

SAFE SKIES.
SUSTAINABLE
FUTURE.

Addressing GNSS Radio Frequency Interference (RFI) in Malaysia: Challenges, Impact, and Mitigation Strategies

Mohd Fitri Bin Ishak

Deputy Director
Civil Aviation Authority of Malaysia

Overview

01

Introduction GNSS RFI Reporting Platform in Malaysia

- Civil Aviation Reporting Systems (CAReS);
- Other reporting channels

03

Mitigation Efforts

- National Monitoring System;
- Enhanced surveillance and navigation

04

Identified Key Challenges

Reported GNSS RFI

Affected locations

Trends

05

Future Recommendation

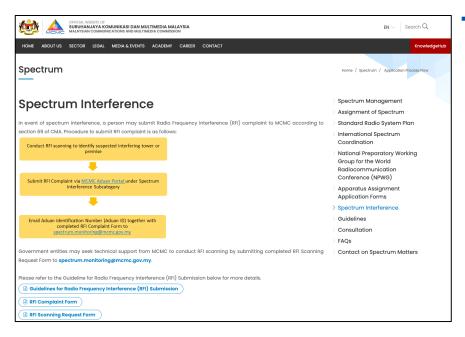
06

Conclusion

01 Introduction

Global Navigation Satellite System (GNSS) Radio Frequency Interference (RFI)

- The **Global Navigation Satellite System** (GNSS) support **precise** navigation;
- Key challenge: RFI disruptions degrade navigation and operations;
- Study focus: GNSS RFI reports (2023 Q1 2025) show rising incidents;
 and
- Mitigation strategies in Malaysia: GNSS NMS, enhanced surveillance capability and alternative navigation aids usage



GNSS RFI Reporting Platform in Malaysia

Civil Aviation Reporting System (CAReS)

- In **April 2023**, CAAM launched <u>CAReS</u>, a <u>reporting platform</u> to <u>promote a strong reporting culture</u> within Malaysia's aviation sector.
- The regulatory division of CAAM is responsible for overseeing CAReS;
- CAReS supports two (2) types of reporting:
 - Mandatory Occurrence Report (MOR): Compulsory reporting for significant safety-related occurrences; and
 - Voluntary Occurrence Report (VOR): Allows stakeholders to voluntarily report safety-related concerns.

https://www.caam.gov.my/wp-content/uploads/2023/03/AI-04_2023_-CAReS.pdf

Other Reporting Channels

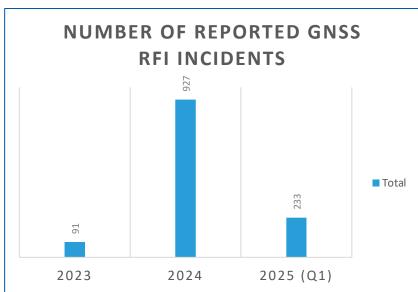
Malaysian Communication and Multimedia Commission (MCMC)

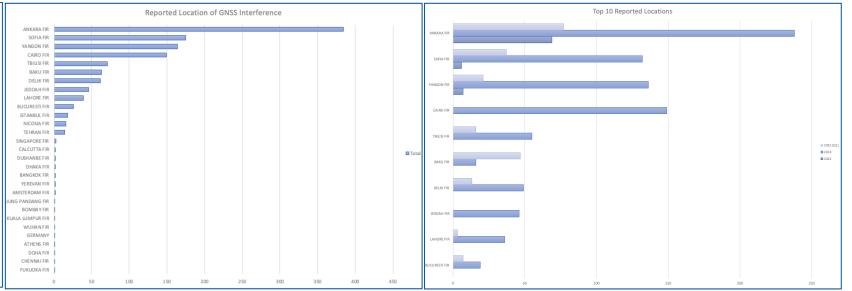
MCMC is the agency responsible for investigating harmful cases of radio frequency interference (RFI) in Malaysia.

https://www.mcmc.gov.my/en/spectrum/spectrum-interference

02

Reported GNSS RFI Incidents


on CAReS


- Analysis of data from CAReS
- Affected Locations and Hotspots
- Affected Flight Phases

CAO

Reported GNSS RFI Incident Trends (2023 – 2025)

from CAReS platform

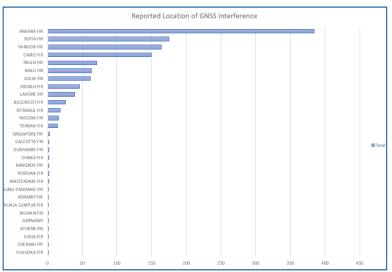
Total number of reported GNSS RFI incidents on CAReS

The reported affected locations and hotspots from CAReS

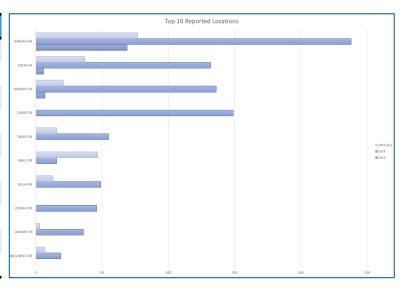
Top 10 Affected Locations

Reported GNSS RFI Incident Trends (2023 – 2025)

Key trends from CAReS reports:

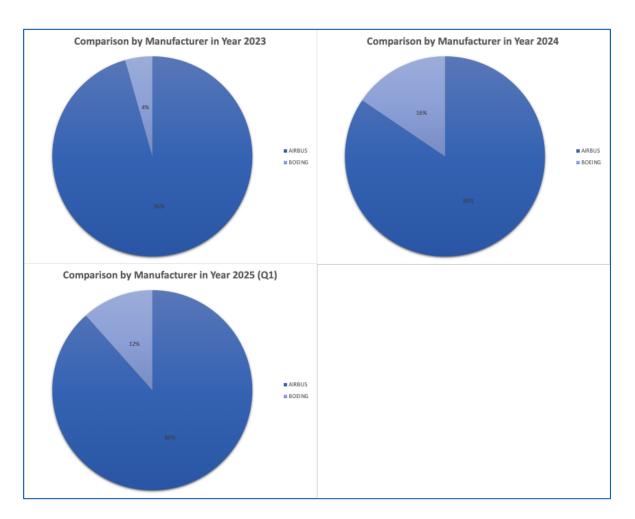

No	Year	Number of GNSS RFI Incidents	Remarks
1.	2023	91	GNSS RFI incidents
2.	2024	927	A substantial increase of GNSS RFI incidents
3.	2025	233	Only Q1 on GNSS RFI incidents

- low number of reports in 2023 may be attributed to the initial phase of CAReS;
- the **increase** in reported incidents **in 2024 and 2025** is attributed to **better reporting mechanisms** and **stakeholder engagement sessions**.
- there is likely underreporting of in-flight GNSS RFI incidents due to the lack of real-time pilot reporting;
- if a pilot reports an interference via radio VHF, ATC is expected to document and file a report on the CAReS platform.
- No reports on GNSS RFI from ATC
- the primary challenge in mitigating GNSS RFI is the delayed reporting process;



Reported GNSS RFI Incident Trends (2023 – 2025)

Affected Locations and Hotspots



No	Location	Number of GNSS RFI Incidents
1.	ANKARA FIR	384
2.	SOFIA FIR	175
3.	YANGON FIR	164
4.	CAIRO FIR	149
5.	TBLISI FIR	71
6.	BAKU FIR	63
7.	DELHI FIR	62
8.	JEDDAH FIR	46
9.	LAHORE FIR	39
10.	BUCURESTI FIR	26

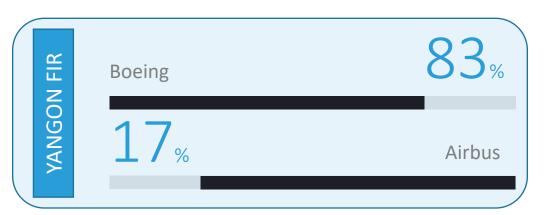
- The **highest number of incidents** reported in **ANKARA, SOFIA** and **YANGON FIR**.
- No reported incident in Cairo FIR after 2024

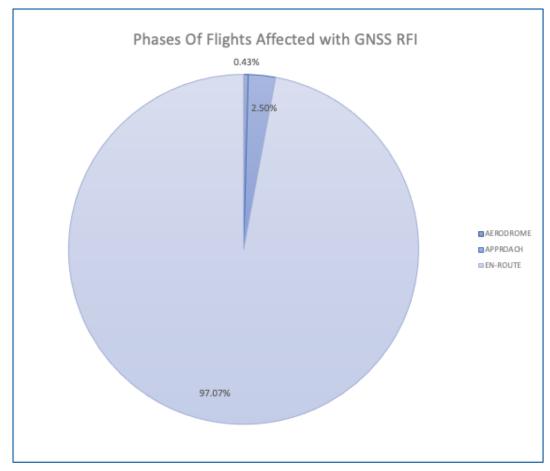
Reported GNSS RFI Incident Trends (2023 – 2025)

Comparison between two Aircraft Manufacturers

• In general, Airbus (86%) more affected than Boeing (14%)

Reported GNSS RFI Incident Trends (2023 – 2025)


Comparison between two Manufacturers over Top Three Affected Locations


However, among the top three affected locations, **Boeing** (83%) is more affected than **Airbus** (17%) in **Yangon FIR**.

To validate this hypothesis, further analysis and insight from aviation analysts or experts would be beneficial.

Reported GNSS RFI Incident Trends (2023 – 2025)

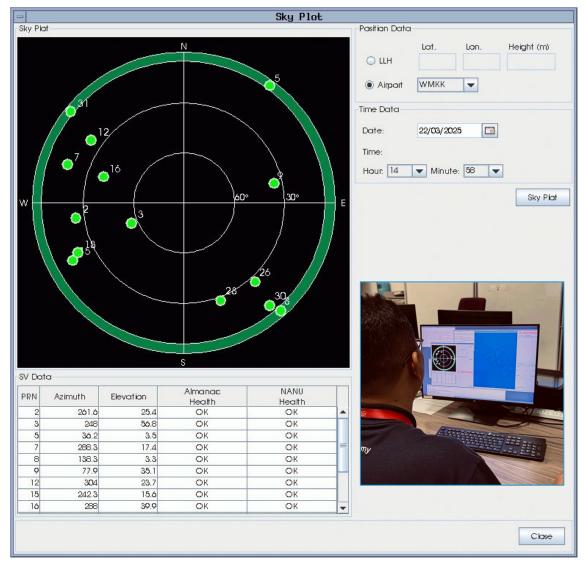
Affected Flight Phases

No	Phase of Flight	Number of GNSS RFI Incidents
1.	En-route	1126
2.	Approach	29
3.	Aerodrome	5

• The GNSS RFI primarily affects aircraft at cruising altitudes, potentially disrupting navigation and requiring alternative solutions;

03

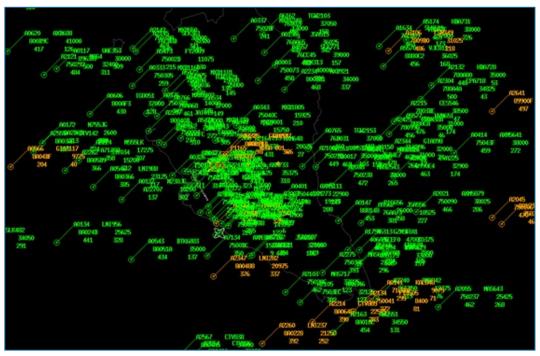
Mitigation Efforts in Malaysia


- GNSS National Monitoring Systems (NMS)
- Enhanced Surveillance Capability
- Maintaining Ground-Navigation Aids

GNSS National Monitoring System (NMS)

- Detects RFI in real-time;
- Generate automated NOTAM proposals for GNSS disruptions;
- Integrates ADS-B & radar for enhanced surveillance

- The GNSS NMS is structured as follows:
 - National Monitoring Centre (NMC);
 - Two (2) Local Monitoring Stations (LMS)
 (Penang and KL International Airport);
 - Interference and Performance Monitoring.



Enhanced Surveillance Capabilities (ADS-B with GNSS Receiver)

- ADS-B system with ADS-B Ground Data Processing (A-GDP) system.
- The A-GDP has advanced GNSS verification capabilities;.
- The system includes:
 - dual transceiver ADS-B units operating at 1030/1090 MHz;
 - work as Multi-lateration (MLAT);
 - connected with dual GNSS receiver unit; and
 - Time Difference of Arrival (TDOA) techniques to validate ADS-B target positions;

Green means Validated ADS-B positional information

Enhanced Surveillance Capabilities

- validated positional information (green indicates validated ADS-B position);
- improving the confidence of ATC to utilise the information for providing Air Traffic Services;
- robust surveillance coverage (PSR/SSR Mode-S and ADS-B systems)
- utilise radar vectoring techniques in the event of GNSS RFI.

Maintaining Alternative Navigation Capabilities

- Continue expanding PBN airways and IFP to enhance ATC and Airline's efficiency;
- with overlapping surveillance & NMS to ensure rapid GNSS RFI response;
- with Backup navigation (DVOR/DME, ILS) to support safe recovery during GNSS outages;
- to ensure operational continuity in case of GNSS disruptions

			1			PBN APPROACH				
No	Airport	ICAO CODE	Runway	PBN SID	PBN STAR	LNAV LNAV/VNAV RNP (AF			ILS	DVOR/DME
			16	✓	✓			(AR) ✓	✓	/
1	Johor Bahru	WMKJ	34	√	✓	N/U	N/U	· ✓	N/A	N/A
2			32L	· ✓	✓		\(\sqrt{\sqrt{\sqrt{\chi}}}\)	N/A		N/A
			32R	✓	✓	✓	✓	√	✓	<i>√</i>
			14L	✓	✓	<u> </u>	✓	N/A	<u> </u>	N/A
	KLIA	WMKK	14R	✓	✓	✓	✓	N/A	✓	N/A
			33	√	✓	✓	✓	<i>√</i>	✓	N/A
			15	✓	✓	✓	✓	N/A	✓	√
_	Langkawi		03	✓	N/U	✓	✓	√	✓	√
3		WMKL	21	N/U	√	N/U	N/U	N/U	N/A	N/A
_	Penang	WMKP	04	✓	✓	√	√	√	<u> </u>	<i>'</i>
4			22	✓	✓	✓	√	✓	N/A	√
_			07	✓	✓	✓	✓	✓	N/A	✓
5	Kuching	WBGG	25	✓	✓	✓	✓	✓	✓	✓
_			02	✓	✓	✓	✓	✓	✓	✓
6	Kota Kinabalu	WBKK	20	✓	✓	✓	✓	✓	N/A	✓
7 Alor Sta	Al. Cl.		04	N/U	✓	✓	✓	✓	✓	✓
	Alor Star	WMKA	22	✓	N/U	N/U	N/U	N/U	N/A	N/A
0	Kata Dham.	NA/BAIKC	10	✓	✓	✓	✓	✓	✓	N/A
8	Kota Bharu	WMKC	28	✓	✓	✓	✓	✓	N/A	✓
^	Kuantan	WMKD	18	✓	✓	✓	✓	N/A	N/A	✓
9			36	✓	✓	✓	✓	N/A	✓	N/A
10	Ipoh	WMKI	04	✓	N/U	✓	✓	✓	✓	✓
10			22	N/U	✓	N/U	N/U	N/U	N/A	N/A
11	Melaka	WMKM	03	✓	✓	✓	✓	N/A	✓	N/A
11			21	✓	✓	✓	✓	N/A	N/A	✓
12	Kuala Terengganu	WMKN	04	✓	✓	✓	✓	✓	✓	✓
12			22	✓	✓	✓	✓	✓	N/A	N/A
13	Subang	WMSA	15	✓	✓	✓	✓	N/A	✓	✓
13			33	✓	N/U	✓	✓	N/A	N/A	N/A
14	Bintulu	WBGB	17	✓	✓	✓	✓	✓	✓	✓
14		WBGB	35	✓	✓	✓	✓	✓	N/A	N/A
15	Miri	WBGR	02	✓	✓	✓	✓	✓	✓	✓
13			20	✓	✓	✓	✓	✓	N/A	N/A
16	Sibu	WBGS	13	✓	✓	✓	✓	✓	✓	✓
-0	5150	WBG3	31	✓	✓	✓	✓	✓	N/A	N/A
17	Labuan	WBKL	14	✓	✓	✓	✓	✓	✓	✓
	Labaan	AA DIKE	32	✓	✓	✓	✓	✓	N/A	N/A
18	Sandakan	WBKS	08	✓	✓	✓	✓	N/A	✓	✓
10			26	✓	✓	✓	✓	✓	N/A	N/A
19	Tawau	WBKW	06	✓	✓	✓	✓	✓	N/A	✓
13			24	✓	✓	✓	✓	✓	✓	N/A
20	Mukah	WBGK	15	✓	✓	✓	✓	N/A	✓	✓
20			33	✓	✓	\checkmark	✓	N/A	N/A	N/A

04

Identified Key Challenges Key challenges related to GNSS RFI:

- Rising GNSS RFI incidents;
- Lack of real-time mitigation mechanisms & reliance on outdated reports;
- Operational and safety risks GNSS-based navigation overdependence;
- Limited awareness of existing reporting mechanisms (CAReS, MCMC).

05

Future Plan and Recommendation

- Strengthen real-time reporting & monitoring via ATC-Pilot integration;
- Ensure alternative navigation solutions (DME/DME, VOR/DME, radar vectoring);
- Invest in mitigation technologies, including adaptive GNSS interference monitoring, TDOA surveillance systems
- continuous stakeholder engagement initiatives to enhance cooperation and awareness on GNSS RFI;

GNSS RFI remains a growing challenge to aviation safety and efficiency; 06 Despite mitigation efforts, real-time reporting gaps persist; **Conclusion** Continuous monitoring, stakeholder collaboration, and technology **investment** are key to resilience; Future efforts should focus on proactive detection, real-time reporting, and integrated response strategies; **Seamless coordination** between ATC, pilots and equipment integration such as GNSS NMS is essential to strengthening air navigation system resilience;

Thank You

ICAO Headquarters Montréal European and North Atlantic (EUR/NAT) Office Paris

Western and Central African (WACAF) Office Dakar (APAC) Sub-office
Beijing
East

Middle East (MID) Office Cairo

> Asia and Pacific (APAC) Office Bangkok

Asia and Pacific

North American
Central American
and Caribbean
(NACC) Office
Mexico City

South American (SAM) Office

Eastern and
Southern African
(ESAF) Office
Nairobi

