0.7 - 1.4	
Latin						
America/Caribbean	0.5-0.8	2.1-3.7	1.5-2.6	0.3 - 0.5	0.2 - 0.4	
Middle East	0.2-0.4	0.9-1.8	0.7-1.4	0.1 - 0.3	0.1 - 0.2	
North America	1.1-2.4	1.3-2.9	3.5-7.6	0.7 - 1.5	0.6 - 1.3	
Global	5.4-10.7	1.6-3.0	17.2-33.7	3.3 – 6.4	2.9 - 5.6	

4.2

2.2

Asia /

Pacific

1.4

Europe

0.5-0.8

America / East

Caribbean

0.2-0.4

Middle

North

America

Total Fuel savings

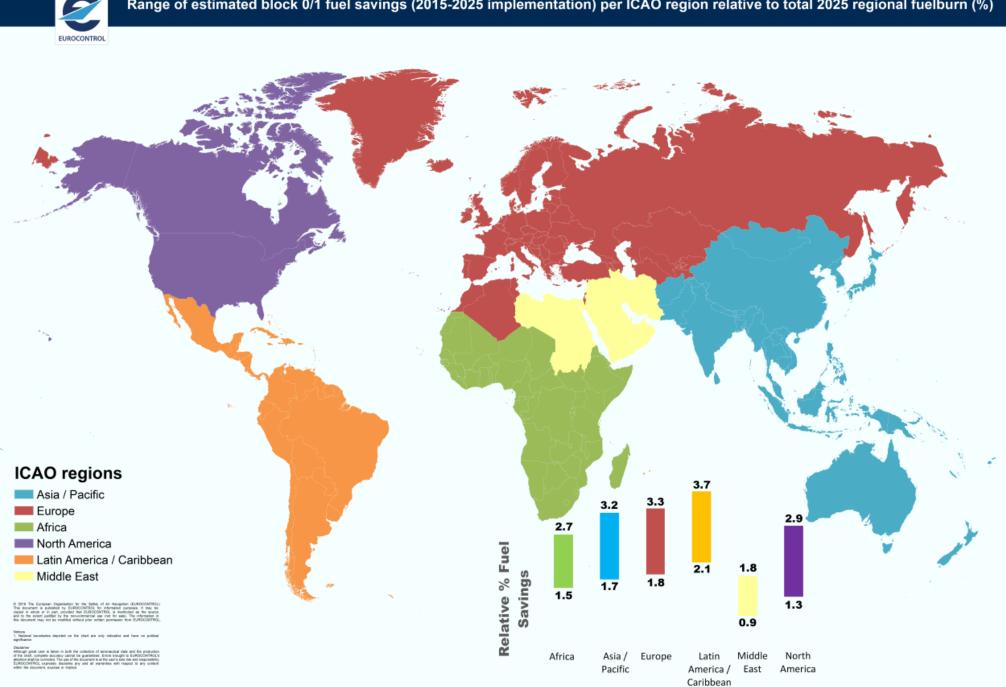
(Mt)

0.2-0.3Africa

ICAO regions

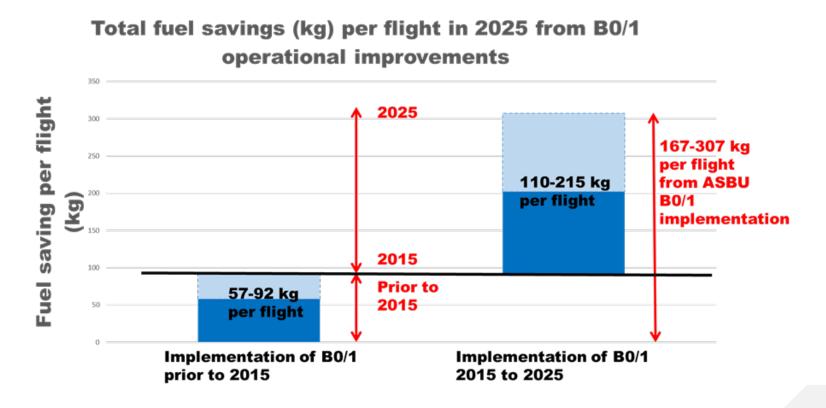
Middle East

Latin America / Caribbean


Asia / Pacific

Europe

Africa
North America



EUROCONTROL

- ASBU B0 / B1 modules implemented <u>prior to 2015</u>: 57-92kg fuel per flight (180-289 kg CO₂)
- The implementation of ASBU is estimated to provide a total annual global fuel savings in 2025 of between 167-307kg per flight (528-970kg CO₂)

4 ASBU modules (CDO, ASUR, TBO and CCO) provide close to 60% of the higher range of fuel and CO₂ savings;

CDO – Continuous Descent Operations

ASUR – Space-based ADS-B surveillance

TBO – Trajectory-Based Operations

CCO – Continuous Climb Operations

A further 6 ASBU modules (RSEQ, ACDM, APTA, FRTO, AMET and NOPS) provide an additional 37% of savings;

RSEQ – Runway sequencing (AMAN / DMAN)

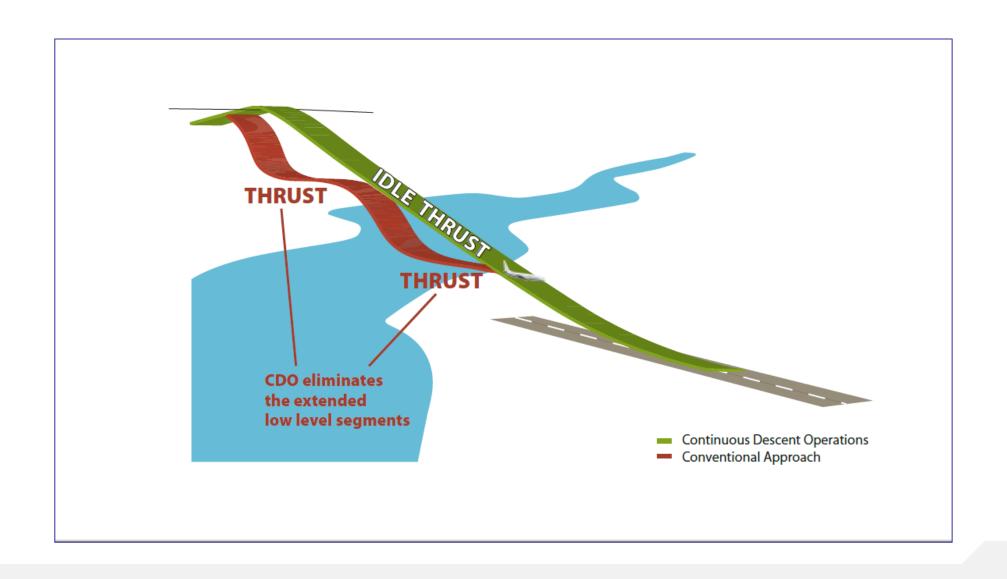
ACDM - Airport Collaborative Decision Making

APTA – Performance Based Navigation

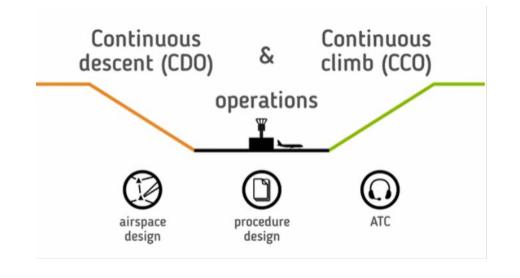
FRTO – Free Route Airspace / FUA

AMET - enhanced MET information

NOPS – Air Traffic Flow Management


Low hanging fruit?

CDO? – The concept



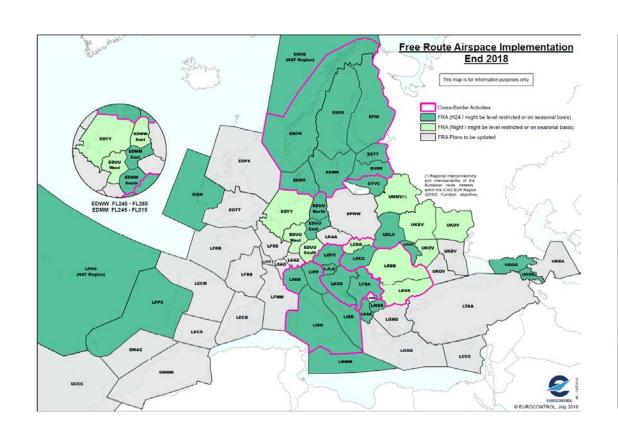
The European CCO / CDO Task Force is working on 1 key deliverable + resources = the CCO / CDO Tool Kit:

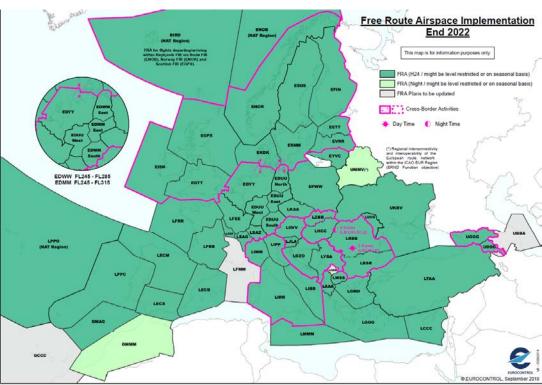

NEW!!

European CCO / CDO Action Plan - high level actions and principles to optimise CDO, detailed information on barriers / mitigations and interdependencies

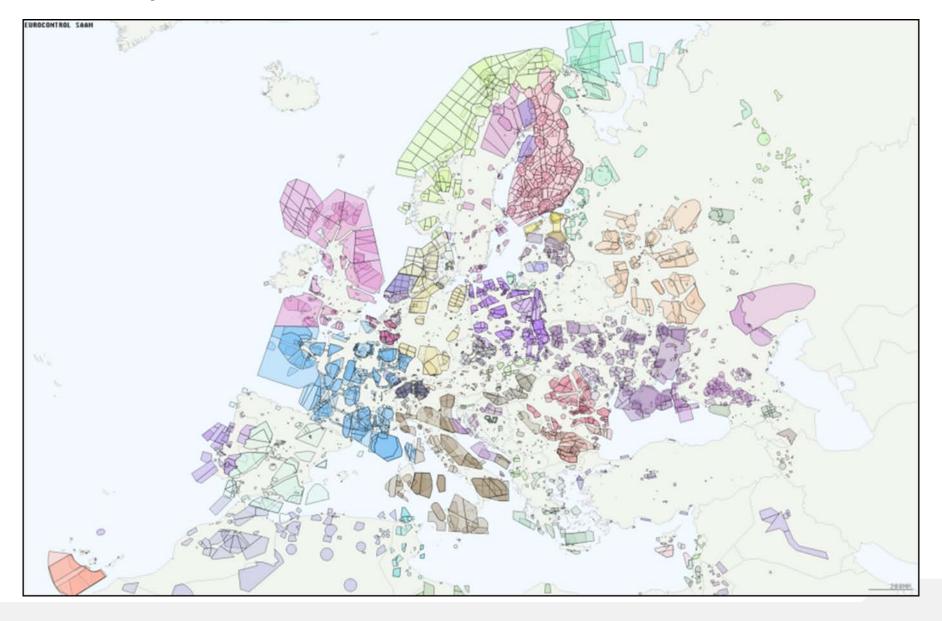
CCO / CDO resources, guidance material and performance data

European CCO / CDO TF



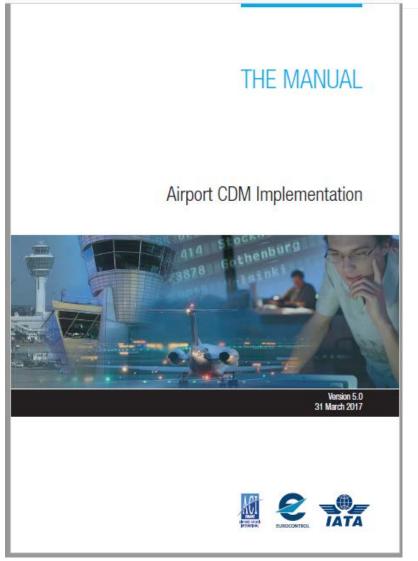

- Harmonised definitions and parameters for measurement -
- Performance tables
- ATCO refresher training
- Harmonised AIP content and structure
- Update ERNIP document (airspace design manual)
- Promotion of airlines best practices
- https://www.eurocontrol.int/concept/continuous-climb-and-descentoperations
- cdo@eurocontrol.int

Free route airspace Europe

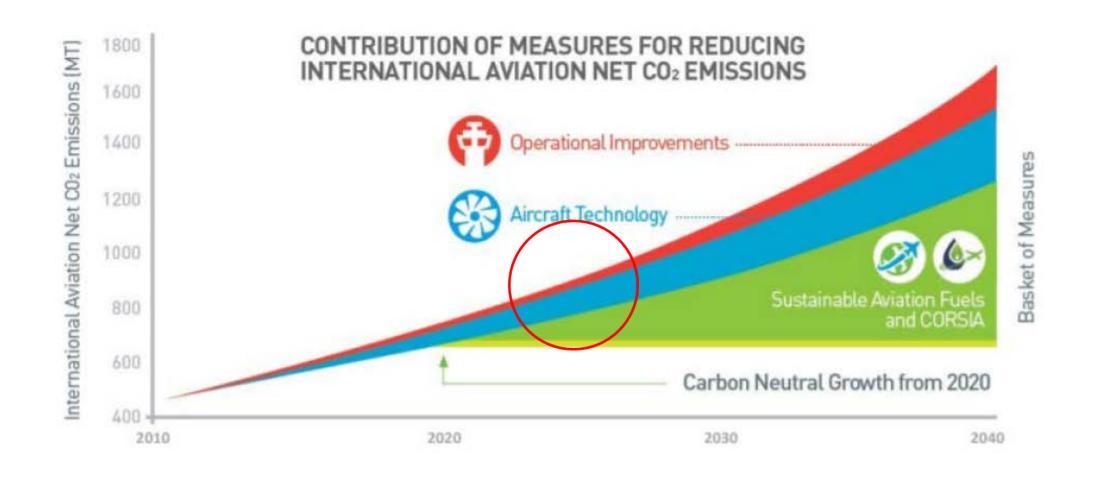


 Free route can save up to 2/3% total fuel burn depending upon current airspace inefficiency

FUA – Civil Perspective


2018

Airport Collaborative Decision Making – A-CDM



Doc. 9988

Category	Sub-category	Measure (References)	Rule of thumb	Example
Improved air traffic management and infrastructure use (continued)	More efficient ATM planning, ground operations, terminal operations, en-route operations, airspace design and usage, aircraft air navigation capabilities (continued)	Measures to improve fuel efficient departure and approach procedures: CCO (CAEP/10 Report 2016)	or FS = 90-150 kg (0.09- 0.15 tonnes) of fuel * number of CCOs	A State averages 2,000,000 flights per year. Currently, 50 of its airports offer CCO which accounts for approximately 200,000 departure movements. Expert judgement estimates that CCO is performed by 80% of the departures, a total of 160,000 departure movements. The annual fuel savings can be estimated as:
		Measures to improve fuel efficient departure and approach procedures: PBN SID (CAEP/10 Report 2016)	or FS = 0 kg to 30 kg of fuel (0 to .03 tonnes) * number of departure movements on PBN SID	A State averages 1,000,000 flights per year. Currently, 50 of its airports have implemented PBN SID which is estimated to be used by 200,000 departure movements. Expert judgement is that 100% of these departures fly the PBN SID. The annual fuel savings can be estimated as:
		Measures to improve collaborative decision making: A-CDM (non-U.S. version)		An airport with an average of 100,000 movements (both departures and arrivals) annually is implementing A-CDM. On average, aircraft at the airport burn 12 kg (0.012 tonnes) per minute during taxi. The benefit of A-CDM (non-U.S. version) is achieved during the total taxi phase (taxi-in and taxi-out). The annual fuel savings can be estimated as: — 1* 0.012 * 100,000 = 1,200 tonnes fuel saved (low end of range) — 3 * 0.012 * 100,000 = 3,600 tonnes of fuel saved (high end of range)
		Measures to improve collaborative decision making: A-CDM (U.S. version)	Use IFSET or FS = time savings (1 to 2 min)* number of departure movements	An airport with an average of 50,000 departure movements annually is implementing A-CDM. On average, aircraft at the airport burn 12 kg (0.012 tonnes) per minute during taxi. The benefit of A-CDM (U.S. version) is achieved only during the taxi-out phase. The annual fuel savings can be estimated as: — 1 * 0.012 * 50,000 = 600 tonnes fuel saved (low end of range) — 2 * 0.012 * 50,000 = 1,200 tonnes fuel saved (high end of range)

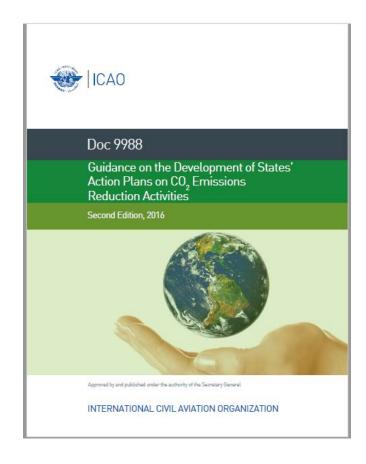


Table C2: Rules of thumb for estimating expected results by measure

Спасибо! / Thank you

david.brain@eurocontrol.int