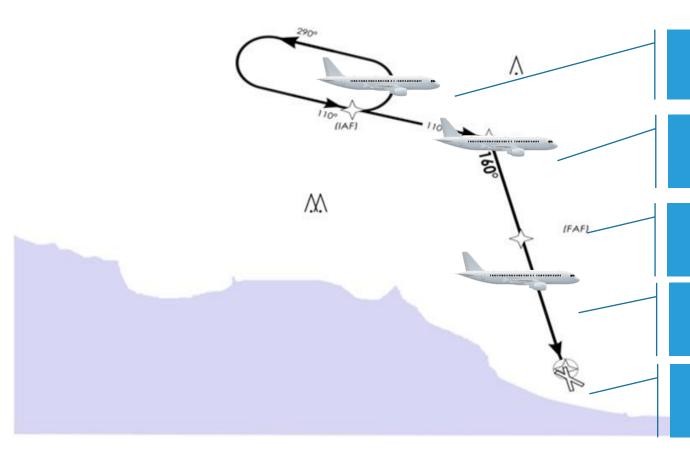


GBAS-SBAS Procedure Design Courses at APAC FPP

Ying Liu

Coordinator

ICAO Asia-Pacific Flight Procedure Programme


- To support ICAO Assembly Resolution A36-23 and then A37-11 on PBN implementation, ICAO Asia-Pacific PBN Task Force recommended ICAO APANPIRG to establish the FPP.
- In September 2009, APANPIRG/20 meeting endorsed the concept.
- With supports from 10 Active Participating members, the FPP office was established in October 2009 and located in Beijing, China hosted by the Civil Aviation Administration of China (CAAC).
- In June 2013, co-located with APAC RSO.

History

FPP Phases

Phase 1 (2010-2012)

Phase 2 (2013-2017)

Phase 3 (2018-2020)

Phase 4 (2021-2023)


Phase 5 (2024-2026)

FPP Objectives

FPP Members

MEMBER STATES

- 8 Active Members (SCM members)
- **1 Donor** Member
- 12 **User** Members

8 active participanting States/Administrations, including the Host State which participate in the Programme funding by annual contributions and is a Member of the Steering Committee.

> Australia, China, Hong Kong SAR China, Macao SAR China, Philippines, Republic of Korea, Singapore, **Thailand**

ACTIVE STATES USER STATES DONOR STATES

12 user States/Administrations which use the Programme and shall bear certain expenses for assistance provided to but does not participate in the Programme funding by annual contributions.

> Bangladesh, Cambodia, Fiji, Indonesia, Lao PDR, Malaysia, Maldives, Mongolia, Nepal, Pakistan, Sri Lanka, Vietnam

1 donor State which supports APAC-FPP by financial contribution or contribution in-kind and is a member of the Streering Committee upon approval by the SC.

France

WHAT WE DO

"No country left behind" in the instrument flight procedure domain, develop APAC states' capabilities in IFP design through training, project consulting and flight procedure design service.

Making REGIONAL progress in terms of safety, efficiency and environmental improvement.

Challenges

- Significant Safety Concerns (SSCs) have been raised during the USOAP audit in one Region which are related to publications and the associated oversight/regulatory inadequacies of IFPs.
- The statistics show that regional States and/or Air Navigation Service Providers are still facing some of the following main procedure design-related issues and problems:
- a) Need for enhancement of procedure design training: initial, on-the-job (OJT), and/or recurrent;
- b) High turnover among procedure designers;
- c) Insufficient procedure design work in some States to attain or maintain proficiency;

Challenges

- d) Lack of depth in procedure design organization to perform quality assurance (QA);
- e) Insufficient expertise in procedure design organization to provide adequate QA of procedures;
- f) Lack of experience in both charting and navigation database coding;
- g) Lack of regulatory oversight framework; and
- h) Insufficient regulatory expertise to oversee the procedure design service provider

WHAT WE DO

ICA0

APV Baro-VNAV: APV Baro-VNAV: *APV Baro-VNAV: "APV Baro-VNAV" approach segment (offset approach segment approach segment approach) *APV Baro-VNAV: Missed "APV Baro-VNAV" APV Baro-VNAV: Missed approach segment approach segment LPV/GLS "APV SBAS/GBAS and APV SBAS/GBAS Coding for 3D approach LPV/GLS concept" concept concept PBN in combination with PBN in combination with "PBN in combination with ILS ILS ILS *Coding (PBN + ILS)& RF turn " (TF leg) (RF leg) "Charting" *Progress test & Self-assessment Sum up

Procedure Design Course

Schedule

Procedure Design Course Schedule

Registration & Introduction	Doc 8168 Amendment & Doc 9613	Quality Assurance (DOC 8168/9906)	RF Turn
Baro-VNAV	Baro-VNAV	Exercise 1 : Baro-VNAV	Exercise 1 : Baro-VNAV
RNAV + ILS	RNAV + ILS	Exercise 2 : RNAV + ILS	Exercise 2 : RNAV + ILS
SBAS/GBAS Concept	SBAS/GBAS Concept	Charting	Sum up

Procedure Design Course Schedule

09:00-10:30	10:45-12:00	13:20-14:50	15:10-16:40
Departure	Departure Exercise	Departure Exercise	Departure Exercise
Arrival (TAA include)	Holding	RNAV ILS	RF
Coding	Coding Exercise	Charting	CDO
GBAS/SBAS & FAS data block	GBAS/SBAS & FAS data block	Progress Test 2	Group Exercise RNP 1 SID, STAR, RNP APCH
Group Exercise RNP 1 SID, STAR, RNP APCH			

GBAS-SBAS Procedure Design

PART ONE

Basic Concepts of GBAS

PART TWO

Basic Concepts of SBAS

PART THREE

FAS Data Block

PART FOUR

Charts & Coding

ICAC

GBAS-SBAS Procedure Design

This edition incorporates all amendments approved by the Council prior to 19 May 2020 and supersedes on 5 November 2020, all previous editions of Doc 8168, Volume II.

INTERNATIONAL CIVIL AVIATION ORGANIZATION

PART III. PERFORMANCE-BASED NAVIGATION PROCEDURE	S
Section 3. Procedure construction	

Chapter :	5. SBAS non-precision approach, APV I and precision	
approach	Category I criteria	III-3-5-1
5.1	Introduction	III-3-5-1
5.2	Initial approach segment	III-3-5-2
5.3	Intermediate approach segment	III-3-5-2
5.4	APV or CAT I segment	III-3-5-3
5.5	Missed approach segment	III-3-5-7
5.6	SBAS approach with offset final approach track alignment	III-3-5-9
5.7	SBAS NPA	III-3-5-10
5.8	Promulgation	III-3-5-10
Appe	ndix to Chapter 5. Steep glide path angle approaches up to	
6.3 d	egrees (11 per cent)	III-3-5-App-1

GBAS-SBAS Procedure Design

This edition incorporates all amendments approved by the Council prior to 19 May 2020 and supersedes on 5 November 2020, all previous editions of Doc 8168, Volume II.

INTERNATIONAL CIVIL AVIATION ORGANIZATION

PART III. PERFORMANCE-BASED NAVIGATION PROCEDURES

Section 3. Procedure construction

Chapter	6. Precision approach procedures — GLS	III-3-6-1
6.1	Introduction	III-3-6-1
6.2	Initial approach segment	III-3-6-5
6.3	Intermediate approach segment	III-3-6-5
6.4	Precision segment	III-3-6-8
6.5	Missed approach after the precision segment (final missed approach)	III-3-6-16
6.6	GLS CAT I with offset azimuth final approach track alignment	III-3-6-20
6.7	Promulgation	III-3-6-21

Design Comparison

ILS Procedure

- Glide path angle (GPA) and Landing threshold point (LTP) are fixed, determined by terrain and equipment installed
- Use Obstacle Assessment Surface (OAS) software

GBAS-SBAS Procedure

- GPA and LTP can be adjusted as needed. They shall be considered in the overall situation by procedure designers and modified in the FAS data block.
- Use OAS software, design of protection area is different, but the steps are the same.

ICAO

Design Comparison

ILS Procedure

- Turn at altitude/height can be used in designing missed approach procedure
- Main ILS landing direction is generally the best direction of the terrain

GBAS-SBAS Procedure

- Turn at altitude/height can't be used in designing missed approach procedure which causes some constraints
- Relatively challenging and large workload, GBAS SBAS procedure shall work for all runways

