
Viasat + Inmarsat Satellite Safety Data Link Services

FIT Asia, 26 June, 2025 Bangkok, Thailand

Lisa Bee Director of Air Traffic Services

Agenda

- > Satellite, fleet arrangement, and coverage
- > Network enhancements
- L-band data link safety services
 - FANS 1/A services for oceanic/remote operations
 - SB-S Iris ATN services for domestic operations

L-band satellite fleet arrangement

I-6 F1

- I-6 F1 in service over the Indian Ocean
- 70% more power, 50% more capacity per beam than I-4s

I-4 FA

I4 Alphasat in service over Europe/Middle East/Africa

I-4 F3

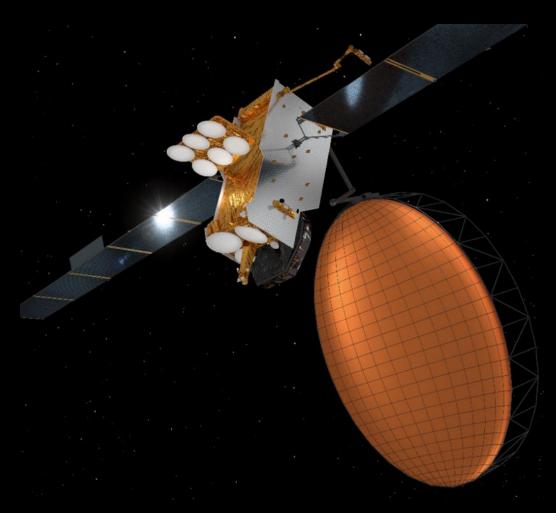
I4 F3 in service over Americas

I-4 F2

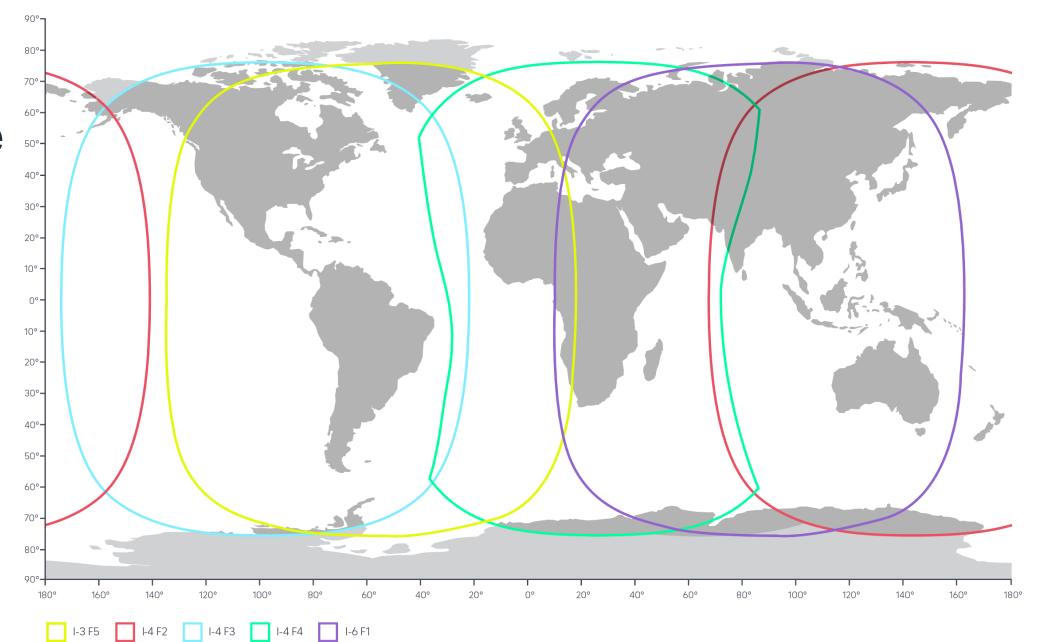
I4 F2 in service over Asia Pacific

I-3 F5

• 13 F5 in service over Atlantic Ocean


I-4 F1

Moved to new location for contingency


Three I-8 satellites planned for launch in 2026

- Anticipated Service Entry Date 2028 (All future service dates are projections and are subject to change)
- Crucial safety services and added network resilience
- Service life extension beyond 2040

L-band Satellite Coverage

- Subject to change
- Coverage map for illustration purposes only

E

Satcom Network Path Identifiers*

Satellite Service Provider (SSP)	Satellite	Service	Ground Station Location	ARINC ACARS Identifiers	SITA ACARS Identifiers	ADCC ACARS Id	entifiers
Iridium	NEXT (66 LEO's Globally)	Short Burst Data	Primary: Tempe, Arizona, US Secondary: None	IG1	IGW1	N/A	
iriaium		Certus IP	Primary: Tempe, Arizona, US Secondary: None	IG2			
	AORE	Classic Aero	Laurentides, Canada	XXN	AOE6	B3E	
	(3F5 at 54°W)	Swift Broadband-Safety 1.0	N/A	N/A	N/A	N/A	
	(3F3 dl 34 VV)	Swift Broadband-Safety 2.0	N/A	N/A	N/A	N/A	
		Classic Aero over I-4	Fucino, Italy	XXF	EUA1	B4E	
	EMEA	Swift Broadband-Safety 1.0	Primary: Fucino, Italy	X4E, X5E	EUA9	B1E	
	(AF1 at 25°E)	Swift Broadband-Safety 2.0	Secondary: Thermopylae, Greece	X0E, X3E (Paumalu gateway) X1E, X2E (Burum gateway)	EUA7 (Paumalu gateway) EUA8 (Burum gateway)	TBD	TBD
		Classic Aero over I-4	Paumalu, Hawaii, US	XXA	APK1	B4P	
	APAC (4F2 at 143.5°E)	Classic Aero over I-4 (virtual I-3 POR)	Warkworth, New Zealand	XXP	APK2	B3P	
		Swift Broadband-Safety 1.0 Primary: Paumalu, Hawaii, US Swift Broadband-Safety 2.0 Secondary: Auckland, New Zealand		X4P, X5P	APK9	B1P	
lamayest				X2P, X3P (Paumalu gateway) X0P, X1P (Burum gateway)	APK7 (Paumalu gateway) APK8 (Burum gateway)	TBD	TBD
Inmarsat	AMER (4F3 at 98°W)	Classic Aero over I-4	Primary: Paumalu, Hawaii, US Secondary: Laurentides, Canada	XXH	AME1	B4A	
		Classic Aero over I-4 (virtual I-3 AORW)	Laurentides, Canada	XXW	AME2	B3W	
		Swift Broadband-Safety 1.0	Primary: Paumalu, Hawaii, US	X4A, X5A	AME9	B1A	
		Swift Broadband-Safety 2.0	Secondary: Laurentides, Canada	X2A, X3A (Paumalu gateway) X0A, X1A (Burum gateway)	AME7 (Paumalu gateway) AME8 (Burum gateway)	TBD	TBD
	IOR/IOE (6F1 at 83.5°E)	Classic Aero over I-6 (virtual I-3 IOR)	Primary: Perth, Australia Secondary (and rainfade): Merredin, Australia	XXI	IOR5	B3I	
		Swift Broadband-Safety 1.0 (IOE)	Drimany Porth Australia	X4I, X5I	IOR9	B1I	
		Swift Broadband-Safety 2.0 (IOE)	Primary: Perth, Australia Secondary: Merredin, Australia	X2I, X3I (Paumalu gateway) X0I, X1I (Burum gateway)	IOR7 (Paumalu gateway) IOR8 (Burum gateway)	TBD	TBD

^{*} As of June 2025. Network paths subject to change

Viasat Aviation Safety Services

Over 30 years providing data link services

Oceanic and remote: FANS 1/A

- CPDLC meeting RCP240
- ADS-C meeting RSP180
- Dual voice

Flight deck IP connectivity

- Real time weather apps, e.g., turbulence avoidance
- SWIM

Domestic: ATS B2 FANS 3/C

- CPDLC meeting RCP130
- ADS-C meeting RSP160
- Dual voice

Ready for 4D TBO

- Extended CPDLC message set for trajectory negotiation
- ADS-C Extended Projected Profile (EPP)
- **Enhanced security**

PUBLIC © Viasa

Network Enhancements

- > Enhanced remote database access for Distribution Partners (DPs), with the ability for DPs to login and view detailed logs for Classic Aero, SB-S 1.0, and now SB-S 2.0
 - Enhances DP incident investigation and troubleshooting
- > We are building a network of always-on monitoring and test terminals, to specifically monitor SB-S and Iris service availability in each ocean region the Safety Availability Monitoring System (SAMS)
 - Increased capability to perform in-service operational tests on both data and voice
 - System extendable to connect to Classic Aero test terminals
 - More rapid response to service degradations
- > Putting in place a new APAC backup location for Classic Aero at Warkworth, NZ

FANS 1/A services for oceanic/remote operations

Reduced separation in oceanic airspace

WITHOUT Satcom meeting PBCS: 50 - 80 NM or more...

WITH Satcom meeting PBCS requirements:

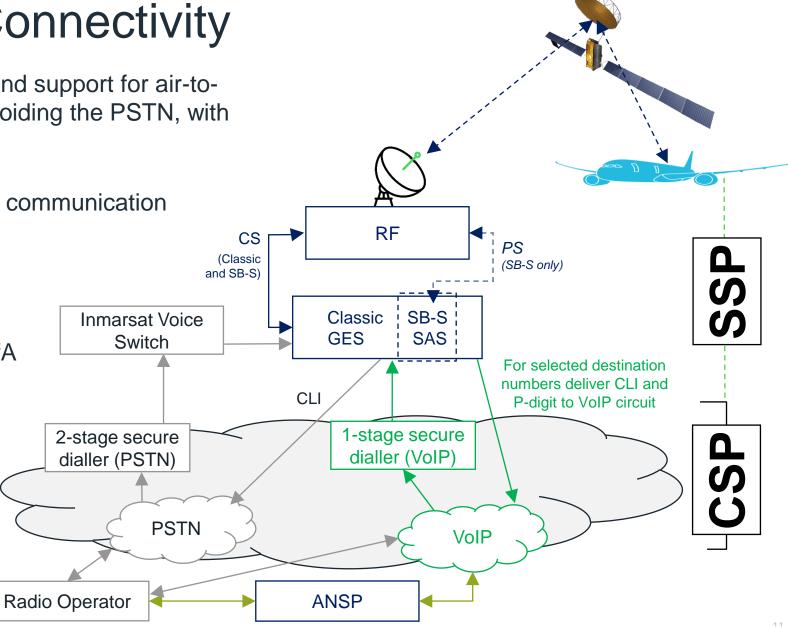
PANS ATM Chapter 5: ADS-C (RSP180) + CPDLC (RCP240) + RNP4

- 23 NM Lateral
- 12 NM Lateral (1 a/c climb/descend through)
- 20 NM Longitudinal
- 15 NM Longitudinal (Climb/Descend Procedure)

PANS ATM Chapter 8: ADS-B + CPDLC (RCP240) + RNP4

- 19 NM Lateral
- 15 NM Lateral (airspace w/ low traffic volume or rates of deviationsP off cleared track)
- 17 NM Longitudinal
- 14 NM Longitudinal (relative angle between tracks is less than 45 degrees)
- 15 NM Target-to-Target

SATVOICE VoIP Connectivity


> 1-stage ground-to-air secure dialling and support for air-toground calling on private networks, avoiding the PSTN, with reliable carriage of priority and CLI

> Enabler for direct controller-pilot voice communication

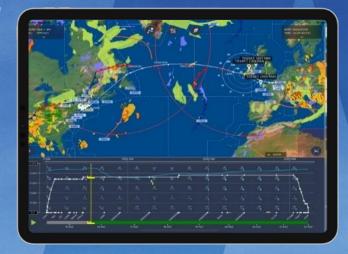
 Implemented by SITA, Collins evaluating service in operational trial

> Aligned with ICAO Annex 10, Vol III PfA

 ICAO OPDLWG developing new voice RCP for direct controller-pilot comms

A world of opportunity from connected EFB

- Live weather for turbulence avoidance, avoid harm to passengers, crew and aircraft
- Reduce fuel burn and carbon emissions
- Minimise impact of Irregular **Operations**
- Enhanced AOC comms chat apps, IP voice, connected crew apps
- eTechlogs



"Turbulence effects have increased due to climate change"

"Flight Profile Optimization can potentially reduce annual fuel burn by an average of 1% to 3%"

What is Iris?

Iris enables next-generation air traffic management, and more:

Iris is the Viasat implementation of FANS 3/C, enabled by the SwiftBroadband-Safety service

The Iris service is built on top of SwiftBroadband-Safety

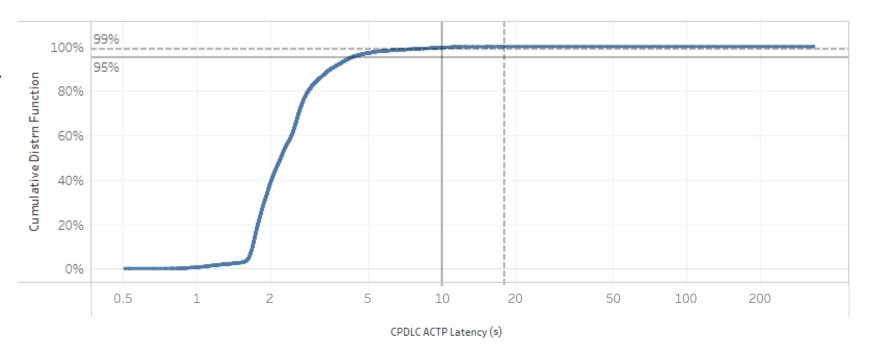
AIRBUS

SB-S Iris Service

- > Iris Service is an ICAO-compliant Aeronautical Mobile Satellite Service (AMSS) for:
 - ATN B1/ATS B2 CM and CPDLC
 - ATS B2 ADS-C
- Meets stringent performance requirements for domestic airspace
- Interoperable between domestic/oceanic airspace

SB-S Iris Avionics Installation and Hardware

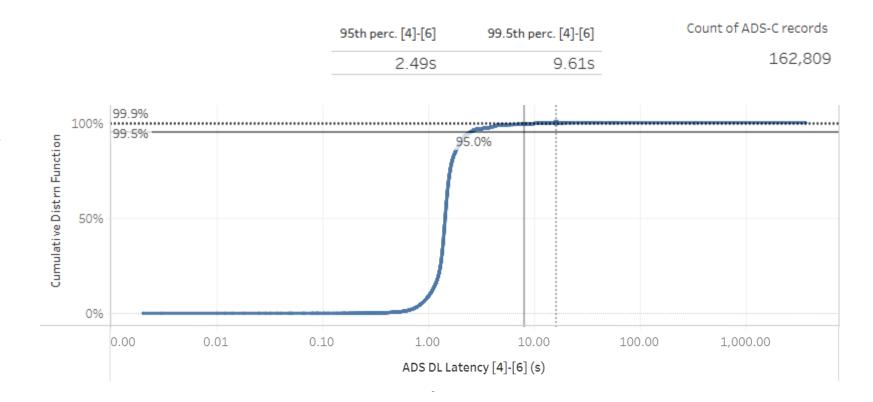
- > FANS-C over Satcom
- > ATS B2 CPDLC and ADS-C EPP (Extended Projected Profile)
- Software upgrade to ATSU
- > ATN/OSI software compatible with ATN network.
 - ATN/IPS available through future software upgrade.



CPDLC Air-Ground Latency

- Excellent performance seen for inservice period
- Tableau chart shows satcom data latency on 1 year of Iris flights for February 2024 to January 2025
- 95th percentile at 4.25 seconds for 2-way satcom air-ground data transfer
- Measurement points: Timestamps at the satellite terminal (SDU) and at the Viasat data link gateway (GDGW) – ground-ground latency not included
- > ESSP provides monthly end-toend Iris performance: https://satcomdls-support.essp-sas.eu/

ATN/OSI CPDLC Latency (Aircraft Iris Satcom terminal to Satcom Ground Gateway)



ADS-C Air-Ground Latency

- Excellent performance seen for inservice period
- Tableau chart shows satcom data latency on 1 year of Iris flights for February 2024 to January 2025
- 95th percentile at 2.49 seconds for 1-way satcom air-ground data transfer
- Measurement points: Timestamps at the satellite terminal (SDU) and at the Viasat data link gateway (GDGW) – ground-ground latency not included
- ESSP provides monthly end-toend Iris performance: https://satcomdls-support.essp-sas.eu/

Viasat: M

ATN/OSI ADS-C Latency (Aircraft Iris Satcom terminal to Satcom Ground Gateway)

Operational flights with easyJet

- 1st easyJet aircraft operating since
 December 2024
- 11 easyJet aircraft now operating
- 6000+ Iris flights thru 28 February

Airlines about to start:

Iris – airspace modernization program

What is it?

- ESA backed air traffic modernization program enabled by ATS B2 satcom in multilink with VDL
- Embraced by Airbus and tightly integrated into cockpit
- Delivers technology and performance needed to increase airspace capacity and flight efficiency and to achieve goals for CO₂ reduction
- Increases datalink capacity by offloading enroute traffic from VDL to satcom to address issue of VDL reaching max capacity in congested domestic airspace

Benefits

- Increased ATM capacity with optimized flight routing
- Minimized delays from lack of ATC capacity
- Reduced environmental impact of air travel

EU Mandate: ATS B2, ADS-C EPP effective 31st December 2027

must update the ATM system in accordance with the terms of the contract.

COMMISSION IMPLEMENTING REGULATION (EU) 2021/116 of 1 February 2021 System requirements (a) Aircraft must be equipped with the capability to automatically down-link trajectory information using ADS-C EPP as part of the ATS B2 services. The trajectory data automatically down-linked from the airborne system

Viasat.*

(b) Data link communications ground systems must support ADS-C (downlink of aircraft trajectory using EPP) as part of the ATS B2 services while keeping compatibility with controller - pilot data link communications (CPDLC) services as required by Commission Regulation (EC) No 29/2009 (3), including provision of service to flights equipped only with the Aeronautical Telecommunication Network Baseline 1 ('ATN-B1').

Enables 4D Trajectory-Based Operations

Direct Routes

Optimum Flight Levels

Continuous Climbs

Continuous Descents

Queue Management

Speed Control

20

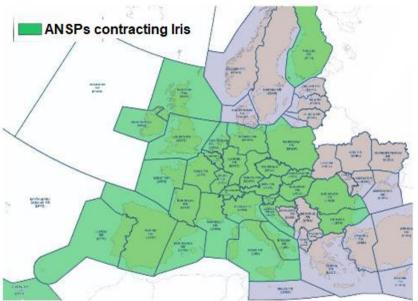
Iris pre-commercial flights are supported by 19 ANSPs

Iris Service is currently fully operational and provided by ESSP who is certified and overseen by EASA since July 2023

19 ANSPs have contracted Iris Service

Full specification of Iris Service is provided in the Iris Service Definition Document published

at ESSP website


LIST OF APPROVED ATM/ANS ORGANISATIONS UNDER THE OVERSIGHT OF EASA

CERTIFICATE REFERENCE	ORGANISATION NAME	COUNTRY	SCOPE	ISSUE DATE	STATUS	
EASA.AOA.PAN.038	European Satellite	France	Aeronautical	20/07/2023	Valid	
	Service Provider (ESSP		Mobile			
	SAS)		Satellite			
			Service			
			(AMSS)			

<u>List of Approved ATM-ANS Organisations</u> (public pdf at EASA website)

ANS CR AIRNAV IRELAND AUSTROCONTROL BULATSA **CROATIACONTROL DFS DSNA NAV PORTUGAL ECTL/MUAC ENAIRE ENAV FINTRAFFIC ANS** HUNGAROCONTROL LPS SR NATS **PANSA ROMATSA SLOVENIACONTROL SKYGUIDE**

Benefits of Connected Airline Operations

MUAC's overview on ATS-B2 benefits

Airborne side ADS-C + CPDLC

Airlines

- Optimized climb and descend profiles
- Optimized routes, less miles flown
- Fuel saving + Reduced CO₂ emissions → greener flights
- Future(possibly): less regulations through a more optimized network (use of EPP ETA, runway occupancy parameter, etc.)
- Already available in MUAC's airspace

Pilots

- Link of the ATSU to FMS for easier handling of messages (CPDLCv2)
- Less radio usage for routine information requested by controllers
- Reduced Flight crew workload

	ATN STD	UM	AVG(s)	PC50(s)	PC70(s)	PC95(s)	COUNT
PROCEED DIRECT TO X	B1	74	12,401	10	13	26	519548
PROCEED DIRECT TO X	B2	74R	10,5784	9	11	22	20206
CLEARED TO X VIA Y	B1	79	21,7196	16	23	55	5128
CLEARED TO X VIA Y	B2	79R	18,25	14	19	41	188

Response times to PROCEED DCT and CLEARED TO [...] VIA [...] CPDLC uplinks in B1/B2 airframes in 2022 at MUAC.

Note: Measured as time from uplink to WILCO sending time; there are more contributing factors.

ATS B2 capabilities (provided by SBS + FANS C):

- Extended CPDLC message set for trajectory negotiation
- ADS-C Extended Projected Profile (EPP)

Iris Global – Opportunities for Co-operation

Iris Global, ESA project


- > Launched in June 2022
- International development & demonstrations for Iris-based services work package
- > Opportunity to be a pioneer/early adopter of Iris in the region
- Future-proof for global ATC and AOC services, as part of fleet renewal

Trajectory-based operations

- Several ANSPs in APAC have demonstrated the use of TBO via EFB (Multi-Regional TBO)
- > Opportunity to test/develop a prototype of the ATS B2 service over satcom
- > APAC TBO Pathfinder Project Trajectory-based demonstrations, flight trials between regions
- > Jointly test/simulate use cases, leveraging Viasat's Iris Test Facility

A data link ready for the future

Robust Roadmap to support ATN/IPS standard

- We are building an ATN/OSI and ATN/IPS gateway that allows all aircraft, to transition seamlessly no matter which standard they operate on
- Boeing ecoDemonstrator flight in 2021
- OSI<>IPS interoperability trials 2024/2025

