ICAO Asia/Pacific Workshop – Implementation of New ICAO Annex 14 Volume I SARPs on Obstacle Limitation Surfaces

Session II
Why aircraft
performance
matters for
aerodromes

Objectives

At the end of this session, participants will be able to

- Differentiate between ARC and ADG
- Describe the relationship between ADG and OLS dimensions
- Use ADG to select OFS and OES
- Analyze the surfaces of an aerodrome based on the selected ADG

Background

In 1978, the Aerodrome Reference Code Panel (ARCP) adopted the Aerodrome Reference Code (ARC) classification for Annex 14, Vol. 1.

In reaching to this decision, the use of **approach speed** and aeroplane reference field length were considered as possible elements of the ARC.

Aerodrome Reference Code (ARC)

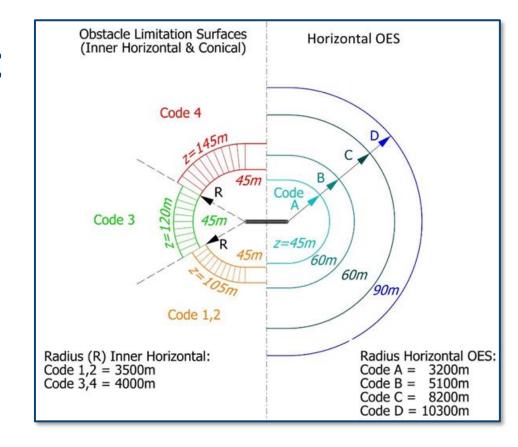
	Code Element 1		Code Element 2
Code Number	Aeroplane reference field length	Code Wingspan Letter	
1	Less than 800m	Α	Up to but not including 15 m
2	800m up to but not including 1200m	В	15 m up to but not including 24 m
3	1200m up to but not including 1800m	С	24 m up to but not including 36 m
4	1800m and over	D	36 m up to but not including 52 m
		Е	52 m up to but not including 65 m
		F	65 m up to but not including 80 m

Challenges with ARC

ARC does not accurately reflect the OLS criteria

Airborne Performance

Aircraft with vastly different approach speeds (e.g., <50 kt to 120+ kt) are grouped under the same Code.


- Approach speed is a more suitable criterion to define airborne performance
- Already used in instrument flight procedure design.

Aircraft size

Runways serving aircraft with different wingspans (e.g., A380-800 vs. Learjet 45) may still have the same OLS and dimensional requirements, despite significant size differences.

Challenge with ARC

ARC is not aligned with criteria used in designing OES.

ADG

The Aeroplane Design Group of an aeroplane depends on both its

indicated airspeed at threshold and wingspan

Aeroplane design group	Indicated airspeed at threshold		Wingspan
1	Less than 169 km/h (91 kt)	and	Up to but not including <mark>24 m</mark>
IIA	Less than 169 km/h (91 kt)	and	24 m up to but not including 36 m
IIB	169 km/h (91 kt) up to but not including 224 km/h (121 kt)	and	Up to but not including 36 m
IIC	224 km/h (121 kt) up to but not including 307 km/h (166 kt)	and	Up to but not including 36 m
III	Less than 307 km/h (166 kt)	and	36 m up to but not including 52 m
IV	Less than 307 km/h (166 kt)	and	52 m up to but not including 65 m
V	Less than 307 km/h (166 kt)	and	65 m up to but not including 80 m

ADG: Indicated airspeed

Indicated airspeed corresponds with the categories of aircraft defined in Doc 8168, Vol I, Part II — Section 5, Chapter 1

Used in the design of Horizontal OES

Category	
Α	Less than 169 km/h (91 kt) indicated airspeed (IAS)
В	169 km/h (91 kt) or more but less than 224 km/h (121 kt) IAS
С	224 km/h (121 kt) or more but less than 261 km/h (141 kt) IAS
D	261 km/h (141 kt) or more but less than 307 km/h (166 kt) IAS.

At present, there are no category E civil aircraft with approach speed above 166 kt (other than military aircraft).

Category H refers to helicopter operations which are covered in Annex 14 Vol II.

ADG: Wingspan

Wingspan corresponds with the Aerodrome Reference Code letter as described in Annex 14 Vol 1 Chapter 1 para 1.6

Used in the determination of OFS dimensions.

Code Letter	Wingspan
Α	Up to but not including 15 m
В	15 m up to but not including 24 m
С	24 m up to but not including 36 m
D	36 m up to but not including 52 m
Е	52 m up to but not including 65 m
F	65 m up to but not including 80 m

Correlation between aircraft category and ADG

The aircraft categories have the following correlation with the aeroplane design groups.

Note: Aircraft category - based on approach speed at threshold as referred in PANS-OPS

ADG	Aircraft categories (PANS-OPS)	Indicated airspeed at threshold km/h (knots) (Annex 14 Vol 1)	Wingspan
1	А	Less than 169 (91)	Less than 24 m
IIA	Α	Less than 169 (91)	24 m to less than 36 m
IIB	В	169 (91) to less than 224 (121)	Up to but less than 36 m
IIC	C, D	224 (121) to less than 307 (166)	Up to but less than 36 m
III	A, B, C, D	Less than 307 (166)	36 m to less than 52 m
IV	A, B, C, D	Less than 307 (166)	52 m to less than 65 m
V	A, B, C, D	Less than 307 (166)	65 m to less than 80 m

Correlation between ADG and runway operations

A runway of a given ADG typically accommodates different aircraft categories

ADG of runway	Possible aircraft categories on the runway (Indicated Air Speed at threshold)									
	А	A B C D								
1	✓	Х	Х	Х						
IIA	✓	Х	Х	Х						
IIB	✓	✓	Х	Х						
IIC	✓	✓	✓	✓						
III	✓	✓	✓	✓						
IV	✓	✓ ✓ ✓ ✓ ✓								
V	✓	✓	✓	✓						

ADG to ARC Conversion

The following ARC to ADG conversion may be used for implementing the provisions in chapter 4 of Annex 14, Volume I

Code number	1	2	2			3-4		
Aeroplane design group	_	IIA	IIB	IIC	Ш	IV	V	

Caution:

The above conversion provides a broad overview of the relation between ARC and ADG methodology. Caution is required while applying it to specific aircraft types as they may fall under a different category.

Applying ADG: Wingspans

 A runway is designed to accommodate various aircraft, including those with wingspans at or above 36 m (For example 38 m, 43 m, 52 m, 60 m, and 68 m.)

These aircraft belong to ADG II, III, IV, IV, and V, respectively.

 Since the most demanding aircraft falls under ADG V, the runway is classified as ADG V to ensure compatibility

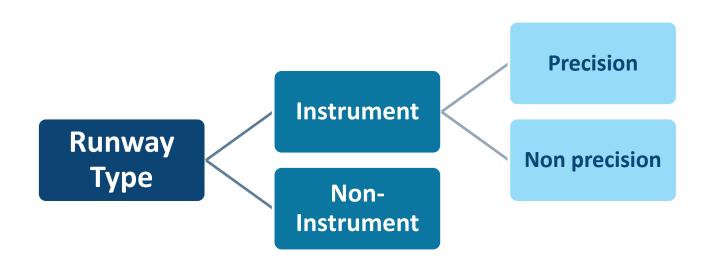
Applying ADG: Indicated Airspeed

These aircraft have the following wingspans and threshold speeds:

Threshold speeds	Wingspan	ADG
60 kts	9 m	1
55 kts	10 m	1
98 kts	13 m	II B
104 kts	26 m	II B
83 kts	28 m	II A

Since the most demanding aircraft belongs to ADG IIB, the runway is classified as ADG IIB.

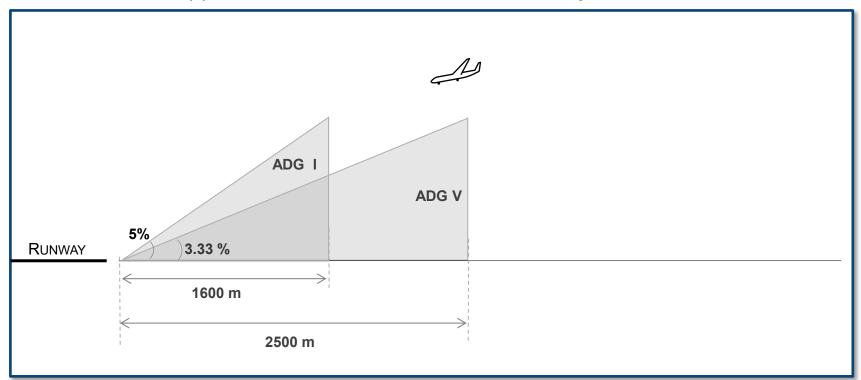
2


Selecting Surfaces

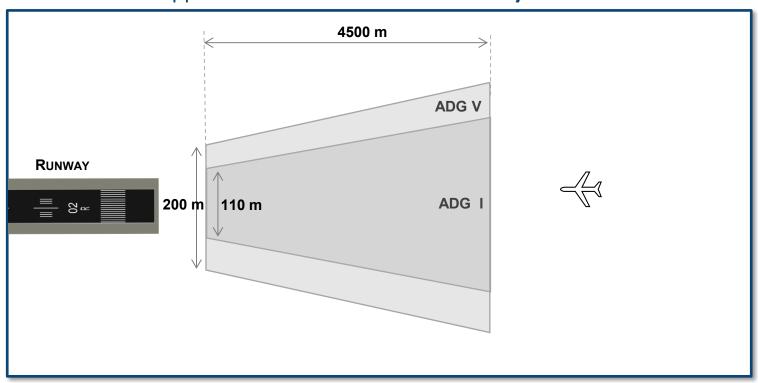
 Surface selection depends on the approach runway type and type of operations conducted at the runway.

 Surface dimensions are determined by the Aeroplane Design Group (ADG) assigned to the runway.

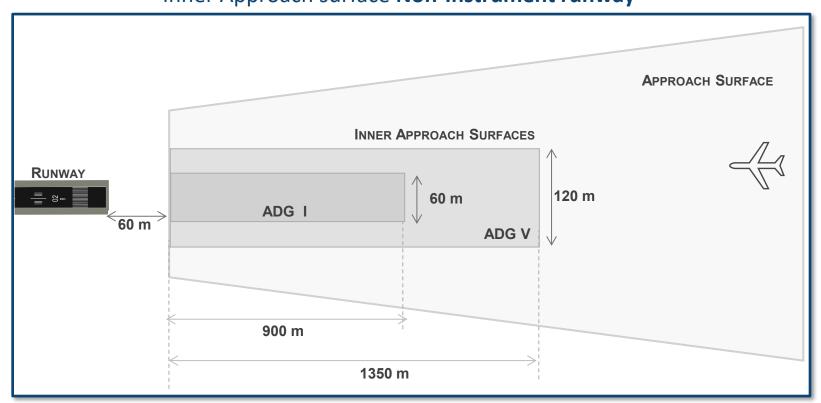
 At aerodromes with multiple runways, each runway may have a different ADG classification.


Selecting Surfaces – Runway Type

Surfaces	Instrument (Precision)	Instrument (Non-Precision)	Non- Instrument
Approach	✓	✓	✓
Transitional	✓	✓	✓
Inner Approach	√	✓	✓
Inner Transitional	✓	✓	✓
Balked Landing	✓	X	X


Table 4-1. Dimensions and slopes of approach surface — Non-instrument runways							
Aeroplane design group	I	IIA-IIB	пс	III	IV	v	
Distance from threshold	30 m	60 m	60 m	60 m	60 m	60 m	
Length of inner edge	60 m ^{a b}	80 m ^{c d}	100 m^{d}	125 m	135 m	150 m	
Divergence	10 %	10 %	10 %	10 %	10 %	10 %	
Length	1 600 m ^e	2 500 m ^e	2 500 m ^e	$2~500~\mathrm{m}^\mathrm{e}$	2 500 m ^e	2 500 m	
Slope	5 % ^f	4 % ^f	3.33 % ^f	3.33 % ^f	3.33 % ^f	3.33 % ^f	

Approach surface Non instrument runway


Table 4-2. Dimensions and slopes of approach surface — Instrument runways								
Aeroplane design group	I	IIA-IIB	IIC	III	IV	V		
Distance from threshold	60 m	60 m	60 m	60 m	60 m	60 m		
Length of inner edge	110 m ^a	125 m ^b	155 m ^c	175 m	185 m	200 m		
Divergence	10%	10%	10%	10 %	10%	10%		
Length	$4~500~\mathrm{m^d}$	$4\ 500\ m^d$	$4\ 500\ m^{\text{d}}$	$4\ 500\ m^d$	$4\;500\;m^{\text{d}}$	$4\ 500\ m^{\text{d}}$		
Slope	3.33% ^e	3.33% ^e	3.33% ^e	3.33% ^e	3.33% ^e	3.33% ^e		

Approach surface Instrument runway

Table 4-3. Dimensions of inner approach surface — Non-instrument runways							
Aeroplane design group	I	IIA-IIB	IIC	III	IV	v	
Length of inner edge Length	60 m 900 m ^b	80 m 1 125 m ^b	100 m 1 350 m ^b	110 m 1 350 m ^b	120 m 1 350 m ^b	120 m ^a 1 350 m ^b	

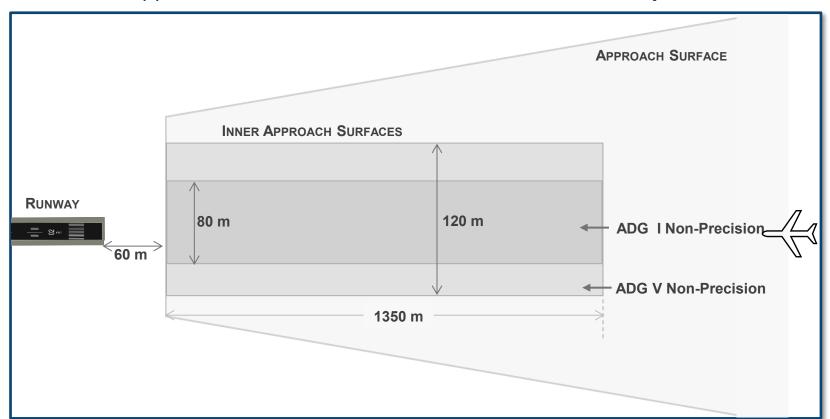

Inner Approach surface Non-Instrument runway

Table 4-4. Dimensions of inner approach surface — Non-precision approach runways									
Aeroplane design group	I	IIA-IIB	IIC	III	IV	v			
Length of inner edge	80 m	80 m	120 m	120 m	120 m	120 m ^a			
Length	$1~350~\mathrm{m}^\mathrm{b}$	1 350 m ^b	$1~350~\mathrm{m}^\mathrm{b}$	$1~350~\mathrm{m}^\mathrm{b}$	$1~350~\mathrm{m}^\mathrm{b}$	1 350 m ^b			

Table 4-5. Di	mensions of	inner approa	ch surface –	- Precision a	pproach runv	ways
Aeroplane design group	I	IIA-IIB	IIC	III	IV	v
Length of inner edge	90 m	90 m	120 m	120 m	120 m	120 m ^a
Length	1 350 m ^b	1 350 m ^b	$1~350~\mathrm{m}^\mathrm{b}$	$1~350~\mathrm{m}^\mathrm{b}$	1 350 m ^b	$1~350~\mathrm{m^b}$

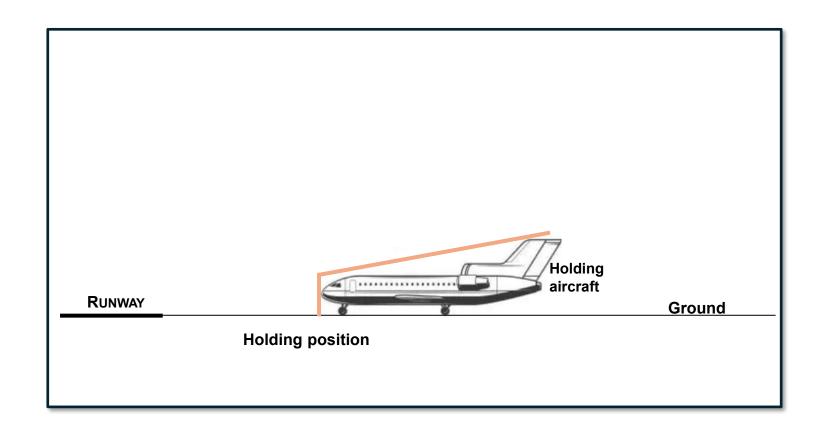
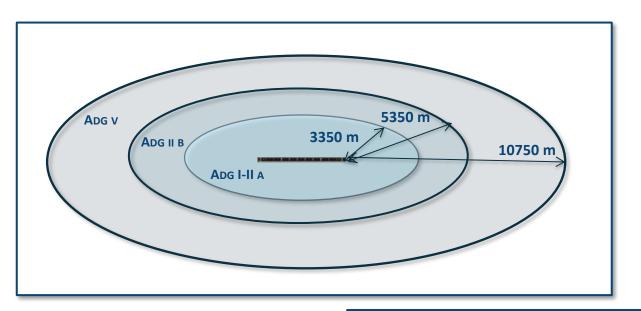
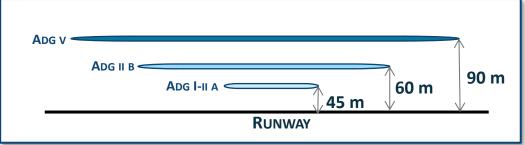

Inner Approach surface Non-Precision and Precision runways

Table 4-6. Dimensions of inner transitional surfaces — Non-instrument runways								
Aeroplane design group	I	IIA-IIB	IIC	III	IV	V		
Height of the vertical section	6 m	6 m	8.4 m	10 m	5 m	5 m		
Slope of the inclined section	40 %	40 %	33.3%	33.3%	33.3%	33.3%		
Length	a	a	1 800 m ^b					

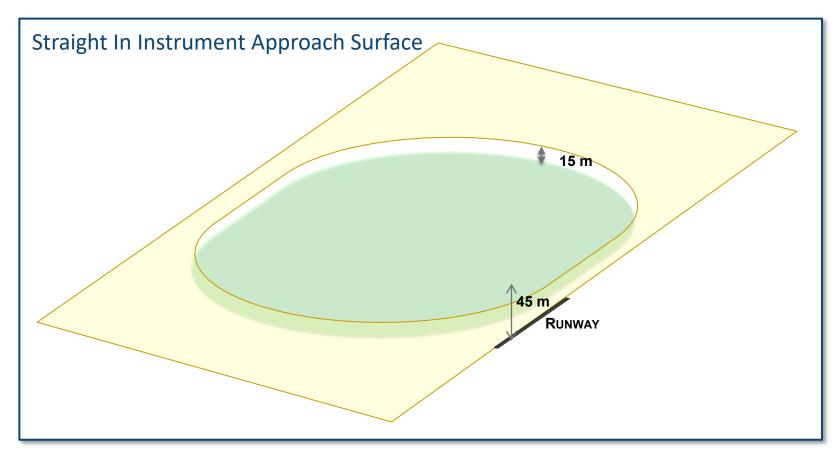
Table 4-7. Dimensions of inner transitional surfaces — Non-precision approach runways								
Aeroplane design group	I	IIA-IIB	IIC	III	IV	V		
Height of the vertical section	6 m	6 m	5 m	5 m	5 m	5 m		
Slope of the inclined section	40 %	40 %	33.3%	33.3%	33.3%	33.3%		
Length	a	a	1 800 m ^b					

Vertical section of the inner transitional surface

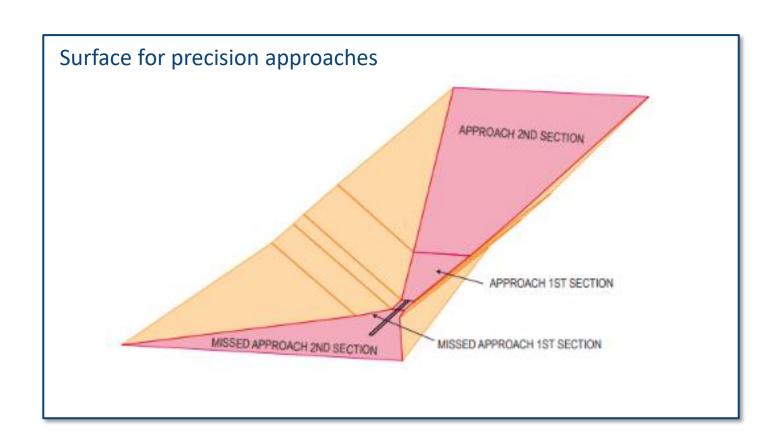



Selecting OES Surfaces based on operations

Surfaces	Take-off	Instrument Departures	Circling / visual circuits	Straight in Instrument Approaches (Non- precision)	Precision Approaches
Horizontal Surfaces	Χ	X	✓	To be considered	X
Surface for Straight In Instrument Approach	X	X	To be considered	✓	X
Surface for Precision Approaches	X	X	X	X	✓
Instrument Departure Surface	X	✓	X	X	X
Take-off Climb Surface	✓	✓	X	X	X


Table 4-10. Dimensions of horizontal surface							
Aeroplane design group	I-IIA	IIB	IIC	III	IV	V	
Radius	3 350 m	5 350 m	10 750 m	10 750 m	10 750 m	10 750 m	
Height	45 m	60 m	90 m	90 m	90 m	90 m	

Horizontal Surfaces



	Aeroplane design group	I to V
Lower section		45 m
	Height	
	_	Horizontal
	Length	OES as
		per ADG I
	Height	60 m
Upper section	Length of shorter side	7 410 m
opper section	Length of longer side from	5 350 m
	the threshold or thresholds	3 330 III

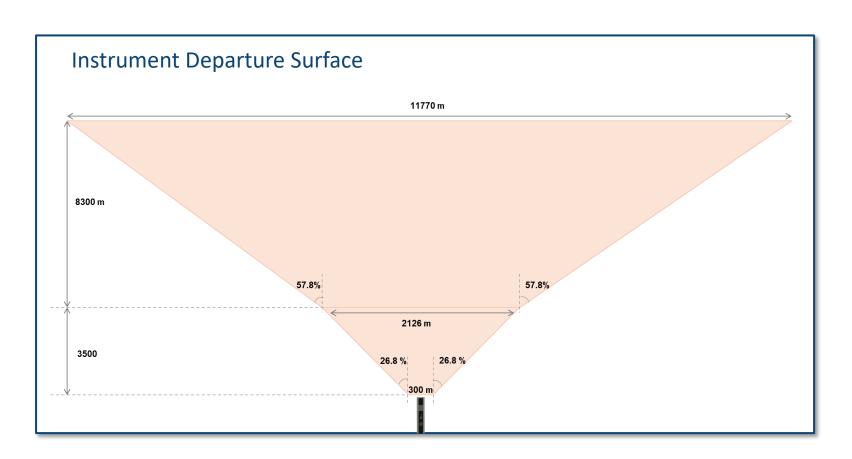


Table 4-12.	Dimensions o	f surface for precision approac	ches
Aeı	oplane design	ı group	I to V
	•	Distance from threshold	60 m
		Length of inner edge	300 m
		Length	3 000 m
A	1 st section	Divergence (each side)	15 %
Approach component		Slope	2 %
		Length	9 600 m
	2 nd section	Divergence (each side)	15 %
		Slope	2.5 %
Missad annua ah aamnan an	•	Distance after threshold	900 m
Missed approach component		Length of inner edge	300 m

Aero	group	I to V	
		Length	1 800 m
	2 nd section	Divergence (each side)	17.48 %
		Slope	2.5 %
		Length	10 200 m
		Divergence (each side)	25 %
		Slope	2.5 %
Transitional component		Slope	14.3 %

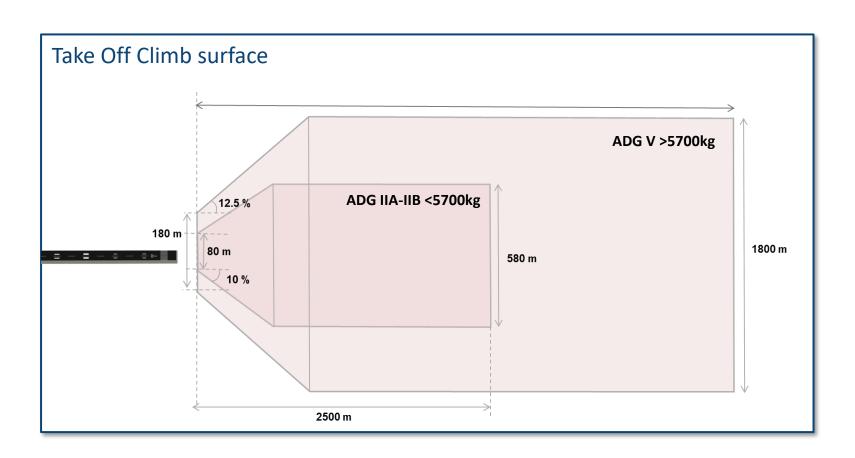


Table 4-13.	Dimensions of instrument departure surface				
	Aeroplane design group	I to V			
	Length of inner edge	300 m			
	Slope	2.5 %			
Einst andian	Length	3 500 m			
First section	Divergence	26.8 %			
Second section	Length	8 300 m			
Second section	Divergence	57.8 %			

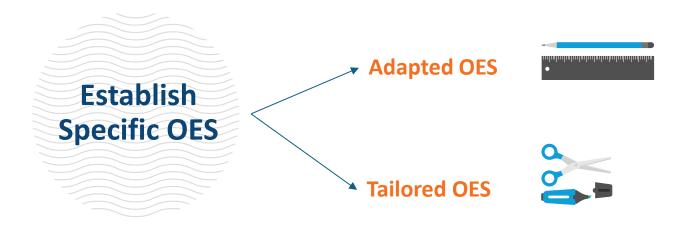


Table 4-14. Dimension	s of take-off	climb surface mass up to		with operati	ons of aeropl	anes witl
Aeroplane design group	I	IIA-IIB	IIC ^a	IIIª	IV ^a	V ^a
Distance from runway end ^b	30 m	60 m	-	-	-	-
Length of inner edge	60 m	80 m	-	-	-	-
Divergence (each side)	10%	10%	-	-	-	-
Final width	380 m	580 m	-	-	-	-
Length	1 600 m	2 500 m	-	-	-	-
Slope	5%	4%	-	-	-	-

Table 4-15. Dimension	s of take-off	climb surfac mass abov		with operati	ons of aerop	lanes with
Aeroplane design group	I	IIA-IIB	IIC	III	IV	V
Distance from TODA	-	-	-	-	-	-
Length of inner edge	144 m	156 m	156 m	172 m	180 m	180 m
Divergence (each side)	12.5%	12.5%	12.5%	12.5%	12.5%	12.5%
Final width	$1~800~\mathrm{m}^{\mathrm{a}}$	$1~800~\mathrm{m}^{\mathrm{a}}$	$1~800~\mathrm{m}^{\mathrm{a}}$	$1~800~\mathrm{m}^{\mathrm{a}}$	$1~800~\mathrm{m}^{\mathrm{a}}$	1 800 m
Length	10 000 m	10 000 n				
Slope	5%	4%	2%	2%	2%	2%

If the Standard OES stipulated in Annex 14, Vol 1 does NOT cover all type of operations conducted on the runway

Different OES may be established for each runway at an aerodrome

The relevant authority shall ensure that the more limiting surface prevail

Summary

- Aeroplane Design Group is the more appropriate classification to be used for OLS
- The 2 parameters that make up the ADG are Aircraft speed at threshold and wingspan.
- The more stringent values of the 2 parameters shall be used when choosing the ADG for the runway.
- For aerodromes with multiple runways, different ADG can be identified for each runway.
- The dimensions for the OFS and OES are dependent on the ADG selected for the runway.