

SAFE SKIES.
SUSTAINABLE
FUTURE.

Mohammad Mandora

Navigation & Communication Engineering Manager Saudi Air Navigation Services (SANS) GNSS in Saudi Arabia's Aviation Evolution

02

The Threat of GNSS RFI: Global Surge, Local Impact

SANS GNSS Monitoring
System: Foundation for
Future Readiness

04

System Gaps and Challenges: Bridging the Limitations

Building the Future: A Vision for Integrated GNSS
Resilience

06

DME/DME Navigation: Saudi Arabia's Contingency Layer

07

Saudi Arabia's Commitment to GNSS Resilience

ICAO

Restricted Document

GNSS in Saudi Arabia's Aviation Evolution

Balancing innovation and safety in a complex airspace

CAO

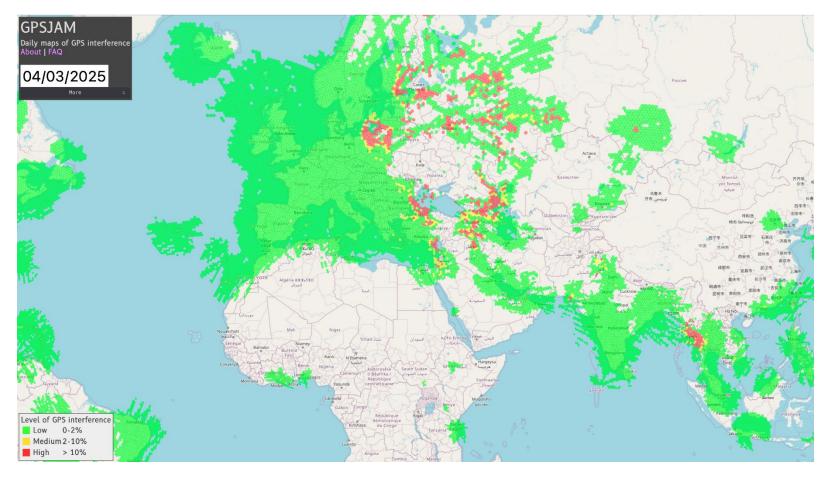
GNSS in Saudi Arabia's Aviation Evolution

Balancing innovation and safety in a complex airspace

- Rapid integration of GNSS in national CNS modernization
- Strategic redesign of airspace and navigation procedures
- Safety-first approach with retained ground-based layers
- Addressing regional challenges with balanced infrastructure

The Threat of GNSS RFI: Global Surge, Local Impact

Growing vulnerabilities demand a proactive national response


ICAO 🚳

The Threat of GNSS RFI: Global Surge, Local Impact

Growing vulnerabilities demand a proactive national response

- GNSS Radio Frequency Interference (RFI) is growing at an alarming rate:
 - \rightarrow Jamming: +175%,
 - → Spoofing: +500% (globally)
- Most disruptions are detected through **pilot reports**, not automated systems
- These events affect en-route navigation, FMS, ADS-B, and approach phases
- Unaddressed RFI may compromise situational awareness and safety margins

The Threat of GNSS RFI: Global Surge, Local Impact

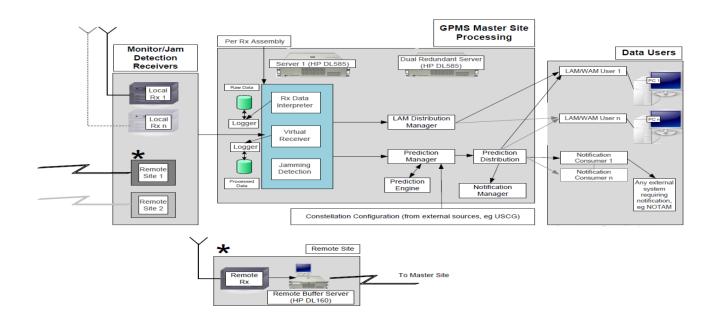
Daily GPS interference heatmap – 3 April 2025

Source: gpsjam.org | Red = >10% interference, Yellow = 2–10%, Green = <2%

SANS GNSS
Monitoring
System:
Foundation
for Future
Readiness

A necessary first step in understanding and responding to GNSS threats A necessary first step in understanding and responding to GNSS threats

ICAO 🚳


SANS GNSS Monitoring System: Foundation for Future Readiness

A necessary first step in understanding and responding to GNSS threats

- Initial deployment of GNSS Performance Monitoring System (GPMS)
- Five receiver sites across major operational regions
- Visual monitoring, basic prediction, and NOTAM proposal
- Operational integration with ATCO and engineering support
- Provided valuable insights, but has reached its technical limits

SANS GPMS Architecture & Receiver Setup

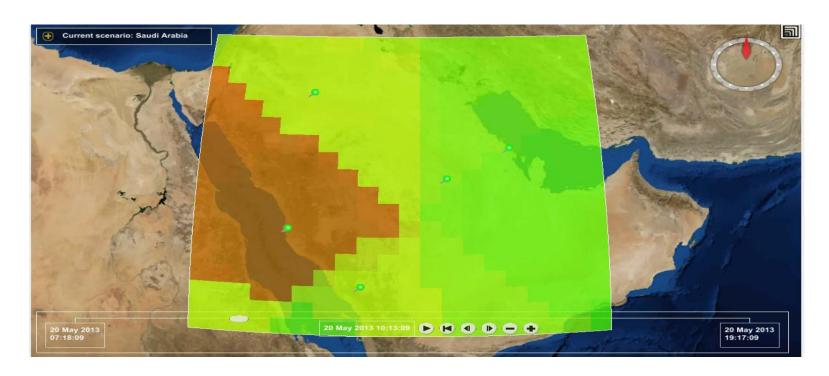
GPMS Overview:

SANS GPMS uses NovAtel GNSS receivers and antennas to collect signal data across multiple sites.

Data is centralized for basic integrity checks, jamming alerts, and semi-automated NOTAM proposals.

System Gaps and Challenges: Bridging the Limitations

Lessons learned from the first generation of GNSS monitoring


ICAO 🚳

System Gaps and Challenges: Bridging the Limitations

Lessons learned from the first generation of GNSS monitoring

- Coverage limited to receiver site proximity
- No spoofing or jamming detection capabilities
- Outdated software and limited prediction scope
- GPS-only monitoring; lacks multi-constellation support
- No remote access or interoperability with other systems

System Gaps and Challenges: Observed GNSS Signal Degradation

Simulation output showing GNSS signal availability

Data highlights significant signal degradation across central and western Saudi Arabia, particularly in zones beyond the direct line of sight from monitoring sites.

Orange = Severe degradation

Yellow/Green = Acceptable signal quality

Building the Future: A Vision for Integrated GNSS Resilience

Toward a predictive, scalable, and collaborative monitoring architecture

CAO

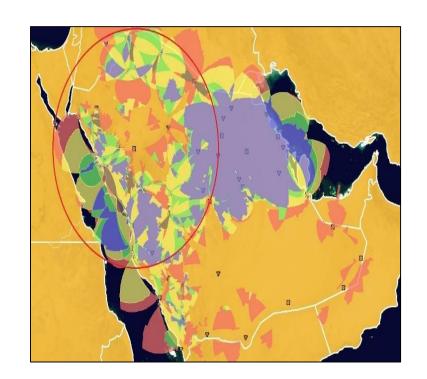
Building the Future: A Vision for Integrated GNSS Resilience

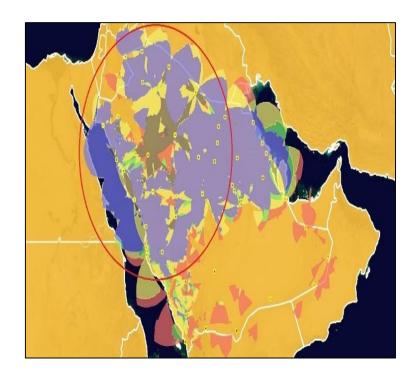
Toward a predictive, scalable, and collaborative monitoring architecture

- Distributed, low-cost GNSS sensors for wide-area coverage
- Integration with ADS-B (NIC/NUC) for air-ground performance data
- Satellite-based interference mapping and spoofing detection
- Real-time prediction algorithms and health monitoring
- Inter-agency data sharing and standardized interfaces

DME/DME
Navigation –
Saudi Arabia's
Contingency
Layer

A strategic layer aligned with national and regional resilience efforts


ICAO 🚳


DME/DME Navigation – Saudi Arabia's Contingency Layer

A strategic layer aligned with national and regional resilience efforts

- DME/DME provides GNSS-like positioning with built-in redundancy
- ILS/DME upgrades: high-power omni-DME for extended FL160 coverage
- Supports PBN continuity and resilience during GNSS outages
- Part of national navigation planning under SNAP
- SANS supports the regional MON task force to ensure MID-wide CNS robustness

DME/DME Navigation – Saudi Arabia's Contingency Layer

National DME/DME Coverage at FL160 – Before (left) and After (right) the ILS/DME Upgrade Transition from Low-Power Directional DMEs to High-Power Omnidirectional Units Significantly Expands En-Route Coverage and Strengthens Saudi Arabia's GNSS Contingency Navigation Layer.

Saudi Arabia's Commitment to GNSS Resilience

Driving innovation, safety, and collaboration across CNS systems

CAO

Saudi Arabia's Commitment to GNSS Resilience

Driving innovation, safety, and collaboration across CNS systems

- Building a future-ready, data-driven GNSS monitoring framework
- Balancing innovation with operational resilience
- Investing in sovereign infrastructure and layered continuity
- Open to collaboration and knowledge exchange with ICAO States

Thank You

ICAO Headquarters Montréal

European and North Atlantic (EUR/NAT) Office Paris

> Middle East (MID) Office

Southern African

(ESAF) Office

Nairobi

Western and Central African (WACAF) Office Dakar

> Asia and Pacific (APAC) Office

Asia and Pacific

Beijing

(APAC) Sub-office

(APAC) O Bangkok Eastern and

North American
Central American
and Caribbean
(NACC) Office
Mexico City

South American (SAM) Office

